Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
RNA ; 26(10): 1360-1379, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32503921

RESUMEN

Understanding the functional connection that occurs for the three nuclear RNA polymerases to synthesize ribosome components during the ribosome biogenesis process has been the focal point of extensive research. To preserve correct homeostasis on the production of ribosomal components, cells might require the existence of proteins that target a common subunit of these RNA polymerases to impact their respective activities. This work describes how the yeast prefoldin-like Bud27 protein, which physically interacts with the Rpb5 common subunit of the three RNA polymerases, is able to modulate the transcription mediated by the RNA polymerase I, likely by influencing transcription elongation, the transcription of the RNA polymerase III, and the processing of ribosomal RNA. Bud27 also regulates both RNA polymerase II-dependent transcription of ribosomal proteins and ribosome biogenesis regulon genes, likely by occupying their DNA ORFs, and the processing of the corresponding mRNAs. With RNA polymerase II, this association occurs in a transcription rate-dependent manner. Our data also indicate that Bud27 inactivation alters the phosphorylation kinetics of ribosomal protein S6, a readout of TORC1 activity. We conclude that Bud27 impacts the homeostasis of the ribosome biogenesis process by regulating the activity of the three RNA polymerases and, in this way, the synthesis of ribosomal components. This quite likely occurs through a functional connection of Bud27 with the TOR signaling pathway.


Asunto(s)
Chaperonas Moleculares/genética , Factores de Iniciación de Péptidos/genética , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcripción Genética/genética , Núcleo Celular/genética , ARN Polimerasa II/genética , ARN Polimerasa III/genética , ARN Ribosómico/genética , Proteínas Ribosómicas/genética
2.
Nucleic Acids Res ; 46(7): 3351-3365, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29438503

RESUMEN

During neurogenesis, dynamic developmental cues, transcription factors and histone modifying enzymes regulate the gene expression programs by modulating the activity of neural-specific enhancers. How transient developmental signals coordinate transcription factor recruitment to enhancers and to which extent chromatin modifiers contribute to enhancer activity is starting to be uncovered. Here, we take advantage of neural stem cells as a model to unravel the mechanisms underlying neural enhancer activation in response to the TGFß signaling. Genome-wide experiments demonstrate that the proneural factor ASCL1 assists SMAD3 in the binding to a subset of enhancers. Once located at the enhancers, SMAD3 recruits the histone demethylase JMJD3 and the remodeling factor CHD8, creating the appropriate chromatin landscape to allow enhancer transcription and posterior gene activation. Finally, to analyze the phenotypical traits owed to cis-regulatory regions, we use CRISPR-Cas9 technology to demonstrate that the TGFß-responsive Neurog2 enhancer is essential for proper neuronal polarization.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Elementos de Facilitación Genéticos/genética , Neurogénesis/genética , Proteína smad3/genética , Factor de Crecimiento Transformador beta/genética , Animales , Sistemas CRISPR-Cas/genética , Linaje de la Célula/genética , Polaridad Celular/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética , Histona Demetilasas con Dominio de Jumonji/genética , Ratones , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal/genética , Factores de Transcripción/genética
3.
Proteins ; 83(1): 91-104, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25382311

RESUMEN

Loss-of-function mutations of the enzyme alpha-galactosidase A (GLA) causes Fabry disease (FD), that is a rare and potentially fatal disease. Identification of these pathological mutations by sequencing is important because it allows an early treatment of the disease. However, before taking any treatment decision, if the mutation identified is unknown, we first need to establish if it is pathological or not. General bioinformatic tools (PolyPhen-2, SIFT, Condel, etc.) can be used for this purpose, but their performance is still limited. Here we present a new tool, specifically derived for the assessment of GLA mutations. We first compared mutations of this enzyme known to cause FD with neutral sequence variants, using several structure and sequence properties. Then, we used these properties to develop a family of prediction methods adapted to different quality requirements. Trained and tested on a set of known Fabry mutations, our methods have a performance (Matthews correlation: 0.56-0.72) comparable or better than that of the more complex method, Polyphen-2 (Matthews correlation: 0.61), and better than those of SIFT (Matthews correl.: 0.54) and Condel (Matthews correl.: 0.51). This result is validated in an independent set of 65 pathological mutations, for which our method displayed the best success rate (91.0%, 87.7%, and 73.8%, for our method, PolyPhen-2 and SIFT, respectively). These data confirmed that our specific approach can effectively contribute to the identification of pathological mutations in GLA, and therefore enhance the use of sequence information in the identification of undiagnosed Fabry patients.


Asunto(s)
Enfermedad de Fabry/enzimología , Enfermedad de Fabry/genética , Mutación/genética , alfa-Galactosidasa/genética , Secuencia de Aminoácidos , Secuencia Conservada , Enfermedad de Fabry/patología , Humanos , Datos de Secuencia Molecular , Programas Informáticos , Relación Estructura-Actividad , alfa-Galactosidasa/química
4.
Clin Immunol ; 150(2): 143-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24412907

RESUMEN

Hereditary angioedema due to C1-inhibitor deficiency (HAE-C1INH) is a rare autosomal-dominant disease caused by mutations in SERPING1 gene. The main clinical feature of C1INH deficiency is the spontaneous edema of the subcutaneous and submucosal layers. More than 280 different mutations scattering the entire SERPING1 gene have been reported. We identified and characterized a new mutation in SERPING1 gene in a Spanish family with hereditary angioedema. The mutation (c.685 + 2 T > A) disrupts the donor splice site of intron 4 leading to the loss of exon 4 in mutant mRNA. We demonstrated that mutant mRNA is mostly degraded, probably by the surveillance pathway no-go mRNA decay. Bioinformatic analysis showed that the mutant protein, if produced, would be non-functional since the protein lacks a stretch of 45 amino acids affecting the functional RCL loop. Finally, we found a reduction of the wild-type mRNA expression in c.685 + 2 T > A carriers.


Asunto(s)
Angioedemas Hereditarios/genética , Proteínas Inactivadoras del Complemento 1/genética , Mutación , Sitios de Empalme de ARN , Adulto , Angioedemas Hereditarios/diagnóstico , Niño , Proteínas Inactivadoras del Complemento 1/química , Proteína Inhibidora del Complemento C1 , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Modelos Moleculares , Conformación de Ácido Nucleico , Linaje , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/genética , Análisis de Secuencia de ADN , España
5.
Biomedicines ; 10(8)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36009591

RESUMEN

Neurofibromin is engaged in many cellular processes and when the proper protein functioning is impaired, it causes neurofibromatosis type 1 (NF1), one of the most common inherited neurological disorders. Recent advances in sequencing and screening of the NF1 gene have increased the number of detected variants. However, the correlation of these variants with the clinic remains poorly understood. In this study, we analyzed 4610 germinal NF1 variants annotated in ClinVar and determined on exon level the mutational spectrum and potential pathogenic regions. Then, a binomial and sliding windows test using 783 benign and 938 pathogenic NF1 variants were analyzed against functional and structural regions of neurofibromin. The distribution of synonymous, missense, and frameshift variants are statistically significant in certain regions of neurofibromin suggesting that the type of variant and its associated phenotype may depend on protein disorder. Indeed, there is a negative correlation between the pathogenic fraction prediction and the disorder data, suggesting that the higher an intrinsically disordered region is, the lower the pathogenic fraction is and vice versa. Most pathogenic variants are associated to NF1 and our analysis suggests that GRD, CSRD, TBD, and Armadillo1 domains are hotspots in neurofibromin. Knowledge about NF1 genotype-phenotype correlations can provide prognostic guidance and aid in organ-specific surveillance.

6.
Cancers (Basel) ; 13(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203905

RESUMEN

Conventional cytogenetics are the gold standard for the identification of chromosomal alterations recurrent in myeloid neoplasms. Some next-generation sequencing (NGS) panels are designed for the detection of copy number variations (CNV) or translocations; however, their use is far from being widespread. Here we report on the results of a commercial panel including frequent mutations, CNVs and translocations in myeloid neoplasms. Frequent chromosomal alterations were analyzed by NGS in 135 patients with myeloid neoplasms and three with acute lymphoblastic leukemia. NGS analysis was performed using the enrichment-capture Myeloid Neoplasm-GeneSGKit (Sistemas Genómicos, Spain) gene panel including 35 genes for mutational analysis and frequent CNVs and translocations. NGS results were validated with cytogenetics and/or MLPA when possible. A total of 66 frequent alterations included in NGS panel were detected, 48 of them detected by NGS and cytogenetics. Ten of them were observed only by cytogenetics (mainly trisomy 8), and another eight only by NGS (mainly deletion of 12p). Aside from this, 38 secondary CNVs were detected in any of the genes included mainly for mutational analysis. NGS represents a reliable complementary source of information for the analysis of CNVs and translocations. Moreover, NGS could be a useful tool for the detection of alterations not observed by conventional cytogenetics.

7.
Front Genet ; 10: 1152, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781178

RESUMEN

In recent years, high-throughput next-generation sequencing technology has allowed a rapid increase in diagnostic capacity and precision through different bioinformatics processing algorithms, tools, and pipelines. The identification, annotation, and classification of sequence variants within different target regions are now considered a gold standard in clinical genetic diagnosis. However, this procedure lacks the ability to link regulatory events such as differential splicing to diseases. RNA-seq is necessary in clinical routine in order to interpret and detect among others splicing events and splicing variants, as it would increase the diagnostic rate by up to 10-35%. The transcriptome has a very dynamic nature, varying according to tissue type, cellular conditions, and environmental factors that may affect regulatory events such as splicing and the expression of genes or their isoforms. RNA-seq offers a robust technical analysis of this complexity, but it requires a profound knowledge of computational/statistical tools that may need to be adjusted depending on the disease under study. In this article we will cover RNA-seq analyses best practices applied to clinical routine, bioinformatics procedures, and present challenges of this approach.

8.
BMC Genomics ; 8: 252, 2007 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-17651478

RESUMEN

BACKGROUND: Epigenetic regulators (histone acetyltransferases, methyltransferases, chromatin-remodelling enzymes, etc) play a fundamental role in the control of gene expression by modifying the local state of chromatin. However, due to their recent discovery, little is yet known about their own regulation. This paper addresses this point, focusing on alternative splicing regulation, a mechanism already known to play an important role in other protein families, e.g. transcription factors, membrane receptors, etc. RESULTS: To this end, we compiled the data available on the presence/absence of alternative splicing for a set of 160 different epigenetic regulators, taking advantage of the relatively large amount of unexplored data on alternative splicing available in public databases. We found that 49 % (70 % in human) of these genes express more than one transcript. We then studied their alternative splicing patterns, focusing on those changes affecting the enzyme's domain composition. In general, we found that these sequence changes correspond to different mechanisms, either repressing the enzyme's function (e.g. by creating dominant-negative inhibitors of the functional isoform) or creating isoforms with new functions. CONCLUSION: We conclude that alternative splicing of epigenetic regulators can be an important tool for the function modulation of these enzymes. Considering that the latter control the transcriptional state of large sets of genes, we propose that epigenetic regulation of gene expression is itself strongly regulated by alternative splicing.


Asunto(s)
Empalme Alternativo/fisiología , Cromatina/metabolismo , Enzimas/genética , Enzimas/fisiología , Epigénesis Genética/genética , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Animales , Sitios de Unión , Caenorhabditis elegans , Dominio Catalítico , Enzimas/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Factores de Transcripción/metabolismo
9.
Nat Commun ; 6: 8839, 2015 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-26554728

RESUMEN

Cell-free circulating tumour DNA (ctDNA) in plasma has been shown to be informative of the genomic alterations present in tumours and has been used to monitor tumour progression and response to treatments. However, patients with brain tumours do not present with or present with low amounts of ctDNA in plasma precluding the genomic characterization of brain cancer through plasma ctDNA. Here we show that ctDNA derived from central nervous system tumours is more abundantly present in the cerebrospinal fluid (CSF) than in plasma. Massively parallel sequencing of CSF ctDNA more comprehensively characterizes the genomic alterations of brain tumours than plasma, allowing the identification of actionable brain tumour somatic mutations. We show that CSF ctDNA levels longitudinally fluctuate in time and follow the changes in brain tumour burden providing biomarkers to monitor brain malignancies. Moreover, CSF ctDNA is shown to facilitate and complement the diagnosis of leptomeningeal carcinomatosis.


Asunto(s)
Neoplasias Encefálicas/genética , ADN de Neoplasias/sangre , ADN de Neoplasias/líquido cefalorraquídeo , Genómica , Neoplasias Meníngeas/genética , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Glioblastoma/sangre , Glioblastoma/líquido cefalorraquídeo , Glioblastoma/genética , Humanos , Neoplasias Pulmonares/patología , Meduloblastoma/sangre , Meduloblastoma/líquido cefalorraquídeo , Meduloblastoma/genética , Neoplasias Meníngeas/sangre , Neoplasias Meníngeas/líquido cefalorraquídeo
10.
PLoS One ; 8(8): e72742, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24023641

RESUMEN

At present we know that phenotypic differences between organisms arise from a variety of sources, like protein sequence divergence, regulatory sequence divergence, alternative splicing, etc. However, we do not have yet a complete view of how these sources are related. Here we address this problem, studying the relationship between protein divergence and the ability of genes to express multiple isoforms. We used three genome-wide datasets of human-mouse orthologs to study the relationship between isoform multiplicity co-occurrence between orthologs (the fact that two orthologs have more than one isoform) and protein divergence. In all cases our results showed that there was a monotonic dependence between these two properties. We could explain this relationship in terms of a more fundamental one, between exon number of the largest isoform and protein divergence. We found that this last relationship was present, although with variations, in other species (chimpanzee, cow, rat, chicken, zebrafish and fruit fly). In summary, we have identified a relationship between protein divergence and isoform multiplicity co-occurrence and explained its origin in terms of a simple gene-level property. Finally, we discuss the biological implications of these findings for our understanding of inter-species phenotypic differences.


Asunto(s)
Exones/genética , Genes/genética , Variación Genética , Isoformas de Proteínas/genética , Animales , Bovinos , Drosophila melanogaster/genética , Humanos , Ratones , Pan troglodytes/genética , Fenotipo , Ratas , Especificidad de la Especie , Estadística como Asunto , Pez Cebra/genética
11.
Rev. Fac. Med. (Bogotá) ; 64(1): 159-164, ene.-mar. 2016. ilus, tab
Artículo en Español | LILACS | ID: lil-779679

RESUMEN

Antecedentes. La distrofia muscular cintura-cadera tipo 1B es una enfermedad con herencia autosómica dominante y secundaria a una mutación en el gen LMNA. Esta enfermedad se caracteriza por su afectación a nivel neuromuscular y cardiaco. Objetivo. Realizar diagnóstico clínico y confirmatorio molecular en una paciente con debilidad muscular proximal y sintomatología cardíaca a través de secuenciación exómica. Materiales y métodos. Se presenta el caso de una paciente de 57 años de edad con cuadro de debilidad muscular proximal progresiva principalmente en extremidades y posterior afectación cardíaca; adicionalmente, la paciente tiene múltiples familiares con la misma sintomatología. Se realizó estudio de secuenciación exómica con confirmación, por método de Sanger, de la mutación hallada y posteriormente el análisis bioinformático de esta. Resultados. La detección de la mutación R377L en el gen LMNA por secuenciación exómica con confirmación por Sanger, junto con la sintomatología clínica de la paciente y el análisis bioinformático de la mutación hallada, permitió realizar diagnóstico confirmatorio de distrofia muscular cintura-cadera tipo 1B. Conclusión. Es difícil realizar un diagnóstico clínico debido a la heterogeneidad genética del fenotipo de distrofias musculares cintura-cadera. La aproximación diagnóstica es compleja y requiere clasificar las distrofias musculares según el patrón de afectación y el patrón de herencia de la enfermedad. Adicionalmente, debido a los múltiples genes que pueden generar clínica semejante a las diferentes distrofias musculares, se recomienda realizar secuenciación exómica solicitando especial énfasis en los genes candidatos de distrofias musculares cintura-cadera.


Background. Limb-girdle muscular dystrophy type 1B has a dominant autosomal inheritance pattern and is caused by a mutation in the LMNA gene. This disease has a major neuromuscular and cardiac compromise; furthermore, it belongs to the limb-girdle muscular dystrophies. Objective. To make a clinical and molecular confirmatory diagnosis in a patient with proximal muscular weakness and cardiac symptoms using whole exome sequencing. Materials and Methods. This is the case of a 57 year old patient with a slowly progressive proximal muscular weakness and cardiac compromise; furthermore, the patient has many relatives with the same clinical history. Whole exome sequencing with Sanger confirmation and bioinformatics analysis was performed on the found mutation. Results. The detection of mutation R377L in the LMNA gen by whole exome sequencing with Sanger confirmation, the bioinformatic analysis of the mutation and the symptoms exhibited by the patient allowed the confirmatory diagnosis of limb-girdle muscular dystrophy type 1b. Conclusion. Due to genetic heterogeneity in the phenotype of limb-girdle muscular dystrophies it is difficult to make a clinical diagnosis. The diagnostic approach is complex and requires classification of the muscular dystrophies according to the pattern of muscular weakness and to identify the disease inheritance pattern. Additionally, due to the multiple genes that can generate similar symptoms in the different muscular dystrophies, the authors recommend the use of whole exome sequencing with a special emphasis on the candidate genes for limb-girdle muscular dystrophies.

12.
Bioessays ; 27(2): 164-75, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15666348

RESUMEN

The existence of different patterns of chemical modifications (acetylation, methylation, phosphorylation, ubiquitination and ADP-ribosylation) of the histone tails led, some years ago, to the histone code hypothesis. According to this hypothesis, these modifications would provide binding sites for proteins that can change the chromatin state to either active or repressed. Interestingly, some protein domains present in histone-modifying enzymes are known to interact with these covalent marks in the histone tails. This was first shown for the bromodomain, which was found to interact selectively with acetylated lysines at the histone tails. More recently, it has been described that the chromodomain can be targeted to methylation marks in histone N-terminal domains. Finally, the interaction between the SANT domain and histones is also well documented. Overall, experimental evidence suggests that these domains could be involved in the recruitment of histone-modifying enzymes to discrete chromosomal locations, and/or in the regulation their enzymatic activity. Within this context, we review the distribution of bromodomains, chromodomains and SANT domains among chromatin-modifying enzymes and discuss how they can contribute to the translation of the histone code.


Asunto(s)
Histonas/química , Histonas/metabolismo , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Animales , Cromatina/química , Cromatina/metabolismo , Cromosomas/metabolismo , Humanos , Metilación , Modelos Biológicos , Modelos Moleculares , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA