Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Immunol ; 24(6): 1007-1019, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37069398

RESUMEN

Adoptive transfer of genetically engineered chimeric antigen receptor (CAR) T cells is becoming a promising treatment option for hematological malignancies. However, T cell immunotherapies have mostly failed in individuals with solid tumors. Here, with a CRISPR-Cas9 pooled library, we performed an in vivo targeted loss-of-function screen and identified ST3 ß-galactoside α-2,3-sialyltransferase 1 (ST3GAL1) as a negative regulator of the cancer-specific migration of CAR T cells. Analysis of glycosylated proteins revealed that CD18 is a major effector of ST3GAL1 in activated CD8+ T cells. ST3GAL1-mediated glycosylation induces the spontaneous nonspecific tissue sequestration of T cells by altering lymphocyte function-associated antigen-1 (LFA-1) endocytic recycling. Engineered CAR T cells with enhanced expression of ßII-spectrin, a central LFA-1-associated cytoskeleton molecule, reversed ST3GAL1-mediated nonspecific T cell migration and reduced tumor growth in mice by improving tumor-specific homing of CAR T cells. These findings identify the ST3GAL1-ßII-spectrin axis as a major cell-intrinsic program for cancer-targeting CAR T cell migration and as a promising strategy for effective T cell immunotherapy.


Asunto(s)
Receptores Quiméricos de Antígenos , Animales , Ratones , Linfocitos T CD8-positivos , Línea Celular Tumoral , Movimiento Celular , Inmunoterapia Adoptiva , Antígeno-1 Asociado a Función de Linfocito , Espectrina , Humanos , Femenino
2.
J Virol ; 97(6): e0055623, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37191498

RESUMEN

During the 2015-2016 Zika virus (ZIKV) epidemic, ZIKV-associated neurological diseases were reported in adults, including microcephaly, Guillain-Barre syndrome, myelitis, meningoencephalitis, and fatal encephalitis. However, the mechanisms underlying the neuropathogenesis of ZIKV infection are not yet fully understood. In this study, we used an adult ZIKV infection mouse model (Ifnar1-/-) to investigate the mechanisms underlying neuroinflammation and neuropathogenesis. ZIKV infection induced the expression of proinflammatory cytokines, including interleukin-1ß (IL-1ß), IL-6, gamma interferon, and tumor necrosis factor alpha, in the brains of Ifnar1-/- mice. RNA-seq analysis of the infected mouse brain also revealed that genes involved in innate immune responses and cytokine-mediated signaling pathways were significantly upregulated at 6 days postinfection. Furthermore, ZIKV infection induced macrophage infiltration and activation and augmented IL-1ß expression, whereas microgliosis was not observed in the brain. Using human monocyte THP-1 cells, we confirmed that ZIKV infection promotes inflammatory cell death and increases IL-1ß secretion. In addition, expression of the complement component C3, which is associated with neurodegenerative diseases and known to be upregulated by proinflammatory cytokines, was induced by ZIKV infection through the IL-1ß-mediated pathway. An increase in C5a produced by complement activation in the brains of ZIKV-infected mice was also verified. Taken together, our results suggest that ZIKV infection in the brain of this animal model augments IL-1ß expression in infiltrating macrophages and elicits IL-1ß-mediated inflammation, which can lead to the destructive consequences of neuroinflammation. IMPORTANCE Zika virus (ZIKV) associated neurological impairments are an important global health problem. Our results suggest that ZIKV infection in the mouse brain can induce IL-1ß-mediated inflammation and complement activation, thereby contributing to the development of neurological disorders. Thus, our findings reveal a mechanism by which ZIKV induces neuroinflammation in the mouse brain. Although we used adult type I interferon receptor IFNAR knockout (Ifnar1-/-) mice owing to the limited mouse models of ZIKV pathogenesis, our conclusions contributed to the understanding ZIKV-associated neurological diseases to develop treatment strategies for patients with ZIKV infection based on these findings.


Asunto(s)
Encéfalo , Interleucina-1beta , Macrófagos , Infección por el Virus Zika , Animales , Humanos , Ratones , Encéfalo/inmunología , Citocinas/inmunología , Inflamación/inmunología , Interleucina-1beta/inmunología , Macrófagos/inmunología , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/virología , Virus Zika , Infección por el Virus Zika/inmunología , Transcriptoma/inmunología , Modelos Animales de Enfermedad , Neuronas/inmunología , Neuronas/virología
3.
J Immunol ; 201(4): 1174-1185, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29987160

RESUMEN

Ca2+ release-activated Ca2+ channel regulator 2A (CRACR2A) is expressed abundantly in T cells and acts as a signal transmitter between TCR stimulation and activation of the Ca2+/NFAT and JNK/AP1 pathways. CRACR2A has been linked to human diseases in numerous genome-wide association studies and was shown to be one of the most sensitive targets of the widely used statin drugs. However, the physiological role of CRACR2A in T cell functions remains unknown. In this study, using transgenic mice for tissue-specific deletion, we show that CRACR2A promotes Th1 responses and effector function of Th17 cells. CRACR2A was abundantly expressed in Th1 and Th17 cells. In vitro, deficiency of CRACR2A decreased Th1 differentiation under nonpolarizing conditions, whereas the presence of polarizing cytokines compensated this defect. Transcript analysis showed that weakened TCR signaling by deficiency of CRACR2A failed to promote Th1 transcriptional program. In vivo, conditional deletion of CRACR2A in T cells alleviated Th1 responses to acute lymphocytic choriomeningitis virus infection and imparted resistance to experimental autoimmune encephalomyelitis. Analysis of CNS from experimental autoimmune encephalomyelitis-induced mice showed impaired effector functions of both Th1 and Th17 cell types, which correlated with decreased pathogenicity. Collectively, our findings demonstrate the requirement of CRACR2A-mediated TCR signaling in Th1 responses as well as pathogenic conversion of Th17 cells, which occurs at the site of inflammation.


Asunto(s)
Infecciones por Arenaviridae/inmunología , Proteínas de Unión al Calcio/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Virus de la Coriomeningitis Linfocítica/fisiología , Células TH1/inmunología , Células Th17/inmunología , Animales , Proteínas de Unión al Calcio/genética , Diferenciación Celular , Células Cultivadas , Citocinas , Resistencia a la Enfermedad , Humanos , Ratones , Ratones Noqueados , Transducción de Señal
5.
J Immunol ; 192(1): 110-22, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24307733

RESUMEN

Orai1 is the pore subunit of Ca(2+) release-activated Ca(2+) (CRAC) channels that stimulate downstream signaling pathways crucial for T cell activation. CRAC channels are an attractive therapeutic target for alleviation of autoimmune diseases. Using high-throughput chemical library screening targeting Orai1, we identified a novel class of small molecules that inhibit CRAC channel activity. One of these molecules, compound 5D, inhibited CRAC channel activity by blocking ion permeation. When included during differentiation, Th17 cells showed higher sensitivity to compound 5D than Th1 and Th2 cells. The selectivity was attributable to high dependence of promoters of retinoic-acid-receptor-related orphan receptors on the Ca(2+)-NFAT pathway. Blocking of CRAC channels drastically decreased recruitment of NFAT and histone modifications within key gene loci involved in Th17 differentiation. The impairment in Th17 differentiation by treatment with CRAC channel blocker was recapitulated in Orai1-deficient T cells, which could be rescued by exogenous expression of retinoic-acid-receptor-related orphan receptors or a constitutive active mutant of NFAT. In vivo administration of CRAC channel blockers effectively reduced the severity of experimental autoimmune encephalomyelitis by suppression of differentiation of inflammatory T cells. These results suggest that CRAC channel blockers can be considered as chemical templates for the development of therapeutic agents to suppress inflammatory responses.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Receptores Nucleares Huérfanos/metabolismo , Células Th17/citología , Células Th17/metabolismo , Animales , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/genética , Diferenciación Celular/efectos de los fármacos , Línea Celular , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Humanos , Iones/metabolismo , Ratones , Factores de Transcripción NFATC/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteína ORAI1 , Receptores Nucleares Huérfanos/deficiencia , Receptores Nucleares Huérfanos/genética , Regiones Promotoras Genéticas , Unión Proteica , Elementos de Respuesta , Bibliotecas de Moléculas Pequeñas , Células TH1/citología , Células TH1/inmunología , Células TH1/metabolismo , Células Th17/inmunología , Células Th2/citología , Células Th2/inmunología , Células Th2/metabolismo
6.
Proc Natl Acad Sci U S A ; 109(22): 8682-7, 2012 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-22586105

RESUMEN

Orai1 and stromal interaction molecule (STIM)1 are critical components of Ca(2+) release-activated Ca(2+) (CRAC) channels. Orai1 is a pore subunit of CRAC channels, and STIM1 acts as an endoplasmic reticulum (ER) Ca(2+) sensor that detects store depletion. Upon store depletion after T-cell receptor stimulation, STIM1 translocates and coclusters with Orai1 at sites of close apposition of the plasma membrane (PM) and the ER membrane. However, the molecular components of these ER-PM junctions remain poorly understood. Using affinity protein purification, we uncovered junctate as an interacting partner of Orai1-STIM1 complex. Furthermore, we identified a Ca(2+)-binding EF-hand motif in the ER-luminal region of junctate. Mutation of this EF-hand domain of junctate impaired its Ca(2+) binding and resulted in partial activation of CRAC channels and clustering of STIM1 independently of store depletion. In addition to the known mechanisms of STIM1 clustering (i.e., phosphoinositide and Orai1 binding), our study identifies an alternate mechanism to recruit STIM1 into the ER-PM junctions via binding to junctate. We propose that junctate, a Ca(2+)-sensing ER protein, is a structural component of the ER-PM junctions where Orai1 and STIM1 cluster and interact in T cells.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Musculares/metabolismo , Proteínas de Neoplasias/metabolismo , Calcio/metabolismo , Canales de Calcio/genética , Proteínas de Unión al Calcio/genética , Membrana Celular/metabolismo , Motivos EF Hand/genética , Retículo Endoplásmico/metabolismo , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Células Jurkat , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/genética , Microscopía Fluorescente , Oxigenasas de Función Mixta/genética , Proteínas Musculares/genética , Mutación , Proteínas de Neoplasias/genética , Proteína ORAI1 , Unión Proteica , Transporte de Proteínas , Molécula de Interacción Estromal 1
7.
Exp Mol Med ; 56(5): 1221-1229, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38816566

RESUMEN

Mouse models expressing human ACE2 for coronavirus disease 2019 have been frequently used to understand its pathogenesis and develop therapeutic strategies against SARS-CoV-2. Given that human TMPRSS2 supports viral entry, replication, and pathogenesis, we established a double-transgenic mouse model expressing both human ACE2 and TMPRSS2 for SARS-CoV-2 infection. Co-overexpression of both genes increased viral infectivity in vitro and in vivo. Double-transgenic mice showed significant body weight loss, clinical disease symptoms, acute lung injury, lung inflammation, and lethality in response to viral infection, indicating that they were highly susceptible to SARS-CoV-2. Pretreatment with the TMPRSS2 inhibitor, nafamostat, effectively reduced virus-induced weight loss, viral replication, and mortality in the double-transgenic mice. Moreover, the susceptibility and differential pathogenesis of SARS-CoV-2 variants were demonstrated in this animal model. Together, our results demonstrate that double-transgenic mice could provide a highly susceptible mouse model for viral infection to understand SARS-CoV-2 pathogenesis and evaluate antiviral therapeutics against coronavirus disease 2019.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Modelos Animales de Enfermedad , Ratones Transgénicos , SARS-CoV-2 , Serina Endopeptidasas , Animales , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , COVID-19/virología , COVID-19/genética , COVID-19/metabolismo , SARS-CoV-2/fisiología , SARS-CoV-2/genética , Humanos , Ratones , Replicación Viral , Benzamidinas , Guanidinas/farmacología , Chlorocebus aethiops , Tratamiento Farmacológico de COVID-19
8.
J Immunol ; 187(7): 3620-30, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21873530

RESUMEN

ORAI1 is a pore subunit of Ca(2+) release-activated Ca(2+) channels that mediate TCR stimulation-induced Ca(2+) entry. A point mutation in ORAI1 (ORAI1(R91W)) causes SCID in human patients that is recapitulated in Orai1(-/-) mice, emphasizing its important role in the immune cells. In this study, we have characterized a novel function of ORAI1 in T cell death. CD4(+) T cells from Orai1(-/-) mice showed robust proliferation with repetitive stimulations and strong resistance to stimulation-induced cell death due to reduced mitochondrial Ca(2+) uptake and altered gene expression of proapoptotic and antiapoptotic molecules (e.g., Fas ligand, Noxa, and Mcl-1). Nuclear accumulation of NFAT was severely reduced in ORAI1-deficient T cells, and expression of ORAI1 and a constitutively active mutant of NFAT recovered cell death. These results indicate NFAT-mediated cell death pathway as one of the major downstream targets of ORAI1-induced Ca(2+) entry. By expressing various mutants of ORAI1 in wild-type and Orai1(-/-) T cells to generate different levels of intracellular Ca(2+), we have shown that activation-induced cell death is directly proportional to the intracellular Ca(2+) concentration levels. Consistent with the in vitro results, Orai1(-/-) mice showed strong resistance to T cell depletion induced by injection of anti-CD3 Ab. Furthermore, ORAI1-deficient T cells showed enhanced survival after adoptive transfer into immunocompromised hosts. Thus, our results demonstrate a crucial role of the ORAI1-NFAT pathway in T cell death and highlight the important role of ORAI1 as a major route of Ca(2+) entry during activated T cell death.


Asunto(s)
Apoptosis/inmunología , Linfocitos T CD4-Positivos/inmunología , Canales de Calcio/inmunología , Señalización del Calcio/inmunología , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Canales de Calcio/metabolismo , Separación Celular , Supervivencia Celular , Citometría de Flujo , Humanos , Immunoblotting , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Factores de Transcripción NFATC/inmunología , Factores de Transcripción NFATC/metabolismo , Proteína ORAI1 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción Genética
9.
Nat Med ; 12(5): 574-9, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16604087

RESUMEN

CTLA-4 is a negative regulator of T-cell activation, and its inhibitory effects can be accomplished either by competition with CD28 or by transmitting negative signals through its intracellular domain. To utilize the cytoplasmic domain of CTLA-4 to suppress allergic inflammation, we fused it to a novel protein-transduction domain in the human transcriptional factor Hph-1. Transduction efficiency was verified in vitro and in vivo after ocular, intranasal and intradermal administration. After transduction into T cells, the Hph-1-ctCTLA-4 fusion protein inhibited the production of interleukin (IL)-2, and downregulated CD69 and CD25. Intranasal administration of Hph-1-ctCTLA-4 resulted in markedly reduced infiltration of inflammatory cells, secretion of T helper type 2 (T(H)2) cytokines, serum IgE levels and airway hyper-responsiveness in a mouse model of allergic airway inflammation. These results indicated that Hph-1-ctCTLA-4 constitutes an effective immunosuppressive protein drug for potential use in the treatment of allergic asthma, via nasal administration.


Asunto(s)
Administración Intranasal , Antígenos de Diferenciación/administración & dosificación , Antígenos de Diferenciación/inmunología , Asma , Proteínas Portadoras/metabolismo , Inmunosupresores , Inflamación , Animales , Antígenos CD , Antígenos de Diferenciación/genética , Asma/inmunología , Asma/prevención & control , Hiperreactividad Bronquial , Antígeno CTLA-4 , Proteínas Portadoras/genética , Femenino , Humanos , Inmunoconjugados/administración & dosificación , Inmunoconjugados/genética , Inmunoconjugados/inmunología , Inmunosupresores/administración & dosificación , Inmunosupresores/inmunología , Inflamación/inmunología , Inflamación/prevención & control , Masculino , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/inmunología , Complejo Represivo Polycomb 1 , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Transducción Genética
10.
Antiviral Res ; 216: 105656, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37327877

RESUMEN

The ongoing COVID-19 pandemic caused by SARS-CoV-2 infection has threatened global health. Since the first case of infection was reported in December 2019, SARS-CoV-2 has rapidly spread worldwide and caused millions of deaths. As vaccination is the best way to protect the host from invading pathogens, several vaccines have been developed to prevent the infection of SARS-CoV-2, saving numerous lives thus far. However, SARS-CoV-2 constantly changes its antigens, resulting in escape from vaccine-induced protection, and the longevity of immunity induced by vaccines remains an issue. Additionally, traditional intramuscular COVID-19 vaccines are insufficient at evoking mucosal-specific immune responses. Because the respiratory tract is the primary route of SARS-CoV-2 entry, the need for mucosal vaccines is strong. Using an adenoviral (Ad) vector platform, we generated Ad5-S.Mod, a recombinant COVID-19 vaccine that encodes modified-spike (S) antigen and the genetic adjuvant human CXCL9. Intranasal delivery of Ad5-S.Mod elicited superior airway humoral and T-cell responses over traditional intramuscular vaccines and protected mice from lethal SARS-CoV-2 infection. cDC1 cells were required for the generation of antigen-specific CD8+ T-cell responses and CD8+ tissue-resident memory T-cell development in intranasal Ad5-S.Mod vaccinated mice. Furthermore, we confirmed the efficacy of the intranasal Ad5-S.Mod vaccine in terms of transcriptional changes and identified lung macrophages as a key supporter of maintenance of lung-resident memory T and B cells. Our study demonstrates Ad5-S.Mod has the potential to confer protective immunity against SARS-CoV-2 and that lung macrophages support the maintenance of vaccine-induced tissue-resident memory lymphocytes.


Asunto(s)
Infecciones por Adenoviridae , Vacunas contra el Adenovirus , COVID-19 , Ratones , Humanos , Animales , Adenoviridae/genética , Vacunas contra la COVID-19 , SARS-CoV-2/genética , COVID-19/prevención & control , Inmunidad Mucosa , Glicoproteína de la Espiga del Coronavirus/genética , Pandemias , Adyuvantes Inmunológicos , Anticuerpos Antivirales , Anticuerpos Neutralizantes
11.
Microbiol Spectr ; 10(3): e0109122, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35510852

RESUMEN

Accumulating evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes various neurological symptoms in patients with coronavirus disease 2019 (COVID-19). The most dominant immune cells in the brain are microglia. Yet, the relationship between neurological manifestations, neuroinflammation, and host immune response of microglia to SARS-CoV-2 has not been well characterized. Here, we reported that SARS-CoV-2 can directly infect human microglia, eliciting M1-like proinflammatory responses, followed by cytopathic effects. Specifically, SARS-CoV-2 infected human microglial clone 3 (HMC3), leading to inflammatory activation and cell death. RNA sequencing (RNA-seq) analysis also revealed that endoplasmic reticulum (ER) stress and immune responses were induced in the early, and apoptotic processes in the late phases of viral infection. SARS-CoV-2-infected HMC3 showed the M1 phenotype and produced proinflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor α (TNF-α), but not the anti-inflammatory cytokine IL-10. After this proinflammatory activation, SARS-CoV-2 infection promoted both intrinsic and extrinsic death receptor-mediated apoptosis in HMC3. Using K18-hACE2 transgenic mice, murine microglia were also infected by intranasal inoculation of SARS-CoV-2. This infection induced the acute production of proinflammatory microglial IL-6 and TNF-α and provoked a chronic loss of microglia. Our findings suggest that microglia are potential mediators of SARS-CoV-2-induced neurological problems and, consequently, can be targets of therapeutic strategies against neurological diseases in patients with COVID-19. IMPORTANCE Recent studies reported neurological and cognitive sequelae in patients with COVID-19 months after the viral infection with several symptoms, including ageusia, anosmia, asthenia, headache, and brain fog. Our conclusions raise awareness of COVID-19-related microglia-mediated neurological disorders to develop treatment strategies for the affected patients. We also indicated that HMC3 was a novel human cell line susceptible to SARS-CoV-2 infection that exhibited cytopathic effects, which could be further used to investigate cellular and molecular mechanisms of neurological manifestations of patients with COVID-19.


Asunto(s)
Apoptosis , COVID-19 , Microglía , Animales , Línea Celular , Citocinas/metabolismo , Humanos , Interleucina-6 , Ratones , Ratones Transgénicos , Microglía/virología , SARS-CoV-2 , Factor de Necrosis Tumoral alfa
12.
MAbs ; 14(1): 2021601, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35030983

RESUMEN

Coronavirus disease 2019, caused by SARS-CoV-2, remains an on-going pandemic, partly due to the emergence of variant viruses that can "break-through" the protection of the current vaccines and neutralizing antibodies (nAbs), highlighting the needs for broadly nAbs and next-generation vaccines. We report an antibody that exhibits breadth and potency in binding the receptor-binding domain (RBD) of the virus spike glycoprotein across SARS coronaviruses. Initially, a lead antibody was computationally discovered and crystallographically validated that binds to a highly conserved surface of the RBD of wild-type SARS-CoV-2. Subsequently, through experimental affinity enhancement and computational affinity maturation, it was further developed to bind the RBD of all concerning SARS-CoV-2 variants, SARS-CoV-1 and pangolin coronavirus with pico-molar binding affinities, consistently exhibited strong neutralization activity against wild-type SARS-CoV-2 and the Alpha and Delta variants. These results identify a vulnerable target site on coronaviruses for development of pan-sarbecovirus nAbs and vaccines.


Asunto(s)
Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/metabolismo , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Reacciones Antígeno-Anticuerpo , Antígenos Virales/química , Antígenos Virales/genética , Anticuerpos ampliamente neutralizantes/genética , Anticuerpos ampliamente neutralizantes/metabolismo , Cristalografía por Rayos X , Epítopos/química , Epítopos/inmunología , Humanos , Fragmentos de Inmunoglobulinas/inmunología , Simulación del Acoplamiento Molecular , Método de Montecarlo , Pruebas de Neutralización , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Dominios Proteicos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
13.
Microbiol Spectr ; 10(5): e0237122, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36005818

RESUMEN

Diverse severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged since the beginning of the COVID-19 pandemic. We investigated the immunological and pathological peculiarity of the SARS-CoV-2 beta variant of concern (VoC) compared to the ancestral strain. Comparative analysis of phenotype and pathology revealed that the beta VoC induces slower disease progression and a prolonged presymptomatic period in the early stages of SARS-CoV-2 infection but ultimately causes sudden death in the late stages of infection in the K18-hACE2 mouse model. The beta VoC induced enhanced activation of CXCL1/2-CXCR2-NLRP3-IL-1ß signal cascade accelerating neutrophil recruitment and lung pathology in beta variant-infected mice, as evidenced by multiple analyses of SARS-CoV-2-induced inflammatory cytokines and transcriptomes. CCL2 was one of the most highly secreted cytokines in the early stages of infection. Its blockade reduced virus-induced weight loss and delayed mortality. Our study provides a better understanding of the variant characteristics and need for treatment. IMPORTANCE Since the outbreak of COVID-19, diverse SARS-CoV-2 variants have been identified. These variants have different infectivity and transmissibility from the ancestral strains. However, underlying molecular mechanisms have not yet been fully elucidated. In our study, the beta variant showed distinct pathological conditions and cytokine release kinetics from an ancestral strain in a mouse model. It was associated with higher neutrophil recruitment by increased levels of CXCL1/2, CXCR2, and interleukin 1ß (IL-1ß) at a later stage of viral infection. Our study will provide a better understanding of SARS-CoV-2 pathogenesis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Humanos , Animales , Pandemias , Interleucina-1beta/genética , Proteína con Dominio Pirina 3 de la Familia NLR , Citocinas , Modelos Animales de Enfermedad
14.
Nat Commun ; 13(1): 7675, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36509737

RESUMEN

Although ocular manifestations are reported in patients with COVID-19, consensus on ocular tropism of SARS-CoV-2 is lacking. Here, we infect K18-hACE2 transgenic mice with SARS-CoV-2 using various routes. We observe ocular manifestation and retinal inflammation with production of pro-inflammatory cytokines in the eyes of intranasally (IN)-infected mice. Intratracheal (IT) infection results in dissemination of the virus from the lungs to the brain and eyes via trigeminal and optic nerves. Ocular and neuronal invasions are confirmed using intracerebral (IC) infection. Notably, the eye-dropped (ED) virus does not cause lung infection and becomes undetectable with time. Ocular and neurotropic distribution of the virus in vivo is evident in fluorescence imaging with an infectious clone of SARS-CoV-2-mCherry. The ocular tropic and neuroinvasive characteristics of SARS-CoV-2 are confirmed in wild-type Syrian hamsters. Our data can improve the understanding regarding viral transmission and clinical characteristics of SARS-CoV-2 and help in improving COVID-19 control procedures.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Ratones , Animales , Modelos Animales de Enfermedad , Ratones Transgénicos , Pulmón , Mesocricetus , Inflamación
15.
Analyst ; 136(13): 2831-6, 2011 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-21623432

RESUMEN

Leukocyte adhesion to the endothelium through surface molecules such as E-selectin and intercellular adhesion molecule-1 (ICAM-1) is a critical cellular event reflecting the physiological status of both cell types. Here we present a microfluidic system that can not only easily monitor the interaction between leukocytes and endothelial cells under physiological conditions, but also screen drug candidates for potential modulation of this interaction. Shear stress, which is an important factor for the binding of activated T cells to tumor necrosis factor-alpha (TNF-α)-treated human umbilical vein endothelial cells (HUVECs), was easily controlled by adjusting the flow rate in the microfluidic system. Whole blood of patients with systemic lupus erythematosus (SLE) who have auto-reactive T cells were infused into the activated HUVECs which subsequently showed a higher level of binding compared to a control blood sample from a person without SLE. When these autoreactive T cells were treated with immunosuppressors tacrolimus and cyclosporin A, the binding of the T cells to HUVECs was dramatically decreased. Therefore, this microfluidic system is capable of differentiating the physiological status of T cells or endothelial cells representing different disease conditions, as well as being useful for the identification of novel reagents that modulate the functions of leukocytes or endothelial cells.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Linfocitos T/citología , Moléculas de Adhesión Celular/metabolismo , Ciclosporina/inmunología , Evaluación Preclínica de Medicamentos , Células Endoteliales/citología , Humanos , Inmunosupresores/inmunología , Células Jurkat , Leucocitos/citología , Leucocitos/inmunología , Leucocitos/metabolismo , Técnicas Analíticas Microfluídicas/instrumentación , Linfocitos T/inmunología , Linfocitos T/metabolismo , Tacrolimus/inmunología
16.
BMB Rep ; 54(1): 31-43, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33298246

RESUMEN

Dendritic cells (DC), which consist of several different subsets, specialize in antigen presentation and are critical for mediating the innate and adaptive immune responses. DC subsets can be classified into conventional, plasmacytoid, and monocyte-derived DC in the tumor microenvironment, and each subset plays a different role. Because of the role of intratumoral DCs in initiating antitumor immune responses with tumor-derived antigen presentation to T cells, DCs have been targeted in the treatment of cancer. By regulating the functionality of DCs, several DCbased immunotherapies have been developed, including administration of tumor-derived antigens and DC vaccines. In addition, DCs participate in the mechanisms of classical cancer therapies, such as radiation therapy and chemotherapy. Thus, regulating DCs is also important in improving current cancer therapies. Here, we will discuss the role of each DC subset in antitumor immune responses, and the current status of DC-related cancer therapies. [BMB Reports 2021; 54(1): 31-43].


Asunto(s)
Neoplasias/terapia , Presentación de Antígeno/inmunología , Células Dendríticas/inmunología , Humanos , Neoplasias/inmunología , Microambiente Tumoral/inmunología
17.
Front Immunol ; 12: 666231, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149701

RESUMEN

Although cancer immunotherapy is effective against hematological malignancies, it is less effective against solid tumors due in part to significant metabolic challenges present in the tumor microenvironment (TME), where infiltrated CD8+ T cells face fierce competition with cancer cells for limited nutrients. Strong metabolic suppression in the TME is often associated with impaired T cell recruitment to the tumor site and hyporesponsive effector function via T cell exhaustion. Increasing evidence suggests that mitochondria play a key role in CD8+ T cell activation, effector function, and persistence in tumors. In this study, we showed that there was an increase in overall mitochondrial function, including mitochondrial mass and membrane potential, during both mouse and human CD8+ T cell activation. CD8+ T cell mitochondrial membrane potential was closely correlated with granzyme B and IFN-γ production, demonstrating the significance of mitochondria in effector T cell function. Additionally, activated CD8+ T cells that migrate on ICAM-1 and CXCL12 consumed significantly more oxygen than stationary CD8+ T cells. Inhibition of mitochondrial respiration decreased the velocity of CD8+ T cell migration, indicating the importance of mitochondrial metabolism in CD8+ T cell migration. Remote optical stimulation of CD8+ T cells that express our newly developed "OptoMito-On" successfully enhanced mitochondrial ATP production and improved overall CD8+ T cell migration and effector function. Our study provides new insight into the effect of the mitochondrial membrane potential on CD8+ T cell effector function and demonstrates the development of a novel optogenetic technique to remotely control T cell metabolism and effector function at the target tumor site with outstanding specificity and temporospatial resolution.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de la radiación , Optogenética/métodos , Adenosina Trifosfato/metabolismo , Animales , Linfocitos T CD8-positivos/metabolismo , Movimiento Celular/efectos de la radiación , Citocinas/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/efectos de la radiación , Humanos , Inmunoterapia , Activación de Linfocitos/efectos de la radiación , Potencial de la Membrana Mitocondrial/genética , Potencial de la Membrana Mitocondrial/efectos de la radiación , Ratones , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Neoplasias/inmunología , Neoplasias/terapia
18.
Microorganisms ; 9(3)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800763

RESUMEN

Zika virus (ZIKV), which is associated with severe diseases in humans, has spread rapidly and globally since its emergence. ZIKV and dengue virus (DENV) are closely related, and antibody-dependent enhancement (ADE) of infection between cocirculating ZIKV and DENV may exacerbate disease. Despite these serious threats, there are currently no approved antiviral drugs against ZIKV and DENV. The NS2B-NS3 viral protease is an attractive antiviral target because it plays a pivotal role in polyprotein cleavage, which is required for viral replication. Thus, we sought to identify novel inhibitors of the NS2B-NS3 protease. To that aim, we performed structure-based virtual screening using 467,000 structurally diverse chemical compounds. Then, a fluorescence-based protease inhibition assay was used to test whether the selected candidates inhibited ZIKV protease activity. Among the 123 candidate inhibitors selected from virtual screening, compound 1 significantly inhibited ZIKV NS2B-NS3 protease activity in vitro. In addition, compound 1 effectively inhibited ZIKV and DENV infection of human cells. Molecular docking analysis suggested that compound 1 binds to the NS2B-NS3 protease of ZIKV and DENV. Thus, compound 1 could be used as a new therapeutic option for the development of more potent antiviral drugs against both ZIKV and DENV, reducing the risks of ADE.

19.
J Med Chem ; 64(20): 14955-14967, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34624194

RESUMEN

Blocking the association between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain (RBD) and the human angiotensin-converting enzyme 2 (ACE2) is an attractive therapeutic approach to prevent the virus from entering human cells. While antibodies and other modalities have been developed to this end, d-amino acid peptides offer unique advantages, including serum stability, low immunogenicity, and low cost of production. Here, we designed potent novel D-peptide inhibitors that mimic the ACE2 α1-binding helix by searching a mirror-image version of the PDB. The two best designs bound the RBD with affinities of 29 and 31 nM and blocked the infection of Vero cells by SARS-CoV-2 with IC50 values of 5.76 and 6.56 µM, respectively. Notably, both D-peptides neutralized with a similar potency the infection of two variants of concern: B.1.1.7 and B.1.351 in vitro. These potent D-peptide inhibitors are promising lead candidates for developing SARS-CoV-2 prophylactic or therapeutic treatments.


Asunto(s)
Péptidos , SARS-CoV-2 , Animales , Chlorocebus aethiops , Simulación del Acoplamiento Molecular , Células Vero
20.
Viruses ; 14(1)2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-35062259

RESUMEN

SARS-CoV-2, like other RNA viruses, has a propensity for genetic evolution owing to the low fidelity of its viral polymerase. Several recent reports have described a series of novel SARS-CoV-2 variants. Some of these have been identified as variants of concern (VOCs), including alpha (B.1.1.7, Clade GRY), beta (B.1.351, Clade GH), gamma (P.1, Clade GR), and delta (B.1.617.2, Clade G). VOCs are likely to have some effect on transmissibility, antibody evasion, and changes in therapeutic or vaccine effectiveness. However, the physiological and virological understanding of these variants remains poor. We demonstrated that these four VOCs exhibited differences in plaque size, thermal stability at physiological temperature, and replication rates. The mean plaque size of beta was the largest, followed by those of gamma, delta, and alpha. Thermal stability, evaluated by measuring infectivity and half-life after prolonged incubation at physiological temperature, was correlated with plaque size in all variants except alpha. However, despite its relatively high thermal stability, alpha's small plaque size resulted in lower replication rates and fewer progeny viruses. Our findings may inform further virological studies of SARS-CoV-2 variant characteristics, VOCs, and variants of interest. These studies are important for the effective management of the COVID-19 pandemic.


Asunto(s)
SARS-CoV-2/fisiología , Animales , Chlorocebus aethiops , Humanos , SARS-CoV-2/clasificación , Temperatura , Células Vero , Ensayo de Placa Viral , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA