Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-33468467

RESUMEN

Negamycin is a natural pseudodipeptide antibiotic with promising activity against Gram-negative and Gram-positive bacteria, including Enterobacteriaceae, Pseudomonas aeruginosa, and Staphylococcus aureus, and good efficacy in infection models. It binds to ribosomes with a novel binding mode, stimulating miscoding and inhibiting ribosome translocation. We were particularly interested in studying how the small, positively charged natural product reaches its cytoplasmic target in Escherichia coli Negamycin crosses the cytoplasmic membrane by multiple routes depending on environmental conditions. In a peptide-free medium, negamycin uses endogenous peptide transporters for active translocation, preferentially the dipeptide permease Dpp. However, in the absence of functional Dpp or in the presence of outcompeting nutrient peptides, negamycin can still enter the cytoplasm. We observed a contribution of the DppA homologs SapA and OppA, as well as of the proton-dependent oligopeptide transporter DtpD. Calcium strongly improves the activity of negamycin against both Gram-negative and Gram-positive bacteria, especially at concentrations around 2.5 mM, reflecting human blood levels. Calcium forms a complex with negamycin and facilitates its interaction with negatively charged phospholipids in bacterial membranes. Moreover, decreased activity at acidic pH and under anaerobic conditions points to a role of the membrane potential in negamycin uptake. Accordingly, improved activity at alkaline pH could be linked to increased uptake of [3H]negamycin. The diversity of options for membrane translocation is reflected by low resistance rates. The example of negamycin demonstrates that membrane passage of antibiotics can be multifaceted and that for cytoplasmic anti-Gram-negative drugs, understanding of permeation and target interaction are equally important.


Asunto(s)
Aminoácidos Diaminos , Antibacterianos , Antibacterianos/farmacología , Membrana Celular , Escherichia coli/genética , Humanos
2.
ACS Infect Dis ; 10(1): 127-137, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38104323

RESUMEN

The antibiotic fosfomycin (FOS) is widely recognized for the treatment of lower urinary tract infections with Escherichia coli and has lately gained importance as a therapeutic option to combat multidrug-resistant bacteria. However, resistance to FOS frequently develops through mutations reducing its uptake. Although the inner-membrane transport of FOS has been extensively studied in E. coli, its outer-membrane (OM) transport remains insufficiently understood. While evaluating minimal inhibitory concentrations in OM porin-deficient mutants, we observed that the E. coli ΔompFΔompC strain is four times more resistant to FOS than the wild type and the respective single mutants. Continuous monitoring of FOS-induced lysis of porin-deficient strains additionally highlighted the importance of LamB. The relevance of OmpF, OmpC, and LamB to FOS uptake was confirmed by electrophysiological and transcriptional analysis. Our study gives for the first time in-depth insight into the transport of FOS through the OM in E. coli.


Asunto(s)
Proteínas de Escherichia coli , Fosfomicina , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfomicina/farmacología , Transporte Biológico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Porinas/genética , Porinas/metabolismo
3.
ACS Infect Dis ; 6(7): 1855-1865, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32369342

RESUMEN

Despite decades of therapeutic application of aminoglycosides, it is still a matter of debate if porins contribute to the translocation of the antibiotics across the bacterial outer membrane. Here, we quantified the uptake of kanamycin across the major porin channels OmpF and OmpC present in the outer membrane of Escherichia coli. Our analysis revealed that, despite its relatively large size, about 10-20 kanamycin molecules per second permeate through OmpF and OmpC under a 10 µM concentration gradient, whereas OmpN does not allow the passage. Molecular simulations elucidate the uptake mechanism of kanamycin through these porins. Whole-cell studies with a defined set of E. coli porin mutants provide evidence that translocation of kanamycin via porins is relevant for antibiotic potency. The values are discussed with respect to other antibiotics.


Asunto(s)
Escherichia coli , Kanamicina , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Porinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA