Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Mater ; 19(8): 887-893, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32284599

RESUMEN

A number of grain boundary phenomena in ionic materials, in particular, anomalous (either depressed or enhanced) charge transport, have been attributed to space charge effects. Developing effective strategies to manipulate transport behaviour requires deep knowledge of the origins of the interfacial charge, as well as its variability within a polycrystalline sample with millions of unique grain boundaries. Electron holography is a powerful technique uniquely suited for studying the electric potential profile at individual grain boundaries, whereas atom-probe tomography provides access to the chemical identify of essentially every atom at individual grain boundaries. Using these two techniques, we show here that the space charge potential at grain boundaries in lightly doped, high-purity ceria can vary by almost an order of magnitude. We further find that trace impurities (<25 ppm), rather than inherent thermodynamic factors, may be the ultimate source of grain boundary charge. These insights suggest chemical tunability of grain boundary transport properties.

2.
Nature ; 496(7443): 78-82, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23552946

RESUMEN

The incorporation of impurities during the growth of nanowires from the vapour phase alters their basic properties substantially, and this process is critical in an extended range of emerging nanometre-scale technologies. In particular, achieving precise control of the behaviour of group III and group V dopants has been a crucial step in the development of silicon (Si) nanowire-based devices. Recently it has been demonstrated that the use of aluminium (Al) as a growth catalyst, instead of the usual gold, also yields an effective p-type doping, thereby enabling a novel and efficient route to functionalizing Si nanowires. Besides the technological implications, this self-doping implies the detachment of Al from the catalyst and its injection into the growing nanowire, involving atomic-scale processes that are crucial for the fundamental understanding of the catalytic assembly of nanowires. Here we present an atomic-level, quantitative study of this phenomenon of catalyst dissolution by three-dimensional atom-by-atom mapping of individual Al-catalysed Si nanowires using highly focused ultraviolet-laser-assisted atom-probe tomography. Although the observed incorporation of the catalyst atoms into nanowires exceeds by orders of magnitude the equilibrium solid solubility and solid-solution concentrations in known non-equilibrium processes, the Al impurities are found to be homogeneously distributed in the nanowire and do not form precipitates or clusters. As well as the anticipated effect on the electrical properties, this kinetics-driven colossal injection also has direct implications for nanowire morphology. We discuss the observed strong deviation from equilibrium using a model of solute trapping at step edges, and identify the key growth parameters behind this phenomenon on the basis of a kinetic model of step-flow growth of nanowires. The control of this phenomenon provides opportunities to create a new class of nanoscale devices by precisely tailoring the shape and composition of metal-catalysed nanowires.

3.
Nat Mater ; 15(9): 1023-30, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27348576

RESUMEN

Silicon-based materials have widespread application as biophysical tools and biomedical devices. Here we introduce a biocompatible and degradable mesostructured form of silicon with multi-scale structural and chemical heterogeneities. The material was synthesized using mesoporous silica as a template through a chemical vapour deposition process. It has an amorphous atomic structure, an ordered nanowire-based framework and random submicrometre voids, and shows an average Young's modulus that is 2-3 orders of magnitude smaller than that of single-crystalline silicon. In addition, we used the heterogeneous silicon mesostructures to design a lipid-bilayer-supported bioelectric interface that is remotely controlled and temporally transient, and that permits non-genetic and subcellular optical modulation of the electrophysiology dynamics in single dorsal root ganglia neurons. Our findings suggest that the biomimetic expansion of silicon into heterogeneous and deformable forms can open up opportunities in extracellular biomaterial or bioelectric systems.

4.
Nano Lett ; 16(2): 1335-44, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26741402

RESUMEN

It addition to its high evaporation field, diamond is also known for its limited photoabsorption, strong covalent bonding, and wide bandgap. These characteristics have been thought for long to also complicate the field evaporation of diamond and make its control hardly achievable on the atomistic-level. Herein, we demonstrate that the unique behavior of nanoscale diamond and its interaction with pulsed laser lead to a controlled field evaporation thus enabling three-dimensional atom-by-atom mapping of diamond (12)C/(13)C homojunctions. We also show that one key element in this process is to operate the pulsed laser at high energy without letting the dc bias increase out of bounds for diamond nanotip to withstand. Herein, the role of the dc bias in evaporation of diamond is essentially to generate free charge carriers within the nanotip via impact ionization. The mobile free charges screen the internal electric field, eventually creating a hole rich surface where the pulsed laser is effectively absorbed leading to an increase in the nanotip surface temperature. The effect of this temperature on the uncertainty in the time-of-flight of an ion, the diffusion of atoms on the surface of the nanotip, is also discussed. In addition to paving the way toward a precise manipulation of isotopes in diamond-based nanoscale and quantum structures, this result also elucidates some of the basic properties of dielectric nanostructures under high electric field.

5.
Nanotechnology ; 27(20): 205706, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27071742

RESUMEN

In this research, ultraviolet laser-assisted atom-probe tomography (APT) was utilized to investigate precisely the behavior at the atomistic level of aluminum impurities in ultrathin epitaxial silicon layers. Aluminum atoms were incorporated in situ during the growth process. The measured average aluminum concentration in the grown layers exceeds by several orders of magnitude the equilibrium bulk solubility. Three-dimensional atom-by-atom mapping demonstrates that aluminum atoms precipitate in the silicon matrix and form nanoscopic precipitates with lateral dimensions in the 1.3 to 6.2 nm range. These precipitates were found to form only in the presence of oxygen impurity atoms, thus providing clear evidence of the longhypothesized role of oxygen and aluminum-oxygen complexes in facilitating the precipitation of aluminum in a silicon lattice. The measured average aluminum and oxygen concentrations in the precipitates are ∼10 ± 0.5 at.% and ∼4.4 ± 0.5 at.%, respectively. This synergistic interaction is supported by first-principles calculations of the binding energies of aluminum-oxygen dimers in silicon. The calculations demonstrate that there is a strong binding between aluminum and oxygen atoms, with Al-O-Al and O-Al-Al as the energetically favorable sequences corresponding to precipitates in which the concentration of aluminum is twice as large as the oxygen concentration in agreement with APT data.

6.
Small ; 11(44): 5968-74, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26450564

RESUMEN

The properties and growth processes of graphene are greatly influenced by the elemental distributions of impurity atoms and their functional groups within or on the hexagonal carbon lattice. Oxygen and hydrogen atoms and their functional molecules (OH, CO, and CO2 ) positions' and chemical identities are tomographically mapped in three dimensions in a graphene monolayer film grown on a copper substrate, at the atomic part-per-million (atomic ppm) detection level, employing laser assisted atom-probe tomography. The atomistic plan and cross-sectional views of graphene indicate that oxygen, hydrogen, and their co-functionalities, OH, CO, and CO2 , which are locally clustered under or within the graphene lattice. The experimental 3D atomistic portrait of the chemistry is combined with computational density-functional theory (DFT) calculations to enhance the understanding of the surface state of graphene, the positions of the chemical functional groups, their interactions with the underlying Cu substrate, and their influences on the growth of graphene.

7.
Small ; 10(23): 4920-5, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25104265

RESUMEN

Self-assembled core-shell structured rare-earth nanoparticles (TbErAs) are observed in a III-V semiconductor host matrix (In0.53Ga0.47As) nominally lattice-matched to InP, grown via molecular beam epitaxy. Atom probe tomography demonstrates that the TbErAs nanoparticles have a core-shell structure, as seen both in the tomographic atom-by-atom reconstruction and concentration profiles. A simple thermodynamic model is created to determine when it is energetically favorable to have core-shell structures; the results strongly agree with the observations.

8.
Sci Adv ; 6(34)2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32937377

RESUMEN

Conducting or semiconducting materials embedded in insulating polymeric substrates can be useful in biointerface applications; however, attainment of this composite configuration by direct chemical processes is challenging. Laser-assisted synthesis has evolved as a fast and inexpensive technique to prepare various materials, but its utility in the construction of biophysical tools or biomedical devices is less explored. Here, we use laser writing to convert portions of polydimethylsiloxane (PDMS) into nitrogen-doped cubic silicon carbide (3C-SiC). The dense 3C-SiC surface layer is connected to the PDMS matrix via a spongy graphite layer, facilitating electrochemical and photoelectrochemical activity. We demonstrate the fabrication of arbitrary two-dimensional (2D) SiC-based patterns in PDMS and freestanding 3D constructs. To establish the functionality of the laser-produced composite, we apply it as flexible electrodes for pacing isolated hearts and as photoelectrodes for local peroxide delivery to smooth muscle sheets.

9.
Sci Adv ; 5(5): eaav5577, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31172024

RESUMEN

Nature's wisdom resides in achieving a joint enhancement of strength and toughness by constructing intelligent, hierarchical architectures from extremely limited resources. A representative example is nacre, in which a brick-and-mortar structure enables a confluence of toughening mechanisms on multiple length scales. The result is an outstanding combination of strength and toughness which is hardly achieved by engineering materials. Here, a bioinspired Ni/Ni3C composite with nacre-like, brick-and-mortar structure was constructed from Ni powders and graphene sheets. This composite achieved a 73% increase in strength with only a 28% compromise on ductility, leading to a notable improvement in toughness. The graphene-derived Ni-Ti-Al/Ni3C composite retained high hardness up to 1000°C. The present study unveiled a method to smartly use 2D materials to fabricate high-performance metal matrix composites with brick-and-mortar structure through interfacial reactions and, furthermore, created an opportunity of developing advanced Ni-C-based alloys for high-temperature environments.

10.
Ultramicroscopy ; 184(Pt A): 284-292, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29054043

RESUMEN

Atom-probe tomography (APT) is a unique analysis tool that enables true three-dimensional (3-D) analyses with sub-nano scale spatial resolution. Recent implementations of the local-electrode atom-probe (LEAP) tomograph with ultraviolet laser pulsing have significantly expanded the research applications of APT. The small field-of-view of a needle-shaped specimen with a less than 100 nm diam. is, however, a major limitation for analyzing materials. The systematic approaches for site-specific targeting of an APT nanotip in a transmission electron microscope (TEM) of a thin sample are introduced to solve the geometrical limitations of a sharpened APT nanotip. In addition to "coupling APT to TEM", the technique presented here allows for targeting the preparation of an APT tip based on TEM observation of a much larger area than what is captured in the APT tip. The correlative methods have synergies for not only high-resolution structural analyses but also for obtaining chemical information. Chemical analyses in a TEM, both energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS), are performed and compared with the APT chemical analyses of a carbide phase (M7C3) precipitate at a grain boundary in a Ni-based alloy. Additionally, a TEM image of a sharpened APT nanotip is utilized for calculation of the detection area ratio of an APT nanotip by comparison with a TEM image for precise tomographic reconstructions. A grain-boundary/carbide precipitate triple junction is used to attain precise positioning of an APT nanotip in an analyzed TEM specimen.

11.
Nanoscale ; 10(18): 8451-8458, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29616690

RESUMEN

Some articles have revealed that the electrodeposition of calcium phosphate (CaP) coatings entails a precursor phase, similarly to biomineralization in vivo. The chemical composition of the initial layer and its thickness are, however, still arguable, to the best of our knowledge. Moreover, while CaP and electrodeposition of metal coatings have been studied utilizing atom-probe tomography (APT), the electrodeposition of CaP ceramics has not been heretofore studied. Herein, we present an investigation of the CaP deposition on a gold substrate. Using APT and transmission electron microscopy (TEM) it is found that a mixture of phases, which could serve as transient precursor phases to hydroxyapatite (HAp), can be detected. The thickness of these phases is tens of nanometers, and they consist of amorphous CaP (ACP), dibasic calcium phosphate dihydrate (DCPD), and octacalcium phosphate (OCP). This demonstrates the value of using atomic-resolved characterization techniques for identifying the precursor phases. It also indicates that the kinetics of their transformation into the more stable HAp is not too fast to enable their observation. The coating gradually displays higher Ca/P atomic ratios, a porous nature, and concomitantly a change in its density.

12.
Nat Commun ; 8(1): 2014, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222439

RESUMEN

Large-scale assembly of individual atoms over smooth surfaces is difficult to achieve. A configuration of an atom reservoir, in which individual atoms can be readily extracted, may successfully address this challenge. In this work, we demonstrate that a liquid gold-silicon alloy established in classical vapor-liquid-solid growth can deposit ordered and three-dimensional rings of isolated gold atoms over silicon nanowire sidewalls. We perform ab initio molecular dynamics simulation and unveil a surprising single atomic gold-catalyzed chemical etching of silicon. Experimental verification of this catalytic process in silicon nanowires yields dopant-dependent, massive and ordered 3D grooves with spacing down to ~5 nm. Finally, we use these grooves as self-labeled and ex situ markers to resolve several complex silicon growths, including the formation of nodes, kinks, scale-like interfaces, and curved backbones.


Asunto(s)
Aleaciones/química , Oro/química , Nanocables/química , Silicio/química , Catálisis , Cristalización , Microscopía Electrónica de Transmisión , Nanotecnología/métodos , Nanocables/ultraestructura , Espectroscopía de Fotoelectrones
13.
Ultramicroscopy ; 159 Pt 2: 248-54, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26095824

RESUMEN

The astrophysical origins of ∼ 3 nm-diameter meteoritic nanodiamonds can be inferred from the ratio of C12/C13. It is essential to achieve high spatial and mass resolving power and minimize all sources of signal loss in order to obtain statistically significant measurements. We conducted atom-probe tomography on meteoritic nanodiamonds embedded between layers of Pt. We describe sample preparation, atom-probe tomography analysis, 3D reconstruction, and bias correction. We present new data from meteoritic nanodiamonds and terrestrial standards and discuss methods to correct isotopic measurements made with the atom-probe tomograph.

14.
Science ; 348(6242): 1451-5, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26113718

RESUMEN

Three-dimensional (3D) mesostructured semiconductors show promising properties and applications; however, to date, few methods exist to synthesize or fabricate such materials. Metal can diffuse along semiconductor surfaces, and even trace amounts can change the surface behavior. We exploited the phenomena for 3D mesoscale lithography, by showing one example where iterated deposition-diffusion-incorporation of gold over silicon nanowires forms etchant-resistant patterns. This process is facet-selective, producing mesostructured silicon spicules with skeletonlike morphology, 3D tectonic motifs, and reduced symmetries. Atom-probe tomography, coupled with other quantitative measurements, indicates the existence and the role of individual gold atoms in forming 3D lithographic resists. Compared to other more uniform silicon structures, the anisotropic spicule requires greater force for detachment from collagen hydrogels, suggesting enhanced interfacial interactions at the mesoscale.

15.
Ultramicroscopy ; 147: 25-32, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24976357

RESUMEN

Atom-probe tomography (APT) provides atomic-scale spatial and compositional resolution that is ideally suited for the analysis of grain boundaries. The small sample volume analyzed in APT presents, however, a challenge for capturing mesoscale features, such as grain boundaries. A new site-specific method utilizing transmission electron microscopy (TEM) for the precise selection and isolation of mesoscale microstructural features in a focused-ion-beam (FIB) microscope lift-out sample, from below the original surface of the bulk sample, for targeted preparation of an APT microtip by FIB-SEM microscopy is presented. This methodology is demonstrated for the targeted extraction of a prior austenite grain boundary in a martensitic steel alloy; it can, however, be easily applied to other mesoscale features, such as heterophase interfaces, precipitates, and the tips of cracks.

16.
Microsc Microanal ; 10(3): 355-65, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15233854

RESUMEN

The influence of W on the temporal evolution of gamma' precipitation toward equilibrium in a model Ni-Al-Cr alloy is investigated by three-dimensional atom-probe (3DAP) microscopy and transmission electron microscopy (TEM). We report on the alloys Ni-10 Al-8.5 Cr (at.%) and Ni-10 Al-8.5 Cr-2 W (at.%), which were aged isothermally in the gamma + gamma' two-phase field at 1073 K, for times ranging from 0.25 to 264 h. Spheroidal-shaped gamma' precipitates, 5-15 nm diameter, form during quenching from above the solvus temperature in both alloys at a high number density (approximately 1023 m-3). As gamma' precipitates grow with aging at 1073 K, a transition from spheroidal- to cuboidal-shaped precipitates is observed in both alloys. The elemental partitioning and spatially resolved concentration profiles across the gamma' precipitates are obtained as a function of aging time from three-dimensional atom-by-atom reconstructions. Proximity histogram concentration profiles (Hellman et al., 2000) of the quaternary alloy demonstrate that W concentration gradients exist in gamma' precipitates in the as-quenched and 0.25-h aging states, which disappear after 1 h of aging. The diffusion coefficient of W in gamma' is estimated to be 6.2 x 10-20 m2 s-1 at 1073 K. The W addition decreases the coarsening rate constant, and leads to stronger partitioning of Al to gamma' and Cr to gamma.


Asunto(s)
Aleaciones , Aluminio/química , Cromo/química , Níquel/química , Tungsteno , Aleaciones/química , Precipitación Química , Microanálisis por Sonda Electrónica/métodos , Microscopía Electrónica , Nanotecnología , Tungsteno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA