Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 175(1): 43-56.e21, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241615

RESUMEN

Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation toward cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis. VIDEO ABSTRACT.


Asunto(s)
Desarrollo Óseo/fisiología , Huesos/citología , Células Madre Hematopoyéticas/citología , Animales , Huesos/metabolismo , Cartílago/citología , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Análisis de la Célula Individual/métodos , Células Madre/citología , Células del Estroma/citología , Transcriptoma/genética
2.
Cell ; 160(1-2): 285-98, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25594184

RESUMEN

How are skeletal tissues derived from skeletal stem cells? Here, we map bone, cartilage, and stromal development from a population of highly pure, postnatal skeletal stem cells (mouse skeletal stem cells, mSSCs) to their downstream progenitors of bone, cartilage, and stromal tissue. We then investigated the transcriptome of the stem/progenitor cells for unique gene-expression patterns that would indicate potential regulators of mSSC lineage commitment. We demonstrate that mSSC niche factors can be potent inducers of osteogenesis, and several specific combinations of recombinant mSSC niche factors can activate mSSC genetic programs in situ, even in nonskeletal tissues, resulting in de novo formation of cartilage or bone and bone marrow stroma. Inducing mSSC formation with soluble factors and subsequently regulating the mSSC niche to specify its differentiation toward bone, cartilage, or stromal cells could represent a paradigm shift in the therapeutic regeneration of skeletal tissues.


Asunto(s)
Huesos/citología , Células Madre Mesenquimatosas/citología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Cartílago/citología , Linaje de la Célula , Cruzamientos Genéticos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
3.
Genes Dev ; 30(1): 64-77, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26701264

RESUMEN

Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53(-) germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5' sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility.


Asunto(s)
Genes p53/genética , Retroelementos/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Drosophila/genética , Femenino , Variación Genética , Humanos , Masculino , Ratones , Mutación/genética , Neoplasias/genética , Retroelementos/genética , Pez Cebra/genética
4.
Proc Natl Acad Sci U S A ; 117(46): 28838-28846, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139559

RESUMEN

Activation of the Hedgehog pathway may have therapeutic value for improved bone healing, taste receptor cell regeneration, and alleviation of colitis or other conditions. Systemic pathway activation, however, may be detrimental, and agents amenable to tissue targeting for therapeutic application have been lacking. We have developed an agonist, a conformation-specific nanobody against the Hedgehog receptor Patched1 (PTCH1). This nanobody potently activates the Hedgehog pathway in vitro and in vivo by stabilizing an alternative conformation of a Patched1 "switch helix," as revealed by our cryogenic electron microscopy structure. Nanobody-binding likely traps Patched in one stage of its transport cycle, thus preventing substrate movement through the Patched1 sterol conduit. Unlike the native Hedgehog ligand, this nanobody does not require lipid modifications for its activity, facilitating mechanistic studies of Hedgehog pathway activation and the engineering of pathway activating agents for therapeutic use. Our conformation-selective nanobody approach may be generally applicable to the study of other PTCH1 homologs.


Asunto(s)
Receptor Patched-1/agonistas , Receptor Patched-1/metabolismo , Receptor Patched-1/ultraestructura , Animales , Microscopía por Crioelectrón/métodos , Proteínas Hedgehog/metabolismo , Humanos , Receptores Patched/metabolismo , Transducción de Señal/fisiología , Anticuerpos de Dominio Único/farmacología
5.
Proc Natl Acad Sci U S A ; 115(2): E200-E209, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29279401

RESUMEN

How organs maintain and restore functional integrity during ordinary tissue turnover or following injury represents a central biological problem. The maintenance of taste sensory organs in the tongue was shown 140 years ago to depend on innervation from distant ganglion neurons, but the underlying mechanism has remained unknown. Here, we show that Sonic hedgehog (Shh), which encodes a secreted protein signal, is expressed in these sensory neurons, and that experimental ablation of neuronal Shh expression causes loss of taste receptor cells (TRCs). TRCs are also lost upon pharmacologic blockade of Hedgehog pathway response, accounting for the loss of taste sensation experienced by cancer patients undergoing Hedgehog inhibitor treatment. We find that TRC regeneration following such pharmacologic ablation requires neuronal expression of Shh and can be substantially enhanced by pharmacologic activation of Hedgehog response. Such pharmacologic enhancement of Hedgehog response, however, results in additional TRC formation at many ectopic sites, unlike the site-restricted regeneration specified by the projection pattern of Shh-expressing neurons. Stable regeneration of TRCs thus requires neuronal Shh, illustrating the principle that neuronal delivery of cues such as the Shh signal can pattern distant cellular responses to assure functional integrity during tissue maintenance and regeneration.


Asunto(s)
Epitelio/metabolismo , Proteínas Hedgehog/metabolismo , Papilas Gustativas/metabolismo , Lengua/metabolismo , Animales , Epitelio/crecimiento & desarrollo , Epitelio/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Organogénesis/genética , Regeneración/genética , Transducción de Señal/genética , Gusto/genética , Papilas Gustativas/citología , Papilas Gustativas/crecimiento & desarrollo , Factores de Tiempo , Lengua/citología , Lengua/crecimiento & desarrollo
6.
Proc Natl Acad Sci U S A ; 113(47): E7545-E7553, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27815529

RESUMEN

Inflammation disrupts tissue architecture and function, thereby contributing to the pathogenesis of diverse diseases; the signals that promote or restrict tissue inflammation thus represent potential targets for therapeutic intervention. Here, we report that genetic or pharmacologic Hedgehog pathway inhibition intensifies colon inflammation (colitis) in mice. Conversely, genetic augmentation of Hedgehog response and systemic small-molecule Hedgehog pathway activation potently ameliorate colitis and restrain initiation and progression of colitis-induced adenocarcinoma. Within the colon, the Hedgehog protein signal does not act directly on the epithelium itself, but on underlying stromal cells to induce expression of IL-10, an immune-modulatory cytokine long known to suppress inflammatory intestinal damage. IL-10 function is required for the full protective effect of small-molecule Hedgehog pathway activation in colitis; this pharmacologic augmentation of Hedgehog pathway activity and stromal IL-10 expression are associated with increased presence of CD4+Foxp3+ regulatory T cells. We thus identify stromal cells as cellular coordinators of colon inflammation and suggest their pharmacologic manipulation as a potential means to treat colitis.


Asunto(s)
Colitis/metabolismo , Sulfato de Dextran/efectos adversos , Proteínas Hedgehog/metabolismo , Interleucina-10/metabolismo , Transducción de Señal , Animales , Antígenos CD4/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Factores de Transcripción Forkhead/metabolismo , Proteínas Hedgehog/efectos de los fármacos , Humanos , Ratones , Mutación , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/farmacología , Linfocitos T Reguladores/metabolismo , Proteína con Dedos de Zinc GLI1/genética
7.
Npj Imaging ; 2(1): 14, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912527

RESUMEN

Positron emission tomography (PET), a cornerstone in cancer diagnosis and treatment monitoring, relies on the enhanced uptake of fluorodeoxyglucose ([18F]FDG) by cancer cells to highlight tumors and other malignancies. While instrumental in the clinical setting, the accuracy of [18F]FDG-PET is susceptible to metabolic changes introduced by radiation therapy. Specifically, radiation induces the formation of giant cells, whose metabolic characteristics and [18F]FDG uptake patterns are not fully understood. Through a novel single-cell gamma counting methodology, we characterized the [18F]FDG uptake of giant A549 and H1299 lung cancer cells that were induced by radiation, and found it to be considerably higher than that of their non-giant counterparts. This observation was further validated in tumor-bearing mice, which similarly demonstrated increased [18F]FDG uptake in radiation-induced giant cells. These findings underscore the metabolic implications of radiation-induced giant cells, as their enhanced [18F]FDG uptake could potentially obfuscate the interpretation of [18F]FDG-PET scans in patients who have recently undergone radiation therapy.

8.
J Cell Biol ; 178(4): 567-74, 2007 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-17682052

RESUMEN

We examined post-eclosion elimination of the Drosophila wing epithelium in vivo where collective "suicide waves" promote sudden, coordinated death of epithelial sheets without a final engulfment step. Like apoptosis in earlier developmental stages, this unique communal form of cell death is controlled through the apoptosome proteins, Dronc and Dark, together with the IAP antagonists, Reaper, Grim, and Hid. Genetic lesions in these pathways caused intervein epithelial cells to persist, prompting a characteristic late-onset blemishing phenotype throughout the wing blade. We leveraged this phenotype in mosaic animals to discover relevant genes and establish here that homeodomain interacting protein kinase (HIPK) is required for collective death of the wing epithelium. Extra cells also persisted in other tissues, establishing a more generalized requirement for HIPK in the regulation of cell death and cell numbers.


Asunto(s)
Muerte Celular , Drosophila/citología , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Epiteliales , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Alas de Animales/citología , Alas de Animales/metabolismo
9.
Dev Cell ; 57(15): 1833-1846.e6, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35820415

RESUMEN

p53 genes are conserved transcriptional activators that respond to stress. These proteins can also downregulate genes, but the mechanisms are not understood and are generally assumed to be indirect. Here, we investigate synthetic and native cis-regulatory elements in Drosophila to examine opposing features of p53-mediated transcriptional control in vivo. We show that transcriptional repression by p53 operates continuously through canonical DNA binding sites that confer p53-dependent transactivation at earlier developmental stages. p53 transrepression is correlated with local H3K9me3 chromatin marks and occurs without the need for stress or Chk2. In sufficiency tests, two p53 isoforms qualify as transrepressors and a third qualifies as a transcriptional activator. Targeted isoform-specific knockouts dissociate these opposing transcriptional activities, highlighting features that are dispensable for transactivation but critical for repression and for proper germ cell formation. Together, these results demonstrate that certain p53 isoforms function as constitutive tissue-specific repressors, raising important implications for tumor suppression by the human counterpart.


Asunto(s)
Cromatina , Proteína p53 Supresora de Tumor , Animales , Sitios de Unión , Cromatina/genética , Drosophila/genética , Drosophila/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Proteína p53 Supresora de Tumor/metabolismo
10.
Elife ; 102021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34280086

RESUMEN

Skeletal stem and progenitor cell populations are crucial for bone physiology. Characterization of these cell types remains restricted to heterogenous bulk populations with limited information on whether they are unique or overlap with previously characterized cell types. Here we show, through comprehensive functional and single-cell transcriptomic analyses, that postnatal long bones of mice contain at least two types of bone progenitors with bona fide skeletal stem cell (SSC) characteristics. An early osteochondral SSC (ocSSC) facilitates long bone growth and repair, while a second type, a perivascular SSC (pvSSC), co-emerges with long bone marrow and contributes to shape the hematopoietic stem cell niche and regenerative demand. We establish that pvSSCs, but not ocSSCs, are the origin of bone marrow adipose tissue. Lastly, we also provide insight into residual SSC heterogeneity as well as potential crosstalk between the two spatially distinct cell populations. These findings comprehensively address previously unappreciated shortcomings of SSC research.


Asunto(s)
Desarrollo Óseo , Huesos/metabolismo , Células del Estroma/metabolismo , Tejido Adiposo , Animales , Médula Ósea , Células de la Médula Ósea , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Pericitos , Nicho de Células Madre , Transcriptoma
11.
Dev Cell ; 7(6): 897-907, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15572131

RESUMEN

Among the seven caspases encoded in the fly genome, only dronc contains a caspase recruitment domain. To assess the function of this gene in development, we produced a null mutation in dronc. Animals lacking zygotic dronc are defective for programmed cell death (PCD) and arrest as early pupae. These mutants present a range of defects, including extensive hyperplasia of hematopoietic tissues, supernumerary neuronal cells, and head involution failure. dronc genetically interacts with the Ced4/Apaf1 counterpart, Dark, and adult structures lacking dronc are disrupted for fine patterning. Furthermore, in diverse models of metabolic injury, dronc- cells are completely insensitive to induction of cell killing. These findings establish dronc as an essential regulator of cell number in development and illustrate broad requirements for this apical caspase in adaptive responses during stress-induced apoptosis.


Asunto(s)
Apoptosis , Caspasas/fisiología , Proteínas de Drosophila/fisiología , Regulación del Desarrollo de la Expresión Génica , Alelos , Animales , Tipificación del Cuerpo , Caspasas/metabolismo , Muerte Celular , Drosophila melanogaster , Ojo/embriología , Ojo/metabolismo , Prueba de Complementación Genética , Genoma , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Hemocitos/metabolismo , Homocigoto , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Modelos Genéticos , Mutagénesis , Mutación , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
12.
Science ; 356(6335)2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28280246

RESUMEN

The stem cell niche is a complex local signaling microenvironment that sustains stem cell activity during organ maintenance and regeneration. The mammary gland niche must support its associated stem cells while also responding to systemic hormonal regulation that triggers pubertal changes. We find that Gli2, the major Hedgehog pathway transcriptional effector, acts within mouse mammary stromal cells to direct a hormone-responsive niche signaling program by activating expression of factors that regulate epithelial stem cells as well as receptors for the mammatrophic hormones estrogen and growth hormone. Whereas prior studies implicate stem cell defects in human disease, this work shows that niche dysfunction may also cause disease, with possible relevance for human disorders and in particular the breast growth pathogenesis associated with combined pituitary hormone deficiency.


Asunto(s)
Hormona del Crecimiento/metabolismo , Proteínas Hedgehog/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Nicho de Células Madre/genética , Proteína Gli2 con Dedos de Zinc/fisiología , Animales , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Estrógenos/metabolismo , Femenino , Expresión Génica , Hormona del Crecimiento/sangre , Hormona del Crecimiento/deficiencia , Proteínas Hedgehog/genética , Factor II del Crecimiento Similar a la Insulina/genética , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Ratones , Prolactina/metabolismo , Maduración Sexual/genética , Transducción de Señal/genética , Células del Estroma/metabolismo , Proteínas Wnt/genética , Proteína Gli2 con Dedos de Zinc/genética
13.
Elife ; 3: e01530, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24618896

RESUMEN

Oncogenic stress provokes tumor suppression by p53 but the extent to which this regulatory axis is conserved remains unknown. Using a biosensor to visualize p53 action, we find that Drosophila p53 is selectively active in gonadal stem cells after exposure to stressors that destabilize the genome. Similar p53 activity occurred in hyperplastic growths that were triggered either by the Ras(V12) oncoprotein or by failed differentiation programs. In a model of transient sterility, p53 was required for the recovery of fertility after stress, and entry into the cell cycle was delayed in p53(-) stem cells. Together, these observations establish that the stem cell compartment of the Drosophila germline is selectively licensed for stress-induced activation of the p53 regulatory network. Furthermore, the findings uncover ancestral links between p53 and aberrant proliferation that are independent of DNA breaks and predate evolution of the ARF/Mdm2 axis. DOI: http://dx.doi.org/10.7554/eLife.01530.001.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ovario/metabolismo , Nicho de Células Madre , Células Madre/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Técnicas Biosensibles , Puntos de Control del Ciclo Celular , Proliferación Celular , Daño del ADN , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Fertilidad , Regulación de la Expresión Génica , Inestabilidad Genómica , Infertilidad/genética , Infertilidad/metabolismo , Infertilidad/fisiopatología , Ovario/patología , Ovario/fisiopatología , Transducción de Señal , Células Madre/patología , Estrés Fisiológico , Factores de Tiempo , Proteína p53 Supresora de Tumor/genética
14.
Science ; 328(5983): 1278-81, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20522776

RESUMEN

The evolutionary appearance of p53 protein probably preceded its role in tumor suppression, suggesting that there may be unappreciated functions for this protein. Using genetic reporters as proxies to follow in vivo activation of the p53 network in Drosophila, we discovered that the process of meiotic recombination instigates programmed activation of p53 in the germ line. Specifically, double-stranded breaks in DNA generated by the topoisomerase Spo11 provoked functional p53 activity, which was prolonged in cells defective for meiotic DNA repair. This intrinsic stimulus for the p53 regulatory network is highly conserved because Spo11-dependent activation of p53 also occurs in mice. Our findings establish a physiological role for p53 in meiosis and suggest that tumor-suppressive functions may have been co-opted from primordial activities linked to recombination.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Genes p53 , Meiosis , Recombinación Genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Animales Modificados Genéticamente , ADN/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN , ADN Helicasas , Reparación del ADN , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Proteínas del Huevo/genética , Proteínas del Huevo/metabolismo , Embrión no Mamífero/metabolismo , Endodesoxirribonucleasas , Esterasas/genética , Esterasas/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Células Germinativas/metabolismo , Masculino , Ratones , Ratones Noqueados , Oogénesis , Espermatocitos/fisiología , Proteína p53 Supresora de Tumor/genética , Rayos Ultravioleta
15.
Nat Rev Cancer ; 9(10): 758-62, 2009 10.
Artículo en Inglés | MEDLINE | ID: mdl-19776745

RESUMEN

Evolutionary patterns indicate that primordial p53 genes predated the appearance of cancer. Therefore, wild-type tumour suppressive functions and mutant oncogenic functions that give celebrity status to this gene family were probably co-opted from unrelated primordial activities. Is it possible to deduce what these early functions might have been? And might this knowledge provide a platform for therapeutic opportunities?


Asunto(s)
Evolución Molecular , Genes p53/genética , Proteína p53 Supresora de Tumor/genética , Animales , Humanos
16.
Development ; 136(2): 275-83, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19088092

RESUMEN

Bcl-2 family members are pivotal regulators of programmed cell death (PCD). In mammals, pro-apoptotic Bcl-2 family members initiate early apoptotic signals by causing the release of cytochrome c from the mitochondria, a step necessary for the initiation of the caspase cascade. Worms and flies do not show a requirement for cytochrome c during apoptosis, but both model systems express pro- and anti-apoptotic Bcl-2 family members. Drosophila encodes two Bcl-2 family members, Debcl (pro-apoptotic) and Buffy (anti-apoptotic). To understand the role of Debcl in Drosophila apoptosis, we produced authentic null alleles at this locus. Although gross development and lifespans were unaffected, we found that Debcl was required for pruning cells in the developing central nervous system. debcl genetically interacted with the ced-4/Apaf1 counterpart dark, but was not required for killing by RHG (Reaper, Hid, Grim) proteins. We found that debcl(KO) mutants were unaffected for mitochondrial density or volume but, surprisingly, in a model of caspase-independent cell death, heterologous killing by murine Bax required debcl to exert its pro-apoptotic activity. Therefore, although debcl functions as a limited effector of PCD during normal Drosophila development, it can be effectively recruited for killing by mammalian members of the Bcl-2 gene family.


Asunto(s)
Apoptosis/fisiología , Proteínas de Drosophila/fisiología , Drosophila/citología , Drosophila/fisiología , Proteínas de la Membrana/fisiología , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Autofagia/genética , Autofagia/fisiología , Secuencia de Bases , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Cartilla de ADN/genética , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/genética , Femenino , Marcación de Gen , Genes de Insecto , Masculino , Proteínas de la Membrana/genética , Ratones , Mutación , Especificidad de la Especie , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA