Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 212: 111965, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33550080

RESUMEN

Particulate matter (PM) pollution is of great concern for human health and vegetation. In this study, we investigated the impact of PM on primary (unifoliate) leaves of Vigna radiata (L.) R.Wilczek by exposing leaves' adaxial surface to PM. Leaves exposed to PM showed accumulation of various metal(loid)s even after removal of epicuticular wax (EW) revealing that the metals/metalloids could penetrate through the cuticular barrier. Scanning electron microscopic studies revealed that even after thorough washing with water, a significant amount (~55%) of particles were retained on the leaf surface. Leaves did not show any particles on their surface post EW removal, revealing that particles adhered to EW. Exposing primary leaves to PM did not alter their size but gave rise to smaller sized trifoliate leaves. A decline in Chl a/b of PM-exposed primary leaves suggested that PM cause a shading effect on leaves. PM-exposed primary leaves also showed a decline in sugar levels. However, the trifoliate leaves did not show any variation in Chl a/b as well as sugar levels. Our findings furnish evidence for the negative effects of PM on plants and a probable dietary exposure of humans to PMs, warranting more in-depth studies on the potential risks of PMs in agricultural sector.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Material Particulado/toxicidad , Vigna/fisiología , Contaminantes Atmosféricos/análisis , Exposición Dietética , Monitoreo del Ambiente , Humanos , Metaloides , Metales , Material Particulado/análisis , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Agua
2.
Environ Monit Assess ; 193(5): 279, 2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33864156

RESUMEN

In this study, a pretreatment method based on the QuEChERS method has been applied for simultaneously extracting 27 residual pharmaceuticals from wastewater solids. The extracted compounds have been analyzed using online solid-phase extraction (SPE) coupled to liquid chromatography with tandem mass spectrometry (LC-MS/MS). A recovery test was conducted according to the absorbent type, and buffers were added in the sample extraction step. The highest recovery efficiency could be observed when Na2SO4 was used as an absorbent and Na2EDTA was injected during the extraction process; the recovery efficiencies of the proposed method for the target compounds ranged from 61.3 to 137.2%, and the repeatability was 6.8%. These recovery and repeatability data showed that the proposed method could reliably analyze the 27 target residual pharmaceuticals. The concentrations of the target compounds were all below the limits of quantification: 830 ng g-1 for the target compounds in suspended solids, 2353 ng g-1 in activated sludge, and 1929 ng g-1 in waste sludge. The analytical method established in this study can be applied to quantify residual pharmaceuticals in solid samples and to investigate their behaviors in a municipal wastewater treatment plant.


Asunto(s)
Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Purificación del Agua , Cromatografía Liquida , Monitoreo del Ambiente , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
3.
Ecotoxicol Environ Saf ; 183: 109496, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31376808

RESUMEN

Iron nanoparticles (NPs) are widely used for the removal of arsenic from water. In this study, we evaluated the interaction between arsenate (AsO43-) and Fe2O3-NPs on early seedling growth of Vigna radiata. Seedlings were raised in AsO43- and Fe2O3-NPs, alone and in combination. While Fe2O3-NPs slightly promoted seedling growth, AsO43- reduced seedling growth drastically. AsO43--induced decline in the seedling growth was recovered by Fe2O3-NPs. In contrast, equivalent concentrations of FeCl3, alone and together with AsO43-, inhibited seed germination completely. Lower arsenic content in seedlings raised in the presence of Fe2O3-NPs indicated that Fe2O3-NPs restricted arsenic uptake. Ability of Fe2O3-NPs to restrict the arsenic uptake of the seedlings was due to adsorption of AsO43-, as revealed by transmission and scanning electron microscopy. Non-toxic levels of iron in seedlings were due to restriction of Fe2O3-NPs to root-surface. AsO43- enhanced the ferric chelate reductase activity of root which was recovered by Fe2O3-NPs. The AsO43--induced oxidative stress, evident from high levels of proline, H2O2 and malondialdehyde, and lowered root oxidisability was ameliorated by Fe2O3-NPs. AsO43-induced enhancement in total antioxidant capacity, superoxide dismutase and catalase activity, and decline in guaiacol peroxidase activity were antagonized by Fe2O3-NPs. Our findings reveal that Fe2O3-NPs provide effective resistance/amelioration to arsenic toxicity by reducing arsenic availability to plants.


Asunto(s)
Arsénico/toxicidad , Compuestos Férricos/farmacología , Nanopartículas del Metal , Estrés Oxidativo/efectos de los fármacos , Vigna/crecimiento & desarrollo , Adsorción , Antioxidantes/metabolismo , Arsénico/metabolismo , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Nanopartículas del Metal/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Vigna/efectos de los fármacos , Vigna/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(40): 12372-7, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26392564

RESUMEN

Intercellular bridges are a conserved feature of spermatogenesis in mammalian germ cells and derive from arresting cell abscission at the final stage of cytokinesis. However, it remains to be fully understood how germ cell abscission is arrested in the presence of general cytokinesis components. The TEX14 (testis-expressed gene 14) protein is recruited to the midbody and plays a key role in the inactivation of germ cell abscission. To gain insights into the structural organization of TEX14 at the midbody, we have determined the crystal structures of the EABR [endosomal sorting complex required for transport (ESCRT) and ALIX-binding region] of CEP55 bound to the TEX14 peptide (or its chimeric peptides) and performed functional characterization of the CEP55-TEX14 interaction by multiexperiment analyses. We show that TEX14 interacts with CEP55-EABR via its AxGPPx3Y (Ala793, Gly795, Pro796, Pro797, and Tyr801) and PP (Pro803 and Pro804) sequences, which together form the AxGPPx3YxPP motif. TEX14 competitively binds to CEP55-EABR to prevent the recruitment of ALIX, which is a component of the ESCRT machinery with the AxGPPx3Y motif. We also demonstrate that a high affinity and a low dissociation rate of TEX14 to CEP55, and an increase in the local concentration of TEX14, cooperatively prevent ALIX from recruiting ESCRT complexes to the midbody. The action mechanism of TEX14 suggests a scheme of how to inactivate the abscission of abnormal cells, including cancer cells.


Asunto(s)
Células Germinativas/metabolismo , Testículo/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Expresión Génica , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espermatogénesis/genética , Testículo/citología , Factores de Transcripción/genética
5.
Ecotoxicol Environ Saf ; 165: 423-433, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30218965

RESUMEN

Wide use of Al2O3 nanoparticles (NPs) leading to their possible escape into environment and their interaction with living organisms demands immediate attention. We evaluated impact of nanoparticulate (Al2O3-NPs) and ionic (Al3+) forms of aluminium on early seedling growth of Vigna radiata. While Al3+ inhibited growth of seedlings, Al2O3-NPs did not affect it negatively. Unlike enhancement in proline, malondialdehyde and H2O2 levels in roots and shoots induced by Al3+, these stress markers remained unaltered by Al2O3-NPs. No signs of membrane damage were recorded in roots of seedlings raised in presence of Al2O3-NPs; this was witnessed from insignificant electrolyte leakage and Evans blue uptake. Activities of antioxidant enzymes, i.e., superoxide dismustase, catalase, guaiacol peroxidase in root and shoot were enhanced by Al3+. However, they were unaffected by Al2O3-NPs. Al3+ enhanced levels of non-protein thiols, phenolics and ascorbate, with no alterations induced by Al2O3-NPs. These findings revealed that, Al2O3-NPs did not induce oxidative stress in seedlings. Seedlings raised in Al3+ showed higher uptake of Al than those grown in Al2O3-NPs; Al content was higher in roots. Al was not detected in shoots of seedlings grown in Al2O3-NPs. Lower translocation of Al in seedlings raised in Al2O3-NPs was due to adsorption/restriction of Al2O3-NPs on root surface. Al3+ caused ruptures on root epidermis of seedlings and inhibited root-hair formation, whereas no structural damage was caused by Al2O3-NPs. Our findings revealed that while ionic Al is highly toxic, nanoparticulate form of Al is non-toxic to growth of V. radiata.


Asunto(s)
Óxido de Aluminio/toxicidad , Aluminio/toxicidad , Contaminantes Ambientales , Nanopartículas/toxicidad , Plantones/crecimiento & desarrollo , Vigna/efectos de los fármacos , Aluminio/metabolismo , Ácido Ascórbico/metabolismo , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Fenoles/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Prolina/metabolismo , Plantones/efectos de los fármacos , Compuestos de Sulfhidrilo/metabolismo , Superóxido Dismutasa/metabolismo , Vigna/crecimiento & desarrollo , Vigna/metabolismo
6.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 2): 313-23, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25664741

RESUMEN

CO2 fixation is thought to be one of the key factors in mitigating global warming. Of the various methods for removing CO2, the NAD-dependent formate dehydrogenase from Candida boidinii (CbFDH) has been widely used in various biological CO2-reduction systems; however, practical applications of CbFDH have often been impeded owing to its low CO2-reducing activity. It has recently been demonstrated that the NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA (TsFDH) has a higher CO2-reducing activity compared with CbFDH. The crystal structure of TsFDH revealed that the biological unit in the asymmetric unit has two conformations, i.e. open (NAD(+)-unbound) and closed (NAD(+)-bound) forms. Three major differences are observed in the crystal structures of TsFDH and CbFDH. Firstly, hole 2 in TsFDH is blocked by helix α20, whereas it is not blocked in CbFDH. Secondly, the sizes of holes 1 and 2 are larger in TsFDH than in CbFDH. Thirdly, Lys287 in TsFDH, which is crucial for the capture of formate and its subsequent delivery to the active site, is an alanine in CbFDH. A computational simulation suggested that the higher CO2-reducing activity of TsFDH is owing to its lower free-energy barrier to CO2 reduction than in CbFDH.


Asunto(s)
Dióxido de Carbono/metabolismo , Formiato Deshidrogenasas/metabolismo , Thiobacillus/enzimología , Candida/química , Candida/enzimología , Candida/metabolismo , Cristalografía por Rayos X , Formiato Deshidrogenasas/química , Modelos Moleculares , NAD/metabolismo , Oxidación-Reducción , Conformación Proteica , Termodinámica , Thiobacillus/química , Thiobacillus/metabolismo
7.
Int J Syst Evol Microbiol ; 65(12): 4902-4908, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26474980

RESUMEN

A strictly anaerobic, Gram-stain-positive, non-spore-forming, rod-shaped bacterial strain, designated BS-1T, was isolated from an anaerobic digestion reactor during a study of bacteria utilizing galactitol as the carbon source. Its cells were 0.3-0.5 µm × 2-4 µm, and they grew at 35-45 °C and at pH 6.0-8.0. Strain BS-1T produced H2, CO2, ethanol, acetic acid, butyric acid and caproic acid as metabolic end products of anaerobic fermentation. Phylogenetic analysis, based on the 16S rRNA gene sequence, showed that strain BS-1T represented a novel bacterial genus within the family Ruminococcaceae, Clostridium Cluster IV. The type strains that were most closely related to strain BS-1T were Clostridium sporosphaeroides KCTC 5598T (94.5 %), Clostridium leptum KCTC 5155T (94.3 %), Ruminococcus bromii ATCC 27255T (92.1 %) and Ethanoligenens harbinense YUAN-3T (91.9 %). Strain BS-1T had 17.6 % and 20.9 % DNA-DNA relatedness values with C. sporosphaeroides DSM 1294T and C. leptum DSM 753T, respectively. The major components of the cellular fatty acids were C16 : 0 dimethyl aldehyde (DMA) (22.1 %), C16 : 0 aldehyde (14.1 %) and summed feature 11 (iso-C17 : 0 3-OH and/or C18 : 2 DMA; 10.0 %). The genomic DNA G+C content was 50.0 mol%. Phenotypic and phylogenetic characteristics allowed strain BS-1T to be clearly distinguished from other taxa of the genus Clostridium Cluster IV. On the basis of these data, the isolate is considered to represent a novel genus and novel species within Clostridium Cluster IV, for which the name Caproiciproducens galactitolivorans gen. nov., sp. nov. is proposed. The type species is BS-1T ( = JCM 30532T and KCCM 43048T).


Asunto(s)
Caproatos/metabolismo , Clostridiales/clasificación , Galactitol/metabolismo , Filogenia , Aguas Residuales/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Clostridiales/genética , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
8.
Arch Environ Contam Toxicol ; 69(4): 525-34, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26289813

RESUMEN

A fast and sensitive monitoring method for trace pharmaceuticals in the environment is vital because many of these compounds are ubiquitous, persistent, and biologically active with recognized endocrine-disruption and pharmacological functions. A rapid and reliable ultra high-performance liquid chromatography combined with tandem mass spectrometry was developed in the present study to simultaneously identify, confirm, and quantify 60 target pharmaceuticals in wastewater samples. The method uses a sub-2 µm particle column for separating target compounds, which were subsequently quantified with the mass spectrometer. Using this high-throughput analysis method, a single injection could provide results within 5 min for the pharmaceuticals. All of the target compounds were analyzed by the multiple-reaction monitoring with 15-ms fast polarity switching. Both intraday and interday precision analyses indicate excellent coefficient of variability. To evaluate the performance of the method, a standard solution (100 and 1000 ng L(-1)) was spiked into complex wastewater samples. The tailing factor and peak width were also monitored and adjusted for optimizing peaks from the ultra high-performance liquid chromatograph. Of the target pharmaceuticals in wastewater of a sewage-treatment plant analyzed on an hourly basis, only 17 compounds were detected, and others were lower than the method detection limits. Acetaminophen, cimetidine, and iopromide were all detected at >1 µg L(-1), and their concentration profiles were similar to that of a nonsteroidal anti-inflammatory drug detected in wastewater. Other noticeable pharmaceuticals were sulfamethoxazole and trimethoprim. Sources of pharmaceuticals in wastewater are briefly discussed.


Asunto(s)
Monitoreo del Ambiente/métodos , Preparaciones Farmacéuticas/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Cromatografía Líquida de Alta Presión , Disruptores Endocrinos/análisis , Extracción en Fase Sólida , Espectrometría de Masas en Tándem
9.
ScientificWorldJournal ; 2015: 186501, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26078989

RESUMEN

The adsorption of three pharmaceuticals, namely, acetaminophen, diclofenac, and sulfamethoxazole onto granular activated carbon (GAC), was investigated. To study competitive adsorption, both dynamic and steady-state adsorption experiments were conducted by careful selection of pharmaceuticals with various affinities and molecular size. The effective diffusion coefficient of the adsorbate was increased with decease in particle size of GAC. The adsorption affinity represented as Langmuir was consistent with the ranking of the octanol-water partition coefficient, K(ow). The adsorption behavior in binary or tertiary systems could be described by competition adsorption. In the binary system adsorption replacement occurred, under which the adsorbate with the smaller K(ow) was replaced by the one with larger K(ow). Results also indicated that portion of the micropores could be occupied only by the small target compound, but not the larger adsorbates. In multiple-component systems the competition adsorption might significantly be affected by the macropores and less by the meso- or micropores.


Asunto(s)
Acetaminofén/química , Carbono/química , Diclofenaco/química , Sulfametoxazol/química , Adsorción , Cinética , Soluciones , Temperatura
10.
J Environ Manage ; 162: 158-70, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26241931

RESUMEN

As suggested by UNEP, the key to sustainable development is to create a "green economy" which should encapsulate all three sectors: the industry, the people, and the government. Therefore, there is an urgent need to develop and implement the green technologies into the existing facilities, especially in the developing countries. In this study, the role of green supply chains in eco-industrial parks (EIPs) towards a green economy was investigated. The strategies and effective evaluation procedures of the green economy were proposed by assessing the barriers from the perspective of institution, regulation, technology, and finance. In addition, three case studies from iron and steel-making, paper mill and pulping, and petrochemical industries were presented and illustrated for building the green supply chains. For example, in the case of Lin-Hai Industrial Park, a total of 15 efficient green supply chains using waste-to-resources technologies were established by 2012, resulting in an economic benefit of USD 100 million per year. It suggests that the green supply chains should be established to achieve both economic growth and environmental protection. With these successful experiences, building a green supply chain within industrial park should be extensively promoted to make traditional industries around the world being environmentally bearable, economic viable, and social equitable.


Asunto(s)
Conservación de los Recursos Naturales , Industrias/métodos , Industria Química , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/métodos , Industrias/economía , Petróleo , Acero , Taiwán
11.
Artículo en Inglés | MEDLINE | ID: mdl-25072769

RESUMEN

Free cyanide (CN(-)) and metal-cyanide complexes (tetracyanonickelate(II)), Ni(CN)4(2-) and hexacyanocobaltate(III)), Co(CN)6(3-) are common constituents of effluents of mining, coal gasification, and petroleum refining. This article presents the degradation of Ni(CN)4(2-) and Co(CN)6(3-) by ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) in alkaline media. The effect of pH (9.0-11.0) and reactant molar ratios on the degradation of the cyanide complexes was investigated. The removal of Ni(CN)4(2-) ion in 200 min was found to be > 90% at pH 9.0; forming cyanate (NCO(-)) ions as the stoichiometric products ([Fe(VI)]:[Total CN(-)] = [Fe(VI)]:[NCO(-)] ≈ 1.0). The degradation efficiency decreased with an increase in pH from 9.0 to 11.0. Comparatively, the Co(CN)6(3-) ion could be degraded only up to 10% in 200 min at pH 9.0 and the final oxidized products were nitrite and nitrate ions. The oxidation efficiency of removing Co(CN)6(3-) did not vary significantly with pH. Fe(VI) consumptions as a result of the oxidation of free cyanide and metal-cyanides and their products are compared and discussed.


Asunto(s)
Cobalto/química , Cianuros/química , Hierro/química , Níquel/química , Concentración de Iones de Hidrógeno , Minería , Oxidación-Reducción
12.
J Hazard Mater ; 472: 134394, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38703690

RESUMEN

The use of plastics has become deeply ingrained in our society, and there are no indications that its prevalence will decrease in the foreseeable future. This article provides a comprehensive overview of the global plastic waste disposal landscape, examining it through regional perspectives, various management technologies (dumping or landfilling, incineration, and reuse and recycling), and across different sectors including agriculture and food, textile, tourism, and healthcare. Notably, this study compiles the findings on life-cycle carbon footprints associated with various plastic waste management practices as documented in the literature. Employing the bio-circular-green economy model, we advocate for the adoption of streamlined and sustainable approaches to plastic management. Unique management measures are also discussed including the utilization of bioplastics combined with smart and efficient collection processes that facilitate recycling, industrial composting, or anaerobic digestion. Moreover, the integration of advanced recycling methods for conventional plastics with renewable energy, the establishment of plastic tax and credits, and the establishment of extended producer responsibility are reviewed. The success of these initiatives relies on collaboration and support from peers, industries, and consumers, ultimately contributing to informed decision-making and fostering sustainable practices in plastic waste management.


Asunto(s)
Plásticos , Reciclaje , Administración de Residuos , Administración de Residuos/métodos , Administración de Residuos/economía , Eliminación de Residuos/métodos , Eliminación de Residuos/economía , Huella de Carbono , Carbono/química
13.
Curr Microbiol ; 66(6): 555-65, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23358667

RESUMEN

A(2)O process is a sequential wastewater treatment process that uses anaerobic, anoxic, and oxic chambers for nitrogen and phosphorus removal. In this study, the bacterial communities among these chambers were compared, and the diversity of the bacteria involved in nitrogen and phosphorus removal was surveyed. A pilot-scale A(2)O process (50 m(3) day(-1)) was operated for more than 6 months, and bacterial 16S rRNA gene diversity was analyzed using pyrosequencing. A total of 7,447 bacterial sequence reads were obtained from anaerobic (1,546), anoxic (2,158), and oxic (3,743) chambers. Even though there were differences in the atmospheric condition and functionality, no prominent differences could be found in the bacterial community of the three chambers of the pilot A(2)O process. All sequence reads, which were taxonomically analyzed using the Eztaxon-e database, were assigned into 638 approved or tentative genera. Among them, about 72.2 % of the taxa were contained in the phyla Proteobacteria and Bacteroidetes. Phosphate-accumulating bacteria, Candidatus Accumulibacter phosphatis, and two other Accumulibacter were found to constitute 3.1 % of the identified genera. Ammonia-oxidizing bacteria, Nitrosomonas oligotropha, and four other phylotypes in the same family, Nitrosomonadaceae, constituted 0.2 and 0.9 %, respectively. Nitrite-oxidizing bacteria, Nitrospira defluvii, and other three phylotypes in the same family, Nitrospiraceae, constituted 2.5 and 0.1 %, respectively. In addition, Dokdonella and a phylotype of the phylum Chloroflexi, function in nitrogen and/or phosphate removal of which have not been reported in the A(2)O process, constituted the first and third composition among genera at 4.3 and 3.8 %, respectively.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Eliminación de Residuos Líquidos , Aguas Residuales/microbiología , Anaerobiosis , Bacterias/clasificación , Técnicas de Tipificación Bacteriana , Secuencia de Bases , Reactores Biológicos , ADN Bacteriano , Consorcios Microbianos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
14.
Environ Sci Pollut Res Int ; 30(7): 19259-19268, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36224466

RESUMEN

The existence of per- and polyfluoroalkyl substances (PFASs) in water is of serious interest due to their toxic, bioaccumulative, and persistent nature, and adsorption is an effective approach for the PFASs removal. In the present study, we developed a polymeric adsorbent by cross-linking chitosan and ß-cyclodextrin using glutaraldehyde (Chi-Glu-ß-CD) and evaluated its removal performance for perfluorobutanesulfonate (PFBS) from water. The results indicate that the performance was highly affected by solution pH; under a more acidic condition (e.g., pH 2.0), a higher removal efficiency was detected, and faster adsorption kinetics was observed with the rate constant (k2) of 0.001 ± 3×10-4 g mg-1 min-1. Adsorption isotherm data agreed to the Sips model with a maximum heterogeneous adsorption capacity of 135.70 ± 25.70 mg g-1, probably due to protonated amine (NH+) and electron-deficient ß-CD cavities. The adsorption mechanism was confirmed using energy dispersive X-ray and Fourier transform infrared (FTIR) spectroscopy, showing the role of electrostatic attractions between the protonated amine and the negatively charged PFBS molecule (especially, with sulfonate side (N-H--O-S)) and host-guest inclusion formations with ß-CD cavity in adsorption. Additionally, the synthesized adsorbent was recovered using methanol without any significant decline in adsorption efficiency even after four continuous adsorption/desorption cycles. All these findings suggested that the Chi-Glu-ß-CD composite could be a promising adsorbent in the removal of PFBS from water.


Asunto(s)
Quitosano , Fluorocarburos , Contaminantes Químicos del Agua , beta-Ciclodextrinas , Quitosano/química , Adsorción , Cinética , Agua , beta-Ciclodextrinas/química , Polímeros/química , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier
15.
J Mater Chem B ; 11(31): 7466-7477, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37449368

RESUMEN

Recent advancements in "phyco-nanobionics" have sparked considerable interest in the ability of microalgae to synthesize high-value natural bioactive compounds such as carotenoid pigments, which have been highlighted as an emergent and vital bioactive compound from both industrial and scientific perspectives. Such bioactive compounds are often synthesized by either altering the biogenetic processes existing in living microorganisms or using synthetic techniques derived from petroleum-based chemical sources. A bio-hybrid light-driven cell factory system was established herein by using harmful macroalgal bloom extract (HMBE) and efficient light-harvesting silver nanoparticles (AgNPs) to synthesize HMBE-AgNPs and integrating the synthesized HMBE-AgNPs in various concentrations (1, 2.5, 5 and 10 ppm) into the microalgae C. sorokiniana UUIND6 to improve the overall solar-to-chemical conversion efficiency in carotenoid pigment synthesis in microalgae. The current study findings found high biocompatibility of 5 ppm HMBE-AgNP concentration that can serve as a built-in photo-sensitizer and significantly improve ROS levels in microalgae (6.75 ± 0.25 µmol H2O2 g-1), thus elevating total photosynthesis resulting in a two-fold increase in carotenoids (457.5 ± 2.5 µg mL-1) over the native microalgae without compromising biomass yield. NMR spectroscopy was additionally applied to acquire a better understanding of pure carotenoids derived from microalgae, which indicated similar peaks in both spectra when compared to ß-carotene. Thus, this well-planned bio-hybrid system offers a potential option for the cost-effective and long-term supply of these natural carotenoid bio-products.


Asunto(s)
Nanopartículas del Metal , Microalgas , Peróxido de Hidrógeno , Plata , Carotenoides/química , beta Caroteno , Microalgas/química
16.
Chemosphere ; 340: 139858, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37611756

RESUMEN

Production of low-cost biomass and its utilization for producing cost effective and eco-friendly bioenergy as well as for removing heavy metals from water can be explored as an approach to meet the sustainable development goals. In light of the above-mentioned study, hydrothermal liquefaction (HTL) of Billy goat weed (BGW; Ageratum conyzoides) was carried out to produce bio-oil. In addition, the residual biochar from the HTL process was activated to obtain Act-BC and was further modified to produce MnO2-loaded biochar (Act-BC@MnO2-25%). The HTL of BGW was done at three different temperatures, i.e., 250 °C, 350 °C and 450 °C in a high-pressure batch reactor to maximize the bio-oil yield. Also, two different HTL methods i.e., single-stage HTL and triple-stage HTL of BGW were compared and discussed in detail. The bio-oil obtained via the triple-stage HTL was rich in carbon, hydrogen, and nitrogen. It also showed a higher heating value (HHV) and bio-oil yield (46%) than the single-stage. The residual biochar obtained at 450 °C (Act-BC) and MnO2 modified (Act-BC@MnO2-25%) were then tested to adsorb multiple heavy metal (i.e., Pb(II), Cd(II), Cu(II), and Ni(II)) from water. The kinetics data obtained from the adsorption experiment with Act-BC@MnO2-25% were well fitted to PSO kinetics model. The isotherm data were well aligned with the Langmuir model; the adsorption capacity of Act-BC@MnO2-25% was estimated to be 198.70 ± 11.40 mg g-1, 93.70 ± 6.60 mg g-1, 78.90 ± 7.20 mg g-1 and 30.50 ± 2.10 mg g-1 for Pb(II), Cd(II), Cu(II), and Ni(II), respectively. Furthermore, Act-BC@MnO2-25% remained active for metal ions absorption even after six consecutive uses. The result obtained from this study clearly demonstrates that the triple-stage HTL of BGW is a promising technology to achieve both remediation of metal-contaminated water and production of bioenergy.


Asunto(s)
Ageratum , Metales Pesados , Agua , Cadmio , Plomo , Compuestos de Manganeso , Óxidos
17.
Environ Sci Pollut Res Int ; 30(44): 99875-99884, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37620700

RESUMEN

Following the alarming reports of microplastic pollution in the marine environment, increased attention has been given to microplastics in other environmental media. Despite the attention, there is limited research available on the depth-distribution of microplastics in freshwater. Specifically, in the case of water sources used for drinking or tap, the height of intake facilities varies, and it is highly likely that there is a correlation between the vertical distribution of microplastics and these water intake structures. Further, because the size of microplastics varies widely in the environment, the commonly used sampling devices are not suitable for selectively extracting microplastics without causing cross-contamination. Thus, we developed a suitable device for microplastics of size 5-20 µm and studied microplastic distribution in freshwater at various depths by considering various types of microplastics and aqueous systems. Lake and river, two major water sources, were selected for the study of microplastics distribution in water system. The microplastic distribution characteristics in both water systems showed that polypropylene and polyethylene were the most abundant across all depths because of their production volume. Plastic types with higher density were found only at the lower layers, and polystyrene was found in the upper layers because of the environmental effects on its buoyancy caused pore diameter and surface area. The lake and river had higher microplastic distribution in the lower layer and upper layer, respectively. This was because the flow rate in river was higher than that of lake. The higher flow rate reduced the settling velocity in river. Thus, hydrodynamic stability influences the vertical distribution and concentrations of microplastics in the water systems. These results are expected to be used for understanding the behavioral characteristics of microplastics in water systems and to manage water sources.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Lagos/química , Ríos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , República de Corea , Agua
18.
Heliyon ; 9(9): e19353, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37662773

RESUMEN

Background: The current study aimed to develop a laboratory-scale biofilm photobioreactor system for biofuel production. Scope & Approach: During the investigation, Jute was discovered to be the best, cheap, hairy, open-pored supporting material for biofilm formation. Microalgae & yeast consortium was used in this study for biofilm formation. Conclusion: The study identified microalgae and yeast consortium as a promising choice and ideal partners for biofilm formation with the highest biomass yield (47.63 ± 0.93 g/m2), biomass productivity (4.39 ± 0.29 to 7.77 ± 0.05 g/m2/day) and lipid content (36%) over 28 days cultivation period, resulting in a more sustainable and environmentally benign fuel that could become a reality in the near future.

19.
Sensors (Basel) ; 12(12): 16334-52, 2012 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-23443381

RESUMEN

In Korea, more than 80% of municipal wastewater treatment plants (WWTPs) with capacities of 500 m3·d-1 or more are capable of removing nitrogen from wastewater through biological nitrification and denitrification processes. Normally, these biological processes show excellent performance, but if a toxic chemical is present in the influent to a WWTP, the biological processes (especially, the nitrification process) may be affected and fail to function normally; nitrifying bacteria are known very vulnerable to toxic substances. Then, the toxic compound as well as the nitrogen in wastewater may be discharged into a receiving water body without any proper treatment. Moreover, it may take significant time for the process to return back its normal state. In this study, a DO- and pH-based strategy to identify potential nitrification inhibition was developed to detect early the inflow of toxic compounds to a biological nitrogen removal process. This strategy utilizes significant changes observed in the oxygen uptake rate and the pH profiles of the mixed liquor when the activity of nitrifying bacteria is inhibited. Using the strategy, the toxicity from test wastewater with 2.5 mg·L-1 Hg2+, 0.5 mg·L-1 allythiourea, or 0.25 mg·L-1 chloroform could be successfully detected.


Asunto(s)
Técnicas Biosensibles/instrumentación , Nitrificación , Nitrógeno/metabolismo , Bacterias/química , Bacterias/metabolismo , Técnicas Biosensibles/métodos , Concentración de Iones de Hidrógeno , Corea (Geográfico) , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Purificación del Agua
20.
Sensors (Basel) ; 12(12): 16892-906, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23223148

RESUMEN

Sewer odors have been a concern to citizens of the Metropolitan Seoul region, which has installed combined sewer systems (CSSs) in 86% of its area. Although a variety of odorants are released from sewers, volatile sulfur compounds (VSCs) have been recognized as major ones. A number of technologies have been proposed to monitor or control odors from sewers. One of the most popular strategies adopted for the control of sewage odor is by applying a commercial odor-reducing agent into the sewer. In this study, the effectiveness of five different commercial odor-reducing agents (i.e., an odor masking agent, an alkaline solution, two microbial agents, and a chemical oxidant) was evaluated by continuously monitoring VSCs released from the sewer with an on-line total reduced sulfur (TRS) analyzer before and after each agent was sprayed into CSSs at five different locations of the city. In short, when the effectiveness of odor treatment was tested in the sewer system using five commercial odor reducing treatments, only the chemical oxidant was good enough to reduce the odor in terms of TRS levels measured before and after the application (p < 0.01).


Asunto(s)
Odorantes/análisis , Aguas del Alcantarillado/química , Azufre/aislamiento & purificación , Humanos , Sulfuro de Hidrógeno/química , Sustancias Reductoras/química , Eliminación de Residuos Líquidos/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA