RESUMEN
Molecular signals interact in networks to mediate biological processes. To analyze these networks, it would be useful to image many signals at once, in the same living cell, using standard microscopes and genetically encoded fluorescent reporters. Here, we report temporally multiplexed imaging (TMI), which uses genetically encoded fluorescent proteins with different clocklike properties-such as reversibly photoswitchable fluorescent proteins with different switching kinetics-to represent different cellular signals. We linearly decompose a brief (few-second-long) trace of the fluorescence fluctuations, at each point in a cell, into a weighted sum of the traces exhibited by each fluorophore expressed in the cell. The weights then represent the signal amplitudes. We use TMI to analyze relationships between different kinase activities in individual cells, as well as between different cell-cycle signals, pointing toward broad utility throughout biology in the analysis of signal transduction cascades in living systems.
Asunto(s)
Proteínas , Transducción de Señal , Animales , Humanos , Ratones , Línea Celular , Colorantes Fluorescentes , Microscopía Fluorescente/métodos , Fosforilación , Supervivencia CelularRESUMEN
During mammalian embryogenesis, cardiac progenitor cells constituting the second heart field (SHF) give rise to the right ventricle and primitive outflow tract (OFT). In zebrafish, previous lineage-tracing and mutant analyses suggested that SHF ventricular and OFT progenitors co-migrate to the arterial pole of the zebrafish heart tube soon after their specification in the nkx2.5+ field of anterior lateral plate mesoderm (ALPM). Using additional prospective lineage tracing, we demonstrate that while SHF ventricular progenitors migrate directly to the arterial pole, OFT progenitors become temporarily sequestered in the mesodermal cores of pharyngeal arch 2 (PA2), where they downregulate nkx2.5 expression. While there, they intermingle with precursors for PA2-derived head muscles (HMs) and hypobranchial artery endothelium, which we demonstrate are co-specified with SHF progenitors in the nkx2.5+ ALPM. Soon after their sequestration in PA2, OFT progenitors migrate to the arterial pole of the heart and differentiate into OFT lineages. Lastly, we demonstrate that SHF ventricular and OFT progenitors exhibit unique sensitivities to a mutation in fgf8a Our data highlight novel aspects of SHF, OFT and HM development in zebrafish that will inform mechanistic interpretations of cardiopharyngeal phenotypes in zebrafish models of human congenital disorders.
Asunto(s)
Cardiopatías Congénitas/embriología , Ventrículos Cardíacos/embriología , Células Madre/citología , Pez Cebra/embriología , Animales , Región Branquial/metabolismo , Linaje de la Célula , Movimiento Celular/fisiología , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Ventrículos Cardíacos/metabolismo , Proteína Homeótica Nkx-2.5/biosíntesis , Mesodermo/metabolismo , Miocardio/citología , Miocardio/metabolismo , Transducción de Señal/genética , Pez Cebra/genética , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genéticaRESUMEN
The vertebrate heart forms through successive phases of cardiomyocyte differentiation. Initially, cardiomyocytes derived from first heart field (FHF) progenitors assemble the linear heart tube. Thereafter, second heart field (SHF) progenitors differentiate into cardiomyocytes that are accreted to the poles of the heart tube over a well-defined developmental window. Although heart tube elongation deficiencies lead to life-threatening congenital heart defects, the variables controlling the initiation, rate and duration of myocardial accretion remain obscure. Here, we demonstrate that the AP-1 transcription factor, Fos-like antigen 2 (Fosl2), potentiates the rate of myocardial accretion from the zebrafish SHF. fosl2 mutants initiate accretion appropriately, but cardiomyocyte production is sluggish, resulting in a ventricular deficit coupled with an accumulation of SHF progenitors. Surprisingly, mutant embryos eventually correct the myocardial deficit by extending the accretion window. Overexpression of Fosl2 also compromises production of SHF-derived ventricular cardiomyocytes, a phenotype that is consistent with precocious depletion of the progenitor pool. Our data implicate Fosl2 in promoting the progenitor to cardiomyocyte transition and uncover the existence of regulatory mechanisms to ensure appropriate SHF-mediated cardiomyocyte contribution irrespective of embryonic stage.
Asunto(s)
Diferenciación Celular/fisiología , Antígeno 2 Relacionado con Fos/metabolismo , Corazón/embriología , Miocitos Cardíacos/citología , Factor de Transcripción AP-1/metabolismo , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proliferación Celular/genética , Antígeno 2 Relacionado con Fos/biosíntesis , Antígeno 2 Relacionado con Fos/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Cardiopatías Congénitas/genética , Miocardio/citología , Análisis de Secuencia de Proteína , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
The human heart's failure to replace ischemia-damaged myocardium with regenerated muscle contributes significantly to the worldwide morbidity and mortality associated with coronary artery disease. Remarkably, certain vertebrate species, including the zebrafish, achieve complete regeneration of amputated or injured myocardium through the proliferation of spared cardiomyocytes. Nonetheless, the genetic and cellular determinants of natural cardiac regeneration remain incompletely characterized. Here, we report that cardiac regeneration in zebrafish relies on Notch signaling. Following amputation of the zebrafish ventricular apex, Notch receptor expression becomes activated specifically in the endocardium and epicardium, but not the myocardium. Using a dominant negative approach, we discovered that suppression of Notch signaling profoundly impairs cardiac regeneration and induces scar formation at the amputation site. We ruled out defects in endocardial activation, epicardial activation, and dedifferentiation of compact myocardial cells as causative for the regenerative failure. Furthermore, coronary endothelial tubes, which we lineage traced from preexisting endothelium in wild-type hearts, formed in the wound despite the myocardial regenerative failure. Quantification of myocardial proliferation in Notch-suppressed hearts revealed a significant decrease in cycling cardiomyocytes, an observation consistent with a noncell autonomous requirement for Notch signaling in cardiomyocyte proliferation. Unexpectedly, hyperactivation of Notch signaling also suppressed cardiomyocyte proliferation and heart regeneration. Taken together, our data uncover the exquisite sensitivity of regenerative cardiomyocyte proliferation to perturbations in Notch signaling.
Asunto(s)
Corazón/fisiología , Miocitos Cardíacos/citología , Receptores Notch/metabolismo , Regeneración , Transducción de Señal , Pez Cebra/fisiología , Animales , Miocitos Cardíacos/metabolismoRESUMEN
Second heart field (SHF) progenitors perform essential functions during mammalian cardiogenesis. We recently identified a population of cardiac progenitor cells (CPCs) in zebrafish expressing latent TGFß-binding protein 3 (ltbp3) that exhibits several defining characteristics of the anterior SHF in mammals. However, ltbp3 transcripts are conspicuously absent in anterior lateral plate mesoderm (ALPM), where SHF progenitors are specified in higher vertebrates. Instead, ltbp3 expression initiates at the arterial pole of the developing heart tube. Because the mechanisms of cardiac development are conserved evolutionarily, we hypothesized that zebrafish SHF specification also occurs in the ALPM. To test this hypothesis, we Cre/loxP lineage traced gata4(+) and nkx2.5(+) ALPM populations predicted to contain SHF progenitors, based on evolutionary conservation of ALPM patterning. Traced cells were identified in SHF-derived distal ventricular myocardium and in three lineages in the outflow tract (OFT). We confirmed the extent of contributions made by ALPM nkx2.5(+) cells using Kaede photoconversion. Taken together, these data demonstrate that, as in higher vertebrates, zebrafish SHF progenitors are specified within the ALPM and express nkx2.5. Furthermore, we tested the hypothesis that Nkx2.5 plays a conserved and essential role during zebrafish SHF development. Embryos injected with an nkx2.5 morpholino exhibited SHF phenotypes caused by compromised progenitor cell proliferation. Co-injecting low doses of nkx2.5 and ltbp3 morpholinos revealed a genetic interaction between these factors. Taken together, our data highlight two conserved features of zebrafish SHF development, reveal a novel genetic relationship between nkx2.5 and ltbp3, and underscore the utility of this model organism for deciphering SHF biology.
Asunto(s)
Diferenciación Celular , Ventrículos Cardíacos/embriología , Mesodermo/embriología , Células Madre/fisiología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Diferenciación Celular/genética , Linaje de la Célula/genética , Linaje de la Célula/fisiología , Embrión no Mamífero , Epistasis Genética/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Corazón/embriología , Corazón/fisiología , Ventrículos Cardíacos/metabolismo , Proteína Homeótica Nkx-2.5 , Proteínas de Unión a TGF-beta Latente/genética , Proteínas de Unión a TGF-beta Latente/metabolismo , Proteínas de Unión a TGF-beta Latente/fisiología , Mesodermo/metabolismo , Mesodermo/fisiología , Especificidad de Órganos/genética , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
BACKGROUND: The mammalian outflow tract (OFT) and primitive right ventricle arise by accretion of newly differentiated cells to the arterial pole of the heart tube from multi-potent progenitor cells of the second heart field (SHF). While mounting evidence suggests that the genetic pathways regulating SHF development are highly conserved in zebrafish, this topic remains an active area of investigation. RESULTS: Here, we extend previous observations demonstrating that zebrafish tbx1 (van gogh, vgo) mutants show ventricular and OFT defects consistent with a conserved role in SHF-mediated cardiogenesis. Surprisingly, we reveal through double in situ analyses that tbx1 transcripts are excluded from cardiac progenitor cells and differentiated cardiomyocytes, suggesting a non-autonomous role in SHF development. Further, we find that the diminutive ventricle in vgo animals results from a 25% decrease in cardiomyocyte number that occurs subsequent to heart tube stages. Lastly, we report that although SHF progenitors are specified in the absence of Tbx1, they fail to be maintained due to compromised SHF progenitor cell proliferation. CONCLUSIONS: These studies highlight conservation of Tbx1 function in zebrafish SHF biology.
Asunto(s)
Proliferación Celular , Corazón/embriología , Proteínas de Dominio T Box/fisiología , Pez Cebra , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Corazón/fisiología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/embriología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Células Madre/metabolismo , Células Madre/fisiología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiologíaRESUMEN
Discovering the genetic and cellular mechanisms that drive cardiac morphogenesis remains a fundamental goal, as three-dimensional architecture greatly impacts functional capacity. During development, accurately contoured chambers balloon from a primitive tube in a process characterized by regional changes in myocardial cell size and shape. How these localized changes are achieved remains elusive. Here, we show in zebrafish that microRNA-143 (miR-143) is required for chamber morphogenesis through direct repression of adducin3 (add3), which encodes an F-actin capping protein. Knockdown of miR-143 or disruption of the miR-143-add3 interaction inhibits ventricular cardiomyocyte F-actin remodeling, which blocks their normal growth and elongation and leads to ventricular collapse and decreased contractility. Using mosaic analyses, we find that miR-143 and add3 act cell-autonomously to control F-actin dynamics and cell morphology. As proper chamber emergence relies on precise control of cytoskeletal polymerization, Add3 represents an attractive target to be fine-tuned by both uniform signals, such as miR-143, and undiscovered localized signals. Together, our data uncover the miR-143-add3 genetic pathway as essential for cardiac chamber formation and function through active adjustment of myocardial cell morphology.
Asunto(s)
Proteínas de Unión a Calmodulina/genética , Corazón/embriología , MicroARNs/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Regiones no Traducidas 3' , Actinas/metabolismo , Animales , Secuencia de Bases , Proteínas de Unión a Calmodulina/fisiología , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Oligodesoxirribonucleótidos Antisentido/genética , Homología de Secuencia de Ácido Nucleico , Pez Cebra/fisiología , Proteínas de Pez Cebra/fisiologíaRESUMEN
Methods for one-photon fluorescent imaging of calcium dynamics can capture the activity of hundreds of neurons across large fields of view at a low equipment complexity and cost. In contrast to two-photon methods, however, one-photon methods suffer from higher levels of crosstalk from neuropil, resulting in a decreased signal-to-noise ratio and artifactual correlations of neural activity. We address this problem by engineering cell-body-targeted variants of the fluorescent calcium indicators GCaMP6f and GCaMP7f. We screened fusions of GCaMP to natural, as well as artificial, peptides and identified fusions that localized GCaMP to within 50 µm of the cell body of neurons in mice and larval zebrafish. One-photon imaging of soma-targeted GCaMP in dense neural circuits reported fewer artifactual spikes from neuropil, an increased signal-to-noise ratio, and decreased artifactual correlation across neurons. Thus, soma-targeting of fluorescent calcium indicators facilitates usage of simple, powerful, one-photon methods for imaging neural calcium dynamics.
Asunto(s)
Encéfalo/diagnóstico por imagen , Calcio/metabolismo , Cuerpo Celular/patología , Neuronas/patología , Imagen Óptica/métodos , Animales , Artefactos , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Unión al Calcio , Cuerpo Celular/metabolismo , Proteínas Fluorescentes Verdes , Ratones , Neuronas/metabolismo , Neurópilo , Pez CebraRESUMEN
Microdeletions involving TBX1 result in variable congenital malformations known collectively as 22q11.2 deletion syndrome (22q11.2DS). Tbx1-deficient mice and zebrafish recapitulate several disease phenotypes, including pharyngeal arch artery (PAA), head muscle (HM), and cardiac outflow tract (OFT) deficiencies. In zebrafish, these structures arise from nkx2.5+ progenitors in pharyngeal arches 2-6. Because pharyngeal arch morphogenesis is compromised in Tbx1-deficient animals, the malformations were considered secondary. Here, we report that the PAA, HM, and OFT phenotypes in tbx1 mutant zebrafish are primary and arise prior to pharyngeal arch morphogenesis from failed specification of the nkx2.5+ pharyngeal lineage. Through in situ analysis and lineage tracing, we reveal that nkx2.5 and tbx1 are co-expressed in this progenitor population. Furthermore, we present evidence suggesting that gdf3-ALK4 signaling is a downstream mediator of nkx2.5+ pharyngeal lineage specification. Collectively, these studies support a cellular mechanism potentially underlying the cardiovascular and craniofacial defects observed in the 22q11.2DS population.
Asunto(s)
Síndrome de Deleción 22q11/patología , Diferenciación Celular , Células Madre Embrionarias/citología , Faringe/embriología , Síndrome de Deleción 22q11/genética , Animales , Linaje de la Célula , Células Madre Embrionarias/metabolismo , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Faringe/citología , Fenotipo , Proteínas de Dominio T Box/genética , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
The pharyngeal arch arteries (PAAs) are transient embryonic blood vessels that make indispensable contributions to the carotid arteries and great vessels of the heart, including the aorta and pulmonary arteries. During embryogenesis, the PAAs appear in a craniocaudal sequence to connect pre-existing segments of the primitive circulation after de novo vasculogenic assembly from angioblast precursors. Despite the unique spatiotemporal characteristics of PAA development, the embryonic origins of PAA angioblasts and the genetic factors regulating their emergence remain unknown. Here, we identify the embryonic source of PAA endothelium as nkx2.5(+) progenitors in lateral plate mesoderm long considered to adopt cell fates within the heart exclusively. Further, we report that PAA endothelial differentiation relies on Nkx2.5, a canonical cardiac transcription factor not previously implicated in blood vessel formation. Together, these studies reveal the heart field origin of PAA endothelium and attribute a new vasculogenic function to the cardiac transcription factor Nkx2.5 during great vessel precursor development.