Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36677591

RESUMEN

Consumption of white rice (WR) has been shown to predispose individuals to metabolic disorders. However, brown rice (BR), which is relatively richer in bioactive compounds, possesses anti-glycaemic and antioxidant effects. In this study, fifteen cultivars of paddy rice that are predominantly consumed in North West Nigeria were analysed for their nutritional composition, bioactive contents and effects on metabolic outcomes in a fruit fly model. Gene expression analyses were conducted on the whole fly, targeting dPEPCK, dIRS, and dACC. The protein, carbohydrate, and fibre contents and bioactives of all BR cultivars were significantly different (p < 0.05) from the WR cultivars. Moreover, it was demonstrated that the glucose and trehalose levels were significantly higher (p < 0.05), while glycogen was significantly lower (p < 0.05) in the WR groups compared to the BR groups. Similarly, the expression of dACC and dPEPCK was upregulated, while that of dIRS was downregulated in the WR groups compared to the BR groups. Sex differences (p < 0.05) were observed in the WR groups in relation to the nutrigenomic effects. Our findings confirm metabolic perturbations in fruit flies following consumption of WR via distortion of insulin signalling and activation of glycogenolysis and gluconeogenesis. BR prevented these metabolic changes possibly due to its richer nutritional composition.


Asunto(s)
Enfermedades Metabólicas , Oryza , Glucemia/metabolismo , Insulina/metabolismo , Nutrigenómica , Oryza/química , Drosophila , Animales
2.
Br J Nutr ; 128(5): 802-827, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34551828

RESUMEN

Epidemiologically, metabolic disorders have garnered much attention, perhaps due to the predominance of obesity. The early postnatal life represents a critical period for programming multifactorial metabolic disorders of adult life. Though altricial rodents are prime subjects for investigating neonatal programming, there is still no sufficiently generalised literature on their usage and methodology. This review focuses on establishing five approach-based models of neonatal rodents adopted for studying metabolic phenotypes. Here, some modelled interventions that currently exist to avoid or prevent metabolic disorders are also highlighted. We also bring forth recommendations, guidelines and considerations to aid research on neonatal programming. It is hoped that this provides a background to researchers focused on the aetiology, mechanisms, prevention and treatment of metabolic disorders.


Asunto(s)
Enfermedades Metabólicas , Roedores , Animales , Obesidad/etiología
3.
Planta Med ; 88(8): 650-663, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34000739

RESUMEN

Parental dietary choices and/or nutritional interventions in the offspring are critical to early life development, especially during the periods of active developmental plasticity in the offspring. Exposure to a high-fructose, high-fat diet during the fetal or neonatal period predisposes the affected individuals to the development of one or more features of metabolic syndrome, such as dyslipidemia, insulin resistance, diabetes, and associated cardiovascular diseases, later in their life. Owing to the increasing global prevalence of metabolic syndrome and multiple side effects that accompany conventional medicines, much attention is directed towards medicinal plants and phytochemicals as alternative interventions. Several studies have investigated the potential of natural agents to prevent programmed metabolic syndrome. This present review, therefore, highlights an inextricable relationship between the administration of medicinal plants or phytochemicals during the intrauterine or neonatal period, and the prevention of metabolic dysfunction in adulthood, while exploring the mechanisms by which they exert such an effect. The review also identifies plant products as a novel approach to the prevention and management of metabolic syndrome.


Asunto(s)
Productos Biológicos , Resistencia a la Insulina , Síndrome Metabólico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Fructosa/toxicidad , Síndrome Metabólico/prevención & control
4.
Pharm Biol ; 59(1): 955-963, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34283002

RESUMEN

CONTEXT: Pseudocedrela kotschyi (Schweinf) Harms (Meliaceae) is an important medicinal plant found in tropical and subtropical countries of Africa. Traditionally, P. kotschyi is used in the treatment of various diseases including diabetes, malaria, abdominal pain and diarrhoea. OBJECTIVE: To provide an overview of traditional medicinal claims, pharmacological properties, and phytochemical principles of P. kotschyi as a basis for its clinical applications and further research and development of new drugs. METHODS: Through interpreting already published scientific manuscripts retrieved from different scientific search engines, namely, Medline, PubMed, EMBASE, Science Direct and Google scholar databases, an up-to-date review on the medicinal potentials of P. kotschyi from inception until September, 2020 was compiled. 'Pseudocedrela kotschyi', 'traditional uses', 'pharmacological properties' and 'chemical constituents' were used as search words. RESULTS: At present, more than 30 chemical constituents have been isolated and identified from the root and stem bark of P. kotschyi, among which limonoids and triterpenes are the main active constituents. Based on prior research, P. kotschyi has been reported to possess anti-inflammatory, analgesic, antipyretic, anthelminthic, antimalaria, anti-leishmaniasis, anti-trypanosomiasis, hepatoprotective, antioxidant, antidiabetic, antidiarrheal, antimicrobial, and anticancer effects. CONCLUSIONS: P. kotschyi is reported to be effective in treating a variety of diseases. Current phytochemical and pharmacological studies mainly focus on antimalaria, anti-leishmaniasis, anti-trypanosomiasis and anticancer potential of the root and stem bark of P. kotschyi. Although experimental data support the beneficial medicinal properties of this plant, there is still a paucity of information on its toxicity profile. Nonetheless, this review provides the basis for future research work.


Asunto(s)
Meliaceae/química , Fitoquímicos/farmacología , Extractos Vegetales/uso terapéutico , Etnofarmacología , Medicina Tradicional , Fitoterapia , Extractos Vegetales/efectos adversos , Plantas Medicinales
5.
Drug Chem Toxicol ; 43(2): 113-126, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29745774

RESUMEN

The aim of this study was to evaluate the potentials of rutin on 2,5-hexanedione-induced toxicities. Two successive phases were involved using in silico and in vivo approaches. The in silico was adopted for potential oral toxicity and docking. The in vivo was carried-out in two stages for two weeks; the ameliorative (stage 1, first week), preventive, and curative studies (stage 2, extended to second week). In stage 1, rats were divided into four groups of seven each (distilled water, 3% (v/v) 2,5-hexanedione, 10 mg/kg rutin, and co-administration). In stage 2, the experimental groups were given either rutin or 2,5-hexanedione and treated in reverse order. Lipid peroxidation, protein carbonyl, and DNA fragmentation in tissues and bone marrow cells micronucleus were determined. The predicted Median lethal dose (LD50) of >5000 mg/kg and toxicity class of five (5) indicates the safety of rutin when orally administered. 2,5-Hexanedione comfortably docked in to the active sites of SOD (-22.857Kcal/mol; KI = 0.9621 µM), GPx (-11.2032Kcal/mol; KI = 0.9813 µM), and CAT (-16.446Kcal/mol; KI = 0.9726 µM) with strong hydrogen bond and hydrophobic interactions. However, only strong hydrophobic interaction was observed in the case of DNA (-3.3296Kcal/mol; KI = 0.9944). In vivo findings revealed deleterious effects of 2,5-hexanedione through induction of oxidative and chromosomal/DNA damage characterized by higher level of malondialdehyde, micronuclei formations, and DNA fragmentation. These have invariably, validates the findings from in silico experiments. Furthermore, rutin was able to ameliorate, protect, and reverse these effects, and was relatively non-toxic corroborating toxicity predictions. Rutin exhibited counteractive effects on 2,5-hexanedione-induced oxidative, chromosomal, and DNA damage.


Asunto(s)
Daño del ADN/efectos de los fármacos , Hexanonas/toxicidad , Rutina/farmacología , Animales , Aberraciones Cromosómicas/efectos de los fármacos , Simulación por Computador , Fragmentación del ADN/efectos de los fármacos , Hexanonas/administración & dosificación , Dosificación Letal Mediana , Peroxidación de Lípido/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Simulación del Acoplamiento Molecular , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
6.
BMC Complement Altern Med ; 16: 256, 2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-27473055

RESUMEN

BACKGROUND: Clausena excavata Burm.f. is a shrub traditionally used to treat cancer patients in Asia. The main bioactive chemical components of the plant are alkaloids and coumarins. In this study, we isolated clausenidin from the roots of C. excavata to determine its apoptotic effect on the colon cancer (HT-29) cell line. METHOD: We examined the effect of clausenidin on cell viability, ROS generation, DNA fragmentation, mitochondrial membrane potential in HT-29 cells. Ultrastructural analysis was conducted for morphological evidence of apoptosis in the treated HT-29 cells. In addition, we also evaluated the effect of clausenidin treatment on the expression of caspase 3 and 9 genes and proteins in HT-29 cells. RESULT: Clausenidin induced a G0/G1 cell cycle arrest in HT-29 cells with significant (p < 0.05) dose-dependent increase in apoptotic cell population. The DNA fragmentation assay also showed apoptotic features in the clausenidin-treated HT-29 cells. Clausenidin treatment had caused significant (p < 0.05) increases in the expression of caspase 9 protein and gene in HT-29 cells and mitochondrial ROS and mitochondrial membrane depolarization. The results suggest the involvement of the mitochondria in the caspase-dependent apoptosis in clausenidin-treated colon cancer cells. CONCLUSION: Clausenidin induces a caspase-dependent apoptosis in colon cancers through the stimulation of the mitochondria. The study demonstrates the potential of clausenidin for use in the treatment of colon cancers.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Clausena/química , Neoplasias del Colon/metabolismo , Extractos Vegetales/farmacología , Piranocumarinas/farmacología , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Células HT29 , Humanos , Extractos Vegetales/química , Piranocumarinas/química , Especies Reactivas de Oxígeno/metabolismo
7.
Molecules ; 21(4): 417, 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-27070566

RESUMEN

Uridine-cytidine kinase 2 is implicated in uncontrolled proliferation of abnormal cells and it is a hallmark of cancer, therefore, there is need for effective inhibitors of this key enzyme. In this study, we employed the used of in silico studies to find effective UCK2 inhibitors of natural origin using bioinformatics tools. An in vitro kinase assay was established by measuring the amount of ADP production in the presence of ATP and 5-fluorouridine as a substrate. Molecular docking studies revealed an interesting ligand interaction with the UCK2 protein for both flavokawain B and alpinetin. Both compounds were found to reduce ADP production, possibly by inhibiting UCK2 activity in vitro. In conclusion, we have identified flavokawain B and alpinetin as potential natural UCK2 inhibitors as determined by their interactions with UCK2 protein using in silico molecular docking studies. This can provide information to identify lead candidates for further drug design and development.


Asunto(s)
Inhibidores Enzimáticos/química , Flavanonas/química , Flavonoides/química , Uridina Quinasa/química , Adenosina Difosfato/biosíntesis , Alpinia/enzimología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Simulación por Computador , Inhibidores Enzimáticos/uso terapéutico , Flavanonas/uso terapéutico , Flavonoides/uso terapéutico , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Rizoma/enzimología , Uridina Quinasa/antagonistas & inhibidores
8.
Molecules ; 21(7)2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27367662

RESUMEN

The increasing rate of mortality ensued from breast cancer has encouraged research into safer and efficient therapy. The human Estrogen receptor α has been implicated in the majority of reported breast cancer cases. Molecular docking employing Glide, Schrodinger suite 2015, was used to study the binding affinities of small molecules from the Artocarpus species after their drug-like properties were ascertained. The structure of the ligand-binding domain of human Estrogen receptor α was retrieved from Protein Data Bank while the structures of compounds were collected from PubChem database. The binding interactions of the studied compounds were reported as well as their glide scores. The best glide scored ligand, was Artonin E with a score of -12.72 Kcal when compared to other studied phytomolecules and it evoked growth inhibition of an estrogen receptor positive breast cancer cells in submicromolar concentration (3.8-6.9 µM) in comparison to a reference standard Tamoxifen (18.9-24.1 µM) within the tested time point (24-72 h). The studied ligands, which had good interactions with the target receptor, were also drug-like when compared with 95% of orally available drugs with the exception of Artoelastin, whose predicted physicochemical properties rendered it less drug-like. The in silico physicochemical properties, docking interactions and growth inhibition of the best glide scorer are indications of the anti-breast cancer relevance of the studied molecules.


Asunto(s)
Neoplasias de la Mama/metabolismo , Medicamentos Herbarios Chinos/farmacología , Flavonoides/farmacología , Receptores de Estrógenos/metabolismo , Transducción de Señal/efectos de los fármacos , Aminoácidos , Artocarpus/química , Sitios de Unión , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Medicamentos Herbarios Chinos/química , Femenino , Flavonoides/química , Humanos , Enlace de Hidrógeno , Ligandos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Receptores de Estrógenos/química
9.
Pak J Pharm Sci ; 27(5): 1363-70, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25176388

RESUMEN

Maerua angolensis DC is traditionally used for the treatment of epilepsy and insomnia. The present study was designed to investigate the anxiolytic, sedative and toxicological effect of hydromethanolic stem bark extract of M. angolensis using animal model. Sub-chronic doses of the plant extract on liver and kidney function test were investigated. Elevated plus maze (EPM) and diazepam-induced sleeping time test was used in this investigation. The possible involvement of M. angolensis with GABAA receptor was also investigated using flumazenil. The results of acute toxicity studies showed LD50 to be greater than 5000mg/kg body weight. The test extract (40 and 80mg/kg) significantly (p<0.05) increased the number of open arm entries and time spent in the open arm entries. However, flumazenil with 80mg/kg plant extract showed no significant (p >0.01) difference in the number of entries into open arm when compared to control. The stem bark extract of M. angolensis significantly (p<0.01) increased the duration of sleep induced by diazepam in a dose-dependent manner. However, flumazenil with 80mg/kg extract showed no significant (p>0.01) sedative effect when compared to normal control. In conclusion, the result of our present findings revealed that M. angolensis may apparently be safe and non toxic at therapeutic dose. However, the plant may possess anxiolytic and sedative properties, which exert their effect on GABAA receptors.


Asunto(s)
Ansiolíticos/farmacología , Capparaceae , Hipnóticos y Sedantes/farmacología , Extractos Vegetales/farmacología , Animales , Femenino , Flumazenil/farmacología , Masculino , Corteza de la Planta , Extractos Vegetales/toxicidad , Tallos de la Planta , Ratas , Ratas Wistar , Receptores de GABA-A/efectos de los fármacos
10.
J Exp Pharmacol ; 16: 211-219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38826848

RESUMEN

Background: Faidherbia albida, popularly known as gawo in Hausa, is traditionally used to treat jaundice in Zuru emirate of Kebbi State. Herein, the ameliorative effect of F. albida against 2.4-dinitrophenylhydrazine-induced hyperbilirubinemia in Wistar albino rats was investigated. Methods: Thirty healthy rats were administered 75 mg of 2.4-dinitrophenylhydrazine to induce hyperbilirubinemia. Thereafter, groups 1-3 received 500, 750, and 1000 mg/kg body weight of the methanol stem-bark extract, and 15 mg/kg of phenobarbitone (standard drug) was administered to group 4. Groups 5 and 6 served as the untreated and normal controls, respectively. The phytochemical composition was evaluated using standard methods, and acute oral toxicity was evaluated using standard OECD 2008 guidelines. Results: Phytochemical analysis revealed the presence of alkaloids, phenols, and a substantial amount of tannins. A significant (P<0.05) reduction of direct bilirubin, total bilirubin, and total protein levels for all the doses of the extract and standard drug compared to untreated groups was observed. Similarly, there were significant reductions in serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) levels of the group treated with the standard drug and all extract-treated groups compared to elevated levels observed in untreated controls. However, a significant (P<0.05) increase in serum albumin (ALB) levels, red blood cells, hemoglobin, and pack cell volume was observed in all extract-treated compared to the untreated control in contrast to a significant decrease in MCH levels in treated groups compared to the untreated group. Conclusion: F. albida ameliorated the hyperbilirubinemia induced by 2.4-dinitrophenylhydrazine in Wistar albino rats, thus providing some support for its use in traditional medicine to treat jaundice.

11.
Eur J Clin Nutr ; 78(6): 477-485, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38424158

RESUMEN

Iron deficiency is a recognized global health concern, particularly impactful during pregnancy where the mother serves as the primary source of iron for the developing fetus. Adequate maternal iron levels are crucial for fetal growth and cognitive development. This review investigates the correlation between maternal iron deficiency and cognitive impairment and anemia in offspring, considering age and gender differentials. PubMed, ScienceDirect, and Google Scholar databases were queried using keywords "maternal," "iron," "gender/sex," and "cognition." The review included studies on human and animal subjects where maternal iron deficiency was the exposure and offspring cognitive function and anemia were outcomes. Out of 1139 articles screened, fourteen met inclusion criteria. Twelve studies highlighted cognitive deficits in offspring of iron-deficient mothers, with females generally exhibiting milder impairment compared to males. Additionally, two studies noted increased anemia prevalence in offspring of iron-deficient mothers, particularly affecting males and younger individuals. The findings suggest that male offspring are at higher risk of both anemia and cognitive dysfunction during youth, while females face increased risks in adulthood. Thus, maternal iron deficiency elevates the likelihood of anemia and cognitive impairments in offspring, underscoring the importance of addressing maternal iron status for optimal child health.


Asunto(s)
Anemia Ferropénica , Cognición , Deficiencias de Hierro , Animales , Niño , Femenino , Humanos , Masculino , Embarazo , Factores de Edad , Anemia Ferropénica/epidemiología , Anemia Ferropénica/sangre , Disfunción Cognitiva/etiología , Disfunción Cognitiva/epidemiología , Hierro/sangre , Fenómenos Fisiologicos Nutricionales Maternos , Complicaciones del Embarazo , Efectos Tardíos de la Exposición Prenatal , Factores Sexuales
12.
Heliyon ; 10(3): e25531, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333815

RESUMEN

Snakebite envenoming (SBE) is a global public health concern, primarily due to the lack of effective antivenom for treating snakebites inflicted by medically significant venomous snakes prevalent across various geographic locations. The rising demand for safe, cost-effective, and potent snakebite treatments highlights the urgent need to develop alternative therapeutics targeting relevant toxins. This development could provide promising discoveries to create novel recombinant solutions, leveraging human monoclonal antibodies, synthetic peptides and nanobodies. Such technologies as recombinant DNA, peptide and epitope mapping phage display etc) have the potential to exceed the traditional use of equine polyclonal antibodies, which have long been used in antivenom production. Recombinant antivenom can be engineered to target certain toxins that play a critical role in snakebite pathology. This approach has the potential to produce antivenom with improved efficacy and safety profiles. However, there are limitations and challenges associated with these emerging technologies. Therefore, identifying the limitations is critical for overcoming the associated challenges and optimizing the development of recombinant antivenoms. This review is aimed at presenting a thorough overview of diverse technologies used in the development of recombinant antivenom, emphasizing their limitations and offering insights into prospects for advancing recombinant antivenoms.

13.
Toxicon ; : 107811, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38917892

RESUMEN

Snakebite is a significant health concern in Africa, particularly due to neurotoxic envenomation which can lead to neuromuscular paralysis and respiratory failure. In Nigeria, snakes from the Elapidae family are a notable cause of envenomation cases, though these incidents are underreported. This review examined case reports of neurotoxic envenomation in Africa, highlighting the clinical impacts and the efficacy of available antivenoms. Preclinical studies showed that the polyvalent antivenom from the South African Institute for Medical Research (SAIMR) was highly effective against neurotoxicity with a protective efficacy (R) of 1346.80 mg/mL, while clinical assessment emphasized the need for high-dose antivenom therapy along with supportive measures like mechanical ventilation. Unlike hemorrhagic envenomation, where antivenom promptly resolves bleeding, neurotoxic cases often require additional interventions. The review underscores the necessity for tailored approaches in antivenom therapy to address the complexities of neurotoxic snakebites and reduce their public health burden in Africa.

14.
Nat Prod Res ; 37(17): 2965-2968, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36308291

RESUMEN

Mitracarpus hirtus (L.) DC. is a weed plant commonly used for the treatment of eczema. The potential of the plant to treat cancer has not been emphasized, hence the need to explore its anticancer potential. M. hirtus was extracted and subjected to petition with solvents of increasing polarity. Its cytotoxic potential was evaluated against MCF-7, HepG2, and HeLa cells using the Neutral red assay and further verified through morphological assessment and DNA fragmentation assay. Crude chloroform fraction (CCF) displayed a cytotoxic effect on all the cell lines with low IC50 concentrations ranging from 11-17.87 µg/mL. Morphological assessment of MCF-7 exposed to CCF indicates apoptotic cell death and is further confirmed by its DNA fragmentation. Our data suggest that M. hirtus is a potential source for mining anticancer agents.

15.
Curr Drug Targets ; 24(11): 919-928, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37534791

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is associated with a high mortality rate due to early recurrence and its metastasis features. To this day, effective treatment options for metastatic HCC remain a major challenge to patient treatment. Flavokawain B (FKB) is a naturally occurring chalcone molecule capable of providing effective therapy against this life-threatening disease. OBJECTIVE: This study investigated the anti-metastatic effects of FKB on the growth and development of metastatic HCC. METHODS: HepG2 cells were used in this study and a neutral red assay was performed to determine the IC50 value of FKB. Cell scratch and exclusion zone assays were performed to assess the rate of cell migration and invasion. Relative mRNA levels of UCK2, STAT3, VEGF and HIF-1α genes were quantified using RT-qPCR. RESULTS: FKB inhibited the proliferation of HepG2 cells at an IC50 value of 28 µM after 72 h of incubation. Its cytotoxic effect was confirmed to induce apoptosis through the phase-contrast inverted microscope. Cell migration and invasion were significantly inhibited at 7, 14, and 28 µM of FKB as compared to untreated cells. The inhibition in the cell migration significantly increased with the increasing concentrations of the bioactive compound. The relative expression levels of the UCK2 gene and its downstream genes, STAT3, VEGF and HIF-1α, were significantly downregulated after 72 h exposure to FKB treatment. CONCLUSION: Our data suggest that FKB inhibited HepG2 proliferation and further suppressed its metastasis partly by regulating the STAT3/Hif-1α/VEGF signalling pathway. FKB could be a potential alternative and viable strategy against HCC.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular , Línea Celular Tumoral , Uridina Quinasa , Factor de Transcripción STAT3/farmacología
16.
J Trace Elem Med Biol ; 78: 127203, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37201368

RESUMEN

Iron deficiency is a common micronutrient deficiency associated with metabolic changes in the levels of iron regulatory proteins, hepcidin and ferroportin. Studies have associated dysregulation of iron homeostasis to other secondary and life-threatening diseases including anaemia, neurodegeneration and metabolic diseases. Iron deficiency plays a critical role in epigenetic regulation by affecting the Fe2+/α-ketoglutarate-dependent demethylating enzymes, Ten Eleven Translocase 1-3 (TET 1-3) and Jumonji-C (JmjC) histone demethylase, which are involved in epigenetic erasure of the methylation marks on both DNA and histone tails, respectively. In this review, studies involving epigenetic effects of iron deficiency associated with dysregulation of TET 1-3 and JmjC histone demethylase enzyme activities on hepcidin/ferroportin axis are discussed.


Asunto(s)
Hepcidinas , Deficiencias de Hierro , Humanos , Hepcidinas/genética , Hepcidinas/metabolismo , Epigénesis Genética/genética , Histona Demetilasas/metabolismo , Hierro/metabolismo , Homeostasis/genética
17.
Chem Biol Drug Des ; 101(5): 1138-1150, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35191201

RESUMEN

The global burden of colorectal cancer (CRC) is increasing annually. CRC could develop from genetic and phenotypic factors involving changes in gene expression. Incredibly, the human genome transcribes into non-coding RNAs, among which long non-coding RNAs (lncRNAs) signify the most crucial part of the transcriptome in multicellular organisms. lncRNAs affect gene expression at multiple levels, from transcription to protein localization and stability. Recent studies have implicated lncRNA small nucleolar RNA host gene 15 (SNHG15) in cancers occurrence and progression. Previously, an indication suggests SNHG15 overexpression triggers proliferation, metastasis, and impedes apoptosis in CRC. Further, through its activity of binding micro-RNAs, lncRNA SNHG15 modulates genes associated with CRC progression and promotes CRC resistance to chemotherapeutic drugs. Here, we reviewed recent findings on the various mechanisms and roles of lncRNA SNHG15 implicated in CRC tumorigenesis. We further highlight how SNHG15 plays a vital role in regulating critical pathways linked to the development and progression of CRC. Finally, we highlight how SNHG15 can be modulated for CRC treatments and the various therapeutic strategies to be implored when targeting SNHG15 in the context of CRC treatments. Findings from these studies present SNHG15 as a potential therapeutic target for preventing and treating CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , MicroARNs/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica
18.
In Silico Pharmacol ; 11(1): 10, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37073308

RESUMEN

Prostate cancer is a leading cause of morbidity and mortality among men globally. In this study, we employed an in silico approach to predict the possible mechanisms of action of selected novel compounds reported against prostate cancer epigenetic targets and their derivatives, exhausting through ADMET profiling, drug-likeness, and molecular docking analyses. The selected compounds: sulforaphane, silibinin, 3, 3'-diindolylmethane (DIM), and genistein largely conformed to ADMET and drug-likeness rules including Lipinski's. Docking studies revealed strong binding energy of sulforaphane with HDAC6 (- 4.2 kcal/ mol), DIM versus HDAC2 (- 5.2 kcal/mol), genistein versus HDAC6 (- 4.1 kcal/mol), and silibinin against HDAC1 (- 7.0 kcal/mol) coupled with improved binding affinities and biochemical stabilities after derivatization. Findings from this study may provide insight into the potential epigenetic reprogramming mechanisms of these compounds against prostate cancer and could pave the way toward more success in prostate cancer phytotherapy.

19.
J Biomol Struct Dyn ; 40(3): 1347-1362, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32964804

RESUMEN

Cancer is a rapidly growing non-communicable disease worldwide that is responsible for high mortality rates, which account for 9.6 million death in 2018. Dihydroartemisinin (DHA) is an active metabolite of artemisinin, an active principle present in the Chinese medicinal plant Artemisia annua used for malaria treatment. Dihydroartemisinin possesses remarkable and selective anticancer properties however the underlying mechanism of the antitumor effects of DHA from the structural point of view is still not yet elucidated. In the present study, we employed molecular docking simulation techniques using Autodock suits to access the binding properties of dihydroartemisinin to multiple protein targets implicated in cancer pathogenesis. Its potential targets with comprehensive pharmacophore were predicted using a PharmMapper database. The co-crystallised structures of the protein were obtained from a Protein Data Bank and prepared for molecular docking simulation. Out of the 24 selected protein targets, DHA has shown about 29% excellent binding to the targets compared to their co-crystallised ligand. Additionally, 75% of the targets identified for dihydroartemisinin binding are protein kinases, and 25% are non-protein kinases. Hydroxyl functional group of dihydroartemisinin contributed to 58.5% of the total hydrogen interactions, while pyran (12.2%), endoperoxide (9.8%), and oxepane (19.5%) contributed to the remaining hydrogen bonding. The present findings have elucidated the possible antitumor properties of dihydroartemisinin through the structural-based virtual studies, which provides a lead to a safe and effective anticancer agent useful for cancer therapy.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Artemisininas , Neoplasias , Artemisininas/farmacología , Artemisininas/uso terapéutico , Detección Precoz del Cáncer , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico
20.
Toxicol Rep ; 9: 366-372, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35284243

RESUMEN

Vernonia glaberrima leaves are traditionally used to alleviate bodily pain, skin cancer, and other skin-related disorders. The purpose of the study was to investigate the acute and sub-acute toxicity of 5-methylcoumarin-4ß-glucoside, a promising chemotherapeutic agent against colon cancer isolated from the leaves of Vernonia glaberrima. 5-methylcoumarin-4ß-glucoside was isolated from the methanol leaf extract of Vernonia glaberrima following a previously described method. The acute toxicity study involved a two-phase 24 h observation for signs of mortality and toxicity following single oral dose administration of the isolated compound. For the sub-acute study, four groups of mice, averagely aged eight weeks, were administered graded doses of the compound (250, 500 and 1000 mg/kg) or vehicle for 28 days. On the 29th day, the mice were fasted, anesthetized, euthanized, then their blood and tissues were harvested for hematological, biochemical and histopathological evaluations. There were no signs of mortality or moribund status with an increasing dose of up to 5000 mg/kg over a 24 h period in the acute study. Also, there was no evidence of toxicity on the biochemical or hematopoietic systems in the sub-acute study (p < 0.05). At the dose of 1000 mg/kg, the mice showed some distorted histology with no corresponding alterations in serum biochemicals. Overall, the results showed that 5-methylcoumarin-4ß-glucoside at dosages up to 500 mg/kg is tolerable in mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA