Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hosp Pharm ; 58(6): 590-594, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38560543

RESUMEN

Background: Initiation of dofetilide requires hospital admission because of its proarrhythmic risk. To reduce the risk of adverse events associated with dofetilide, our institution has a standard operating protocol for dofetilide initiation. Regardless, patients are sometimes admitted for dofetilide initiation with unaddressed pharmacotherapy concerns that may delay therapy initiation and/or increase the risk for adverse events. Objective: To characterize interventions associated with pharmacist evaluation of scheduled dofetilide admissions prior to hospitalization. Methods: Patients scheduled for dofetilide initiation were evaluated by a pharmacist prior to admission. Identified interventions were categorized into the following recommendations: (1) against the use of dofetilide; (2) dofetilide starting dose adjustment; (3) appropriate washout of previous antiarrhythmic drug; (4) transesophageal echocardiogram prior to dofetilide initiation; (5) discontinuation or dose adjustment of interacting drug; (6) electrolyte supplementation upon discharge; (7) other intervention. The primary outcome measure was the frequency and types of identified and accepted interventions. Results: Twenty-two patients were evaluated during the 9-month study period. Fourteen interventions were identified, 13 of which were accepted by an electrophysiology provider. The most common intervention was for recommendation of a transesophageal echocardiogram prior to initiating dofetilide because of inadequate oral anticoagulation (n = 6). Other accepted interventions were for discontinuation or dose adjustment of interacting drug (n = 3), dofetilide starting dose adjustment (n = 2), electrolyte supplementation upon discharge (n = 2), and remeasurement of interventricular septal wall thickness (n = 1). Conclusion: Pharmacist evaluation of scheduled dofetilide admissions prior to hospitalization can serve to identify and resolve pharmacotherapy concerns related to dofetilide use.

2.
Nat Chem Biol ; 15(8): 822-829, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31285596

RESUMEN

Here, we report the fragment-based discovery of BI-9321, a potent, selective and cellular active antagonist of the NSD3-PWWP1 domain. The human NSD3 protein is encoded by the WHSC1L1 gene located in the 8p11-p12 amplicon, frequently amplified in breast and squamous lung cancer. Recently, it was demonstrated that the PWWP1 domain of NSD3 is required for the viability of acute myeloid leukemia cells. To further elucidate the relevance of NSD3 in cancer biology, we developed a chemical probe, BI-9321, targeting the methyl-lysine binding site of the PWWP1 domain with sub-micromolar in vitro activity and cellular target engagement at 1 µM. As a single agent, BI-9321 downregulates Myc messenger RNA expression and reduces proliferation in MOLM-13 cells. This first-in-class chemical probe BI-9321, together with the negative control BI-9466, will greatly facilitate the elucidation of the underexplored biological function of PWWP domains.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Sistemas CRISPR-Cas , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Regulación de la Expresión Génica/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Dominios Proteicos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
3.
Nat Chem Biol ; 13(4): 389-395, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28135237

RESUMEN

Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein-protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.


Asunto(s)
Antineoplásicos/farmacología , Indanos/farmacología , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Sulfonamidas/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indanos/química , Modelos Moleculares , Estructura Molecular , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/metabolismo , Unión Proteica/efectos de los fármacos , Relación Estructura-Actividad , Sulfonamidas/química , Células Tumorales Cultivadas
4.
Bioorg Med Chem Lett ; 29(1): 36-39, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30455147

RESUMEN

Here we present a virtual docking screen of 1648 commercially available covalent fragments, and identified covalent inhibitors of cysteine protease cathepsin L. These inhibitors did not inhibit closely related protease cathepsin B. Thus, we have established virtual docking of covalent fragments as an approach to discover covalent enzyme inhibitors.


Asunto(s)
Catepsina L/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Catepsina L/metabolismo , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Estructura Molecular , Relación Estructura-Actividad
5.
Bioorg Med Chem ; 27(17): 3866-3878, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31327677

RESUMEN

SET domain bifurcated protein 1 (SETDB1) is a human histone-lysine methyltransferase which is amplified in human cancers and was shown to be crucial in the growth of non-small and small cell lung carcinoma. In addition to its catalytic domain, SETDB1 harbors a unique tandem tudor domain which recognizes histone sequences containing both methylated and acetylated lysines, and likely contributes to its localization on chromatin. Using X-ray crystallography and NMR spectroscopy fragment screening approaches, we have identified the first small molecule fragment hits that bind to histone peptide binding groove of the Tandem Tudor Domain (TTD) of SETDB1. Herein, we describe the binding modes of these fragments and analogues and the biophysical characterization of key compounds. These confirmed small molecule fragments will inform the development of potent antagonists of SETDB1 interaction with histones.


Asunto(s)
Inhibidores Enzimáticos/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , N-Metiltransferasa de Histona-Lisina/aislamiento & purificación , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/antagonistas & inhibidores , Histonas/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Dominio Tudor/efectos de los fármacos
6.
Infect Immun ; 86(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29891545

RESUMEN

Mycobacterium tuberculosis remains a threat to global health, and a more efficacious vaccine is needed to prevent disease caused by M. tuberculosis We previously reported that the mycobacterial ribosome is a major target of CD4+ T cells in mice immunized with a genetically modified Mycobacterium smegmatis strain (IKEPLUS) but not in mice immunized with Mycobacterium bovis BCG. Two specific ribosomal proteins, RplJ and RpsA, were identified as cross-reactive targets of M. tuberculosis, but the breadth of the CD4+ T cell response to M. tuberculosis ribosomes was not determined. In the present study, a library of M. tuberculosis ribosomal proteins and in silico-predicted peptide libraries were used to screen CD4+ T cell responses in IKEPLUS-immunized mice. This identified 24 out of 57 M. tuberculosis ribosomal proteins distributed over both large and small ribosome subunits as specific CD4+ T cell targets. Although BCG did not induce detectable responses against ribosomal proteins or peptide epitopes, the M. tuberculosis ribosomal protein RplJ produced a robust and multifunctional Th1-like CD4+ T cell population when administered as a booster vaccine to previously BCG-primed mice. Boosting of BCG-primed immunity with the M. tuberculosis RplJ protein led to significantly reduced lung pathology compared to that in BCG-immunized animals and reductions in the bacterial burdens in the mediastinal lymph node compared to those in naive and standard BCG-vaccinated mice. These results identify the mycobacterial ribosome as a potential source of cryptic or subdominant antigenic targets of protective CD4+ T cell responses and suggest that supplementing BCG with ribosomal antigens may enhance protective vaccination against M. tuberculosis.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Linfocitos T CD4-Positivos/inmunología , Mycobacterium tuberculosis/química , Proteínas Ribosómicas/inmunología , Tuberculosis/inmunología , Animales , Vacuna BCG/inmunología , Femenino , Inmunización Secundaria , Interferón gamma/inmunología , Pulmón/microbiología , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/inmunología , Biblioteca de Péptidos , Tuberculosis/prevención & control , Vacunas contra la Tuberculosis/inmunología
7.
Infect Immun ; 85(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28115505

RESUMEN

Tuberculosis (TB) due to Mycobacterium tuberculosis remains a major global infectious disease problem, and a more efficacious vaccine is urgently needed for the control and prevention of disease caused by this organism. We previously reported that a genetically modified strain of Mycobacterium smegmatis called IKEPLUS is a promising TB vaccine candidate. Since protective immunity induced by IKEPLUS is dependent on antigen-specific CD4+ T cell memory, we hypothesized that the specificity of the CD4+ T cell response was a critical feature of this protection. Using in vitro assays of interferon gamma production (enzyme-linked immunosorbent spot [ELISPOT] assays) by splenocytes from IKEPLUS-immunized C57BL/6J mice, we identified an immunogenic peptide within the mycobacterial ribosomal large subunit protein RplJ, encoded by the Rv0651 gene. In a complementary approach, we generated major histocompatibility complex (MHC) class II-restricted T cell hybridomas from IKEPLUS-immunized mice. Screening of these T cell hybridomas against IKEPLUS and ribosomes enriched from IKEPLUS suggested that the CD4+ T cell response in IKEPLUS-immunized mice was dominated by the recognition of multiple components of the mycobacterial ribosome. Importantly, CD4+ T cells specific for mycobacterial ribosomes accumulate to significant levels in the lungs of IKEPLUS-immunized mice following aerosol challenge with virulent M. tuberculosis, consistent with a role for these T cells in protective host immunity in TB. The identification of CD4+ T cell responses to defined ribosomal protein epitopes expands the range of antigenic targets for adaptive immune responses to M. tuberculosis and may help to inform the design of more effective vaccines against tuberculosis.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Linfocitos T CD4-Positivos/inmunología , Mycobacterium/inmunología , Tuberculosis/inmunología , Tuberculosis/microbiología , Secuencia de Aminoácidos , Animales , Antígenos Bacterianos/química , Proteínas Bacterianas/química , Linfocitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Mapeo Epitopo , Epítopos de Linfocito T/inmunología , Femenino , Antígenos de Histocompatibilidad Clase II/química , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Inmunización , Ratones , Mycobacterium/patogenicidad , Péptidos/química , Péptidos/inmunología , Proteínas Ribosómicas/inmunología , Especificidad del Receptor de Antígeno de Linfocitos T/inmunología , Tuberculosis/mortalidad , Virulencia
8.
Proc Natl Acad Sci U S A ; 111(35): 12853-8, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25136132

RESUMEN

SET domain containing (lysine methyltransferase) 7 (SETD7) is implicated in multiple signaling and disease related pathways with a broad diversity of reported substrates. Here, we report the discovery of (R)-PFI-2-a first-in-class, potent (Ki (app) = 0.33 nM), selective, and cell-active inhibitor of the methyltransferase activity of human SETD7-and its 500-fold less active enantiomer, (S)-PFI-2. (R)-PFI-2 exhibits an unusual cofactor-dependent and substrate-competitive inhibitory mechanism by occupying the substrate peptide binding groove of SETD7, including the catalytic lysine-binding channel, and by making direct contact with the donor methyl group of the cofactor, S-adenosylmethionine. Chemoproteomics experiments using a biotinylated derivative of (R)-PFI-2 demonstrated dose-dependent competition for binding to endogenous SETD7 in MCF7 cells pretreated with (R)-PFI-2. In murine embryonic fibroblasts, (R)-PFI-2 treatment phenocopied the effects of Setd7 deficiency on Hippo pathway signaling, via modulation of the transcriptional coactivator Yes-associated protein (YAP) and regulation of YAP target genes. In confluent MCF7 cells, (R)-PFI-2 rapidly altered YAP localization, suggesting continuous and dynamic regulation of YAP by the methyltransferase activity of SETD7. These data establish (R)-PFI-2 and related compounds as a valuable tool-kit for the study of the diverse roles of SETD7 in cells and further validate protein methyltransferases as a druggable target class.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Epigénesis Genética/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Pirrolidinas/farmacología , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Tetrahidroisoquinolinas/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Fibroblastos/efectos de los fármacos , Vía de Señalización Hippo , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Células MCF-7 , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Pirrolidinas/química , Relación Estructura-Actividad , Sulfonamidas/química , Tetrahidroisoquinolinas/química , Factores de Transcripción , Proteínas Señalizadoras YAP
9.
Biochim Biophys Acta ; 1850(9): 1842-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26002201

RESUMEN

BACKGROUND: Dysregulation of methylation of lysine 36 on histone H3 (H3K36) have been implicated in a variety of diseases including cancers. ASH1L and SETD2 are two enzymes among others that catalyze H3K36 methylation. H3K4 methylation has also been reported for ASH1L. METHODS: Radioactivity-based enzyme assays, Western and immunoblotting using specific antibodies and molecular modeling were used to characterize substrate specificity of ASH1L and SETD2. RESULTS: Here we report on the assay development and kinetic characterization of ASH1L and SETD2 and their substrate specificities in vitro. Both enzymes were active with recombinant nucleosome as substrate. However, SETD2 but not ASH1L methylated histone peptides as well indicating that the interaction of the basic post-SET extension with substrate may not be critical for SETD2 activity. Both enzymes were not active with nucleosome containing a H3K36A mutation indicating their specificity for H3K36. Analyzing the methylation state of the products of ASH1L and SETD2 reactions also confirmed that both enzymes mono- and dimethylate H3K36 and are inactive with H3K4 as substrate, and that only SETD2 is able to trimethylate H3K36 in vitro. CONCLUSIONS: We determined the kinetic parameters for ASH1L and SETD2 activity enabling screening for inhibitors that can be used to further investigate the roles of these two proteins in health and disease. Both ASH1L and SETD2 are H3K36 specific methyltransferases but only SETD2 can trimethylate this mark. The basic post-SET extension is critical for ASH1L but not SETD2 activity. GENERAL SIGNIFICANCE: We provide full kinetic characterization of ASH1L and SETD2 activity.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al ADN/química , N-Metiltransferasa de Histona-Lisina/química , Humanos , Cinética , Metilación , Modelos Moleculares , Datos de Secuencia Molecular , Especificidad por Sustrato , Factores de Transcripción/química
10.
J Am Chem Soc ; 138(20): 6388-91, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27149119

RESUMEN

Lysine acetyltransferases (KATs) are key mediators of cell signaling. Methods capable of providing new insights into their regulation thus constitute an important goal. Here we report an optimized platform for profiling KAT-ligand interactions in complex proteomes using inhibitor-functionalized capture resins. This approach greatly expands the scope of KATs, KAT complexes, and CoA-dependent enzymes accessible to chemoproteomic methods. This enhanced profiling platform is then applied in the most comprehensive analysis to date of KAT inhibition by the feedback metabolite CoA. Our studies reveal that members of the KAT superfamily possess a spectrum of sensitivity to CoA and highlight NAT10 as a novel KAT that may be susceptible to metabolic feedback inhibition. This platform provides a powerful tool to define the potency and selectivity of reversible stimuli, such as small molecules and metabolites, that regulate KAT-dependent signaling.


Asunto(s)
Lisina Acetiltransferasas/metabolismo , Catálisis , Cromatografía Liquida , Coenzima A/metabolismo , Células HeLa , Humanos , Transducción de Señal , Espectrometría de Masas en Tándem
11.
Inorg Chem ; 55(17): 8459-67, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27500686

RESUMEN

We report the structural, electronic, and acid/base properties of a series of ML2 metal dithiolene complexes, where M = Ni, Pd, Pt and L = 2,3-pyrazinedithiol. These complexes are non-innocent and possess strong electronic coupling between ligands across the metal center. The electronic coupling can be readily quantified in the monoanionic mixed valence state using Marcus-Hush theory. Analysis of the intervalence charge transfer (IVCT) band reveals that that electronic coupling in the mixed valence state is 5800, 4500, and 5700 cm(-1) for the Ni, Pd, and Pt complexes, respectively. We then focus on their response to acid titration in the mixed valence state, which generates the asymmetrically protonated mixed valence mixed protonated state. For all three complexes, protonation results in severe attenuation of the electronic coupling, as measured by the IVCT band. We find nearly 5-fold decreases in electronic coupling for both Ni and Pt, while, for the Pd complex, the electronic coupling is reduced to the point that the IVCT band is no longer observable. We ascribe the reduction in electronic coupling to charge pinning induced by asymmetric protonation. The more severe reduction in coupling for the Pd complex is a result of greater energetic mismatch between ligand and metal orbitals, reflected in the smaller electronic coupling for the pure mixed valence state. This work demonstrates that the bridging metal center can be used to tune the electronic coupling in both the mixed valence and mixed valence mixed protonated states, as well as the magnitude of change of the electronic coupling that accompanies changes in protonation state.

12.
Inorg Chem ; 55(4): 1433-45, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26812117

RESUMEN

We demonstrate that protonation of a mixed valence molecule, generating a mixed valence mixed protonated (MVMP) state, results in a severe reduction in the electronic coupling intimately connected with electron transfer kinetics. This phenomenon is illustrated by synthesizing a mixed valence molecule, [Ni(2,3-pyrazinedithiol)2], that can be asymmetrically protonated, rendering the MVMP state. We characterize the structural, electronic, vibrational, and magnetic properties of this complex in five different states, including the mixed valence and MVMP states, and then analyze the intervalence charge transfer (IVCT) band to demonstrate a five-fold reduction in electronic coupling upon protonation. We conclude that the reduction in electronic coupling is a result of the asymmetry of the electronic orbitals of the redox sites that results from the asymmetric protonation. This conclusion suggests that many systems designed to link electron and proton transfer will also exhibit a decrease in electronic coupling upon protonation as the strength of the interaction between redox and protonation sites is increased.

13.
Angew Chem Int Ed Engl ; 54(17): 5166-70, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25728001

RESUMEN

PRMT3 catalyzes the asymmetric dimethylation of arginine residues of various proteins. It is essential for maturation of ribosomes, may have a role in lipogenesis, and is implicated in several diseases. A potent, selective, and cell-active PRMT3 inhibitor would be a valuable tool for further investigating PRMT3 biology. Here we report the discovery of the first PRMT3 chemical probe, SGC707, by structure-based optimization of the allosteric PRMT3 inhibitors we reported previously, and thorough characterization of this probe in biochemical, biophysical, and cellular assays. SGC707 is a potent PRMT3 inhibitor (IC50 =31±2 nM, KD =53±2 nM) with outstanding selectivity (selective against 31 other methyltransferases and more than 250 non-epigenetic targets). The mechanism of action studies and crystal structure of the PRMT3-SGC707 complex confirm the allosteric inhibition mode. Importantly, SGC707 engages PRMT3 and potently inhibits its methyltransferase activity in cells. It is also bioavailable and suitable for animal studies. This well-characterized chemical probe is an excellent tool to further study the role of PRMT3 in health and disease.


Asunto(s)
Inhibidores Enzimáticos/química , Isoquinolinas/química , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Regulación Alostérica , Sitios de Unión , Calorimetría , Línea Celular Tumoral , Inhibidores Enzimáticos/metabolismo , Células HEK293 , Histonas , Humanos , Isoquinolinas/metabolismo , Metilación , Simulación de Dinámica Molecular , Mutagénesis , Unión Proteica , Estructura Terciaria de Proteína , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Resonancia por Plasmón de Superficie
15.
Healthc Financ Manage ; 67(1): 76-80, 82, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23360058

RESUMEN

Financing options available through the private sector and government agencies can fund facility renovations or new construction. To upgrade IT, hospital leaders have three major financing options: purchase, use cloud-based services for a fee, or lease. Hospital leaders may finance physician integration like other capital projects, but there are risks to diverting dollars from buildings.


Asunto(s)
Financiación del Capital/métodos , Administración Financiera de Hospitales , Humanos , Objetivos Organizacionales , Estados Unidos
16.
J Am Chem Soc ; 134(28): 11667-73, 2012 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-22769742

RESUMEN

The Suzuki-Miyaura reaction has become one of the more useful tools for synthetic organic chemists. Until recently, there did not exist a direct way to make the most important component in the coupling reaction, namely the boronic acid. Current methods to make boronic acids often employ harsh or wasteful reagents to prepare boronic acid derivatives and require additional steps to afford the desired boronic acid. The scope of the previously reported palladium-catalyzed, direct boronic acid synthesis is unveiled, which includes a wide array of synthetically useful aryl electrophiles. It makes use of the newly available second generation Buchwald XPhos preformed palladium catalyst and bis-boronic acid. For ease of isolation and to preserve the often sensitive C-B bond, all boronic acids were readily converted to their more stable trifluoroborate counterparts.


Asunto(s)
Ácidos Borónicos/química , Paladio/química , Catálisis
17.
J Org Chem ; 77(19): 8678-88, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22994557

RESUMEN

The use of bis-boronic acid for the direct synthesis of boronic acids has greatly facilitated the two-step, one-pot borylation/Suzuki cross-coupling reaction between aryl and heteroaryl halides. With use of Buchwald's second-generation XPhos preformed catalyst, high yields of cross-coupled products were obtained for most substrates. The method also allows an efficient two-step, one-pot synthesis, providing access to three distinct cross-coupled products after column chromatography. The method also provides a rapid and convenient route to teraryl compounds.


Asunto(s)
Ácidos Borónicos/química , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/síntesis química , Hidrocarburos Halogenados/química , Paladio/química , Catálisis , Cromatografía Liquida/métodos , Estructura Molecular
18.
Cutan Ocul Toxicol ; 31(4): 273-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22257218

RESUMEN

Sunscreens are widely utilized due to the adverse effects of ultraviolet (UV) radiation on human health. The safety of their active ingredients as well as that of any modified versions generated during use is thus of concern. Chlorine is used as a chemical disinfectant in swimming pools. Its reactivity suggests sunscreen components might be chlorinated, altering their absorptive and/or cytotoxic properties. To test this hypothesis, the UV-filters oxybenzone, dioxybenzone, and sulisobenzone were reacted with chlorinating agents and their UV spectra analyzed. In all cases, a decrease in UV absorbance was observed. Given that chlorinated compounds can be cytotoxic, the effect of modified UV-filters on cell viability was examined. Chlorinated oxybenzone and dioxybenzone caused significantly more cell death than unchlorinated controls. In contrast, chlorination of sulisobenzone actually reduced cytotoxicity of the parent compound. Exposing a commercially available sunscreen product to chlorine also resulted in decreased UV absorbance, loss of UV protection, and enhanced cytotoxicity. These observations show chlorination of sunscreen active ingredients can dramatically decrease UV absorption and generate derivatives with altered biological properties.


Asunto(s)
Benzofenonas/química , Cloro/química , Protectores Solares/química , Rayos Ultravioleta , Benzofenonas/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Células Epiteliales/efectos de la radiación , Fibroblastos/efectos de los fármacos , Halogenación , Humanos , Espectrofotometría Ultravioleta , Protectores Solares/toxicidad , Natación
19.
Healthc Financ Manage ; 66(5): 88-92, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22616512

RESUMEN

In today's uncertain economic environment, when seeking to finance a capital project, healthcare borrowers should adopt a multi-tracked funding strategy that permits them to change capital-funding routes quickly in response to changing circumstances. The multi-tracking process requires two stages prior to securing a commitment and beginning the closing process: due diligence and indication of interest. This process should present no material additional cost during these two stages, giving healthcare borrowers the flexibility to explore a variety of financing options.


Asunto(s)
Financiación del Capital/organización & administración , Administración Financiera de Hospitales/organización & administración , Estados Unidos
20.
Biochem Biophys Res Commun ; 410(1): 152-8, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21651895

RESUMEN

The naphthoquinone adduct 12,13-dihydro-N-methyl-6,11,13-trioxo-5H-benzo[4,5]cyclohepta[1,2-b]naphthalen-5,12-imine (hereafter called TU100) contains structural features of both the anthracycline and isoquinone chemotherapeutics. An initial characterization showed TU100 is cytotoxic to mammalian cells and can inhibit topoisomerase I and II. Analysis using topoisomerase I now reveals TU100 is a slow acting inhibitor targeting the enzyme in the absence of DNA. Diluting pre-incubated TU100 and topoisomerase I failed to alleviate inhibition, suggesting the enzyme is being covalently modified. Critical cysteine thiols were identified as the possible target based on the ability of reducing agents to reverse TU100 inhibition. Consistent with this idea, TU100 protected topoisomerase I from inactivation by the sulfhydryl modifying agent N-ethylmaleimide (NEM). Unlike agents nonspecifically reacting with thiols, however, TU100 is specific for topoisomerase because it failed to inhibit a cysteine dependent protease. These results indicate TU100 is a novel naphthoquinone that inactivates free topoisomerase I via alkylation of cysteine residues.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , Naftoquinonas/química , Naftoquinonas/farmacología , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa I/farmacología , Cisteína/química , Ditiotreitol/farmacología , Células HeLa , Humanos , Sustancias Reductoras/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA