Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Annu Rev Microbiol ; 71: 1-19, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28886686

RESUMEN

This is a tale of how technology drove the discovery of the molecular basis for signal transduction in the initiation of sporulation in Bacillus subtilis and in bacterial two-component systems. It progresses from genetics to cloning and sequencing to biochemistry to structural biology to an understanding of how proteins evolve interaction specificity and to identification of interaction surfaces by statistical physics. This is about how the people in my laboratory accomplished this feat; without them little would have been done.


Asunto(s)
Bacillus subtilis/fisiología , Regulación Bacteriana de la Expresión Génica , Transducción de Señal , Adaptación Fisiológica , Bacillus subtilis/genética , Historia del Siglo XX , Historia del Siglo XXI
2.
Proc Natl Acad Sci U S A ; 109(26): E1733-42, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22670053

RESUMEN

Signal transduction proteins such as bacterial sensor histidine kinases, designed to transition between multiple conformations, are often ruled by unstable transient interactions making structural characterization of all functional states difficult. This study explored the inactive and signal-activated conformational states of the two catalytic domains of sensor histidine kinases, HisKA and HATPase. Direct coupling analyses, a global statistical inference approach, was applied to >13,000 such domains from protein databases to identify residue contacts between the two domains. These contacts guided structural assembly of the domains using MAGMA, an advanced molecular dynamics docking method. The active conformation structure generated by MAGMA simultaneously accommodated the sequence derived residue contacts and the ATP-catalytic histidine contact. The validity of this structure was confirmed biologically by mutation of contact positions in the Bacillus subtilis sensor histidine kinase KinA and by restoration of activity in an inactive KinA(HisKA):KinD(HATPase) hybrid protein. These data indicate that signals binding to sensor domains activate sensor histidine kinases by causing localized strain and unwinding at the end of the C-terminal helix of the HisKA domain. This destabilizes the contact positions of the inactive conformation of the two domains, identified by previous crystal structure analyses and by the sequence analysis described here, inducing the formation of the active conformation. This study reveals that structures of unstable transient complexes of interacting proteins and of protein domains are accessible by applying this combination of cross-validating technologies.


Asunto(s)
Genómica , Mutagénesis Sitio-Dirigida , Proteínas Quinasas/química , Bacillus subtilis/enzimología , Histidina Quinasa , Modelos Moleculares , Fosforilación , Conformación Proteica , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
3.
Mol Microbiol ; 87(4): 707-12, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23279101

RESUMEN

Statistical analyses of genome sequence-derived protein sequence data can identify amino acid residues that interact between proteins or between domains of a protein. These statistical methods are based on evolution-directed amino acid variation responding to structural and functional constraints in proteins. The identified residues form a basis for determining structure and folding of proteins as well as inferring mechanisms of protein function. When applied to two-component systems, several research groups have shown they can be used to identify the amino acid interactions between response regulators and histidine kinases and the specificity therein. Recently, statistical studies between the HisKA and HATPase-ATP-binding domains of histidine kinases identified amino acid interactions for both the inactive and the active catalytic states of such kinases. The identified interactions generated a model structure for the domain conformation of the active state. This conformation requires an unwinding of a portion of the C-terminal helix of the HisKA domain that destroys the inactive state residue contacts and suggests how signal-binding determines the equilibrium between the inactive and active states of histidine kinases. The rapidly accumulating protein sequence databases from genome, metagenome and microbiome studies are an important resource for functional and structural understanding of proteins and protein complexes in microbes.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Proteínas Quinasas/química , Transducción de Señal , Secuencia de Aminoácidos , Bacterias/química , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Interpretación Estadística de Datos , Histidina Quinasa , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
4.
Mol Microbiol ; 79(2): 503-22, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21219466

RESUMEN

The YycG sensor histidine kinase co-ordinates cell wall remodelling with cell division in Gram-positive bacteria by controlling the transcription of genes for autolysins and their inhibitors. Bacillus subtilis YycG senses cell division and is enzymatically activated by associating with the divisome at the division septum. Here it is shown that the cytoplasmic PAS domain of this multi-domain transmembrane kinase is a determining factor translocating the kinase to the division septum. Furthermore, translocation to the division septum, per se, is insufficient to activate YycG, indicating that specific interactions and/or ligands produced there are required to stimulate kinase activity. N-terminal truncations of YycG lose negative regulation of their activity inferring that this regulation is accomplished through its transmembrane and extramembrane domains interacting with the membrane associated YycH and YycI proteins that do not localize to the divisome. The data indicate that YycG activity in non-dividing cells is suppressed by its interaction with YycH and YycI and its activation is co-ordinated to cell division in dividing cells by specific interactions that occur within the divisome.


Asunto(s)
Bacillus subtilis/fisiología , División Celular , Proteínas Quinasas/metabolismo , Histidina Quinasa , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Proteínas Quinasas/genética , Eliminación de Secuencia
5.
Mol Microbiol ; 80(3): 641-54, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21401736

RESUMEN

The phosphorylated Spo0A transcription factor controls the initiation of endospore formation in Clostridium acetobutylicum, but genes encoding key phosphorelay components, Spo0F and Spo0B, are missing in the genome. We hypothesized that the five orphan histidine kinases of C. acetobutylicum interact directly with Spo0A to control its phosphorylation state. Sequential targeted gene disruption and gene expression profiling provided evidence for two pathways for Spo0A activation, one dependent on a histidine kinase encoded by cac0323, the other on both histidine kinases encoded by cac0903 and cac3319. Purified Cac0903 and Cac3319 kinases autophosphorylated and transferred phosphoryl groups to Spo0A in vitro, confirming their role in Spo0A activation in vivo. A cac0437 mutant hyper-sporulated, suggesting that Cac0437 is a modulator that prevents sporulation and maintains cellular Spo0A∼P homeostasis during growth. Accordingly, Cac0437 has apparently lost the ability to autophosphorylate in vitro; instead it catalyses the ATP-dependent dephosphorylation of Spo0A∼P releasing inorganic phosphate. Direct phosphorylation of Spo0A by histidine kinases and dephosphorylation by kinase-like proteins may be a common feature of the clostridia that may represent the ancestral state before the great oxygen event some 2.4 billion years ago, after which additional phosphorelay proteins were recruited in the evolutionary lineage that led to the bacilli.


Asunto(s)
Clostridium acetobutylicum/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Proteínas Quinasas/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Histidina Quinasa , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Mapeo de Interacción de Proteínas , Proteínas Quinasas/aislamiento & purificación , Transducción de Señal
6.
Proc Natl Acad Sci U S A ; 106(1): 67-72, 2009 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-19116270

RESUMEN

Understanding the molecular determinants of specificity in protein-protein interaction is an outstanding challenge of postgenome biology. The availability of large protein databases generated from sequences of hundreds of bacterial genomes enables various statistical approaches to this problem. In this context covariance-based methods have been used to identify correlation between amino acid positions in interacting proteins. However, these methods have an important shortcoming, in that they cannot distinguish between directly and indirectly correlated residues. We developed a method that combines covariance analysis with global inference analysis, adopted from use in statistical physics. Applied to a set of >2,500 representatives of the bacterial two-component signal transduction system, the combination of covariance with global inference successfully and robustly identified residue pairs that are proximal in space without resorting to ad hoc tuning parameters, both for heterointeractions between sensor kinase (SK) and response regulator (RR) proteins and for homointeractions between RR proteins. The spectacular success of this approach illustrates the effectiveness of the global inference approach in identifying direct interaction based on sequence information alone. We expect this method to be applicable soon to interaction surfaces between proteins present in only 1 copy per genome as the number of sequenced genomes continues to expand. Use of this method could significantly increase the potential targets for therapeutic intervention, shed light on the mechanism of protein-protein interaction, and establish the foundation for the accurate prediction of interacting protein partners.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas/métodos , Proteínas Bacterianas , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 105(15): 5891-6, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18408157

RESUMEN

Two-component signal transduction systems with membrane-embedded sensor histidine kinases are believed to recognize environmental signals and transduce this information over the cellular membrane to influence the activity of a transcription factor to which they are mated. The YycG sensor kinase of Bacillus subtilis, containing two transmembrane helices, is subject to a complicated activity-control circuit involving two other proteins with N-terminal transmembrane helices, YycH and YycI. Truncation studies of YycH and YycI demonstrated that the individual transmembrane helices of these proteins are sufficient to adjust YycG activity, indicating that this control is achieved at the membrane level. A replica exchange molecular dynamics computational approach generated in silico structural models of the transmembrane helix complex that informed mutagenesis studies of the YycI transmembrane helix supporting the accuracy of the in silico model. The results predict that signal recognition by any of the extracellular domains of the sensor histidine kinase YycG or the associated proteins YycH and YycI is transmitted across the cellular membrane by subtle alterations in the positions of the helices within the transmembrane complex of the three proteins.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Histidina Quinasa , Proteínas de la Membrana/metabolismo , Fosforilación , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción/metabolismo
8.
Mol Microbiol ; 72(1): 109-23, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19222757

RESUMEN

Regulated expression of the genes for anthrax toxin proteins is essential for the virulence of the pathogenic bacterium Bacillus anthracis. Induction of toxin gene expression depends on several factors, including temperature, bicarbonate levels, and metabolic state of the cell. To identify factors that regulate toxin expression, transposon mutagenesis was performed under non-inducing conditions and mutants were isolated that untimely expressed high levels of toxin. A number of these mutations clustered in the haem biosynthetic and cytochrome c maturation pathways. Genetic analysis revealed that two haem-dependent, small c-type cytochromes, CccA and CccB, located on the extracellular surface of the cytoplasmic membrane, regulate toxin gene expression by affecting the expression of the master virulence regulator AtxA. Deregulated AtxA expression in early exponential phase resulted in increased expression of toxin genes in response to loss of the CccA-CccB signalling pathway. This is the first function identified for these two small c-type cytochromes of Bacillus species. Extension of the transposon screen identified a previously uncharacterized protein, BAS3568, highly conserved across many bacterial and archeal species, as involved in cytochrome c activity and virulence regulation. These findings are significant not only to virulence regulation in B. anthracis, but also to analysis of virulence regulation in many pathogenic bacteria and to the study of cytochrome c activity in Gram-positive bacteria.


Asunto(s)
Antígenos Bacterianos/metabolismo , Bacillus anthracis/genética , Toxinas Bacterianas/metabolismo , Grupo Citocromo c/metabolismo , Antígenos Bacterianos/genética , Bacillus anthracis/metabolismo , Bacillus anthracis/patogenicidad , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación Bacteriana de la Expresión Génica , Mutagénesis Insercional , Mutación , Transactivadores/metabolismo , Transcripción Genética , Virulencia
9.
Microbiology (Reading) ; 156(Pt 2): 385-391, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19926656

RESUMEN

PagR is a transcriptional repressor in Bacillus anthracis that controls the chromosomal S-layer genes eag and sap, and downregulates the protective antigen pagA gene by direct binding to their promoter regions. The PagR protein sequence is similar to those of members of the ArsR repressor family involved in the repression of arsenate-resistance genes in numerous bacteria. The crystal structure of PagR was solved using multi-wavelength anomalous diffraction (MAD) techniques and was refined with 1.8 A resolution diffraction data. The PagR molecules form dimers, as observed in all SmtB/ArsR repressor family proteins. In the crystal lattice four PagR dimers pack together to form an inactive octamer. Model-building studies suggest that the dimer binds to a DNA duplex with a bend of around 4 degrees.


Asunto(s)
Bacillus anthracis/química , Proteínas Bacterianas/química , Proteínas Represoras/química , Secuencia de Aminoácidos , Bacillus anthracis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , Genes Bacterianos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica/genética , Conformación Proteica , Proteínas Represoras/genética
10.
PLoS Pathog ; 4(11): e1000210, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19023421

RESUMEN

In the pathogenic bacterium Bacillus anthracis, virulence requires induced expression of the anthrax toxin and capsule genes. Elevated CO2/bicarbonate levels, an indicator of the host environment, provide a signal ex vivo to increase expression of virulence factors, but the mechanism underlying induction and its relevance in vivo are unknown. We identified a previously uncharacterized ABC transporter (BAS2714-12) similar to bicarbonate transporters in photosynthetic cyanobacteria, which is essential to the bicarbonate induction of virulence gene expression. Deletion of the genes for the transporter abolished induction of toxin gene expression and strongly decreased the rate of bicarbonate uptake ex vivo, demonstrating that the BAS2714-12 locus encodes a bicarbonate ABC transporter. The bicarbonate transporter deletion strain was avirulent in the A/J mouse model of infection. Carbonic anhydrase inhibitors, which prevent the interconversion of CO2 and bicarbonate, significantly affected toxin expression only in the absence of bicarbonate or the bicarbonate transporter, suggesting that carbonic anhydrase activity is not essential to virulence factor induction and that bicarbonate, and not CO2, is the signal essential for virulence induction. The identification of this novel bicarbonate transporter essential to virulence of B. anthracis may be of relevance to other pathogens, such as Streptococcus pyogenes, Escherichia coli, Borrelia burgdorferi, and Vibrio cholera that regulate virulence factor expression in response to CO2/bicarbonate, and suggests it may be a target for antibacterial intervention.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Bacillus anthracis/patogenicidad , Bicarbonatos/metabolismo , Animales , Carbunco/etiología , Bacillus anthracis/química , Bacillus anthracis/genética , Proteínas Bacterianas , Modelos Animales de Enfermedad , Regulación Bacteriana de la Expresión Génica , Ratones , Factores de Virulencia/genética
11.
Curr Opin Struct Biol ; 17(6): 706-15, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17913492

RESUMEN

Two-component signal transduction systems consisting of a sensor histidine kinase and a response regulator/transcription factor interpret a multitude of environmental and cellular signals and coordinate the expression of a wide array of genes in bacteria. Signal recognition by sensor histidine kinases is the province of a sensor complex consisting of several protein domains that together serve to augment or attenuate the activity of the histidine kinase and thereby of gene expression. Recent investigations have shown the diverse strategies bacteria use to assemble protein domains into the sensor complexes to accomplish signaling. Structural studies of such domains are leading to an understanding of the mechanisms by which sensor complexes recognize signals and regulate kinase activity.


Asunto(s)
Transducción de Señal , Dominio Catalítico , Citoplasma/metabolismo , Modelos Moleculares , Proteínas/metabolismo
12.
J Bacteriol ; 191(3): 687-92, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18931112

RESUMEN

The Bacillus anthracis BA2291 gene codes for a sensor histidine kinase involved in the induction of sporulation. Genes for orthologs of the sensor domain of the BA2291 kinase exist in virulence plasmids in this organism, and these proteins, when expressed, inhibit sporulation by converting BA2291 to an apparent phosphatase of the sporulation phosphorelay. Evidence suggests that the sensor domains inhibit BA2291 by titrating its activating signal ligand. Studies with purified BA2291 revealed that this kinase is uniquely specific for GTP in the forward reaction and GDP in the reverse reaction. The G1 motif of BA2291 is highly modified from ATP-specific histidine kinases, and modeling this motif in the structure of the kinase catalytic domain suggested how guanine binds to the region. A mutation in the putative coiled-coil linker between the sensor domain and the catalytic domains was found to decrease the rate of the forward autophosphorylation reaction and not affect the reverse reaction from phosphorylated Spo0F. The results suggest that the activating ligand for BA2291 is a critical signal for sporulation and in a limited concentration in the cell. Decreasing the response to it either by slowing the forward reaction through mutation or by titration of the ligand by expressing the plasmid-encoded sensor domains switches BA2291 from an inducer to an inhibitor of the phosphorelay and sporulation.


Asunto(s)
Bacillus anthracis/enzimología , Proteínas Bacterianas/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Quinasas/metabolismo , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cromatografía en Capa Delgada , Histidina Quinasa , Modelos Moleculares , Mutación , Fenotipo , Fosforilación , Proteínas Quinasas/química , Proteínas Quinasas/genética , Estructura Secundaria de Proteína , Esporas Bacterianas/enzimología , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
13.
Trends Microbiol ; 16(5): 215-21, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18374574

RESUMEN

The conversion of a bacterium from a non-pathogenic to a pathogenic existence is usually associated with the acquisition of virulence factors, the genes of which gain entry through bacteriophage infection, transposable elements or plasmid transfer. Pathogenesis research is mostly focused on how these factors enable the bacterium to infect the host or evade the repertoire of host defenses. Less effort is expended on understanding how the invading genes are affected by the complex regulatory circuits of the bacterium and how virulence is the result of converting these regulatory circuits to make them complicit with pathogenesis. An example of such a conversion is seen in Bacillus anthracis, and how acquired plasmid regulatory functions affect the activity of the regulatory processes of the bacterium, and vice versa, is now being revealed.


Asunto(s)
Bacillus anthracis/genética , Bacillus anthracis/patogenicidad , Plásmidos/genética , Bacillus anthracis/enzimología , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Monoéster Fosfórico Hidrolasas , Fosfotransferasas/genética , Esporas Bacterianas/fisiología , Virulencia/genética
14.
Mol Microbiol ; 69(3): 621-32, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18573169

RESUMEN

The concerted interconnection between processes driving DNA synthesis, division septum formation and cell wall synthesis and remodelling in rapidly growing bacteria requires precise co-ordination by signalling mechanisms that are, for the most part, unknown. The YycG (sensor histidine kinase)-YycF (response regulator/transcription factor) two-component system of Bacillus subtilis controls the synthesis of enzymes and their inhibitors that function in cell wall remodelling and cell separation. Here it is shown that the YycG sensor histidine kinase is a component of the division septum in growing cells. RT-PCR quantification of YycF approximately PO(4)-regulated gene transcription, in wild type and FtsZ-depleted, septum-less cells, indicated that YycG kinase activity on YycF is dependent on YycG localization to a division septum. The data support a model in which the YycG sensor kinase perceives information at the division septum and regulates the reciprocal synthesis of autolysins and autolysin inhibitors to co-ordinate growth and division with cell wall restructuring.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , División Celular , Pared Celular/enzimología , Proteínas Quinasas/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/fisiología , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Nucléolo Celular/enzimología , Pared Celular/genética , Pared Celular/fisiología , Histidina Quinasa , Proteínas Quinasas/análisis , Proteínas Quinasas/genética , Transducción de Señal
15.
J Bacteriol ; 190(15): 5522-5, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18539743

RESUMEN

The ResDE two-component system regulates the synthesis of several components of the aerobic and anaerobic respiratory pathways in bacilli. The ResD response regulator transcription factor has been implicated in the regulation of virulence factors in a number of gram-positive species, including Bacillus anthracis. The precise deletions of resD and resE in B. anthracis that retained the classical respiratory phenotypes did not affect the expression of the gene for the protective antigen of the anthrax toxin, pagA, or that of the toxin regulator, atxA. The results indicate that the loss of ResDE-controlled respiratory capacity does not affect the synthesis of anthrax toxin.


Asunto(s)
Antígenos Bacterianos/biosíntesis , Bacillus anthracis/fisiología , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/biosíntesis , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Respiración , Factores de Transcripción/metabolismo , Bacillus anthracis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Eliminación de Gen , Mutagénesis Insercional , Factores de Transcripción/genética
16.
J Bacteriol ; 190(19): 6483-92, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18676674

RESUMEN

The AtxA virulence regulator of Bacillus anthracis is required for toxin and capsule gene expression. AtxA is a phosphotransferase system regulatory domain-containing protein whose activity is regulated by phosphorylation/dephosphorylation of conserved histidine residues. Here we report that transcription of the atxA gene occurs from two independent promoters, P1 (previously described by Dai et al. [Z. Dai, J. C. Sirard, M. Mock, and T. M. Koehler, Mol. Microbiol. 16:1171-1181, 1995]) and P2, whose transcription start sites are separated by 650 bp. Both promoters have -10 and -35 consensus sequences compatible with recognition by sigma(A)-containing RNA polymerase, and neither promoter depends on the sporulation sigma factor SigH. The dual promoter activity and the extended untranslated mRNA suggest that as-yet-unknown regulatory mechanisms may act on this region to influence the level of AtxA in the cell.


Asunto(s)
Bacillus anthracis/genética , Proteínas Bacterianas/genética , Regiones Promotoras Genéticas/genética , Transactivadores/genética , Secuencia de Bases , Western Blotting , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Modelos Genéticos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética
17.
Biochemistry ; 47(30): 7782-4, 2008 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-18588317

RESUMEN

Short-lived protein interactions determine signal transduction specificity among genetically amplified, structurally identical two-component signaling systems. Interacting protein pairs evolve recognition precision by varying residues at specific positions in the interaction surface consistent with constraints of charge, size, and chemical properties. Such positions can be detected by covariance analyses of two-component protein databases. Here, covariance is shown to identify a cluster of co-evolving dynamic residues in two-component proteins. NMR dynamics and structural studies of both wild-type and mutant proteins in this cluster suggest that motions serve to precisely arrange the site of phosphoryl transfer within the complex.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Transducción de Señal , Análisis de Varianza , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Espectroscopía de Resonancia Magnética , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
18.
FEBS Lett ; 581(7): 1425-9, 2007 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-17350627

RESUMEN

Several alanine mutations in the response regulator Spo0F induce hypersporulation in Bacillus subtilis. L66A, I90A and H101A mutants are purported to be involved in contacts stabilizing the orientation of the alpha4-helix and hence the beta4-alpha4 kinase recognition loop. Y13A is thought to affect the orientation of the alpha1-helix and consequently phosphatase action. Using comparative NMR chemical shift analyses for these mutants, we have confirmed these suppositions and isolated residues in Spo0F critical in sensor kinases discrimination. In addition, we discuss how buried residues and intra-protein communication networks contribute to precise molecular recognition by ensuring that the correct surface is presented.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/química , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Alanina/química , Alanina/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Histidina Quinasa , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Esporas Bacterianas
19.
Methods Enzymol ; 422: 396-417, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17628151

RESUMEN

The YycFG two-component system, highly conserved in the low G+C gram positives, is essential for cell viability in most organisms in which it has been studied. The system is organized within an operon that includes at least one but often three to four other genes. Products of two of these genes, yycH and yycI, have been shown to have a regulatory role on this two-component system. Immunofluorescent studies identified YycG kinase localization at the cell division sites consistent with its role in regulating cell divisional processes. The essential nature and operon organization of this system commanded special requirements in studying this system genetically. This chapter presents methods utilized in identifying the regulatory circuit that controls the activity of the YycG kinase in Bacillus subtilis. Most aspects of our approaches are applicable to other two-component systems in B. subtilis and the gram positives. Some are limited to essential systems, such as the YycFG system.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/química , Proteínas Quinasas/química , Bacillus subtilis/enzimología , Bacillus subtilis/genética , División Celular , Clonación Molecular , Histidina Quinasa , Mutagénesis , Mutación , Operón , Plásmidos , Reacción en Cadena de la Polimerasa , Eliminación de Secuencia , Transducción de Señal
20.
Methods Enzymol ; 422: 75-101, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17628135

RESUMEN

As more and more sequence data become available, new approaches for extracting information from these data become feasible. This chapter reports on one such method that has been applied to elucidate protein-protein interactions in bacterial two-component signaling pathways. The method identifies residues involved in the interaction through an analysis of over 2500 functionally coupled proteins and a precise determination of the substitutional constraints placed on one protein by its signaling mate. Once identified, a simple log-likelihood scoring procedure is applied to these residues to build a predictive tool for assigning signaling mates. The ability to apply this method is based on a proliferation of related domains within multiple organisms. Paralogous evolution through gene duplication and divergence of two-component systems has commonly resulted in tens of closely related interacting pairs within one organism with a roughly one-to-one correspondence between signal and response. This provides us with roughly an order of magnitude more protein pairs than there are unique, fully sequenced bacterial species. Consequently, this chapter serves as both a detailed exposition of the method that has provided more depth to our knowledge of bacterial signaling and a look ahead to what would be possible on a more widespread scale, that is, to protein-protein interactions that have only one example per genome, as the number of genomes increases by a factor of 10.


Asunto(s)
Biblioteca Genómica , Proteínas/genética , Proteínas Bacterianas/genética , Biología Computacional , Escherichia coli/genética , Perfilación de la Expresión Génica , Cadenas de Markov , Proteínas/química , Alineación de Secuencia , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA