Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Appetite ; 174: 106012, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35367482

RESUMEN

Estrogens reduce 0.3 M NaCl intake and palatability in a widely used model of essential hypertension, the spontaneously hypertensive rats (SHRs). Here we investigated whether the inhibitory effects of ß-estradiol (E2, 10 µg/kg b.w. subcutaneously for 8 days) on water deprived partially-rehydrated (WD-PR) ovariectomized (OVX) adult female SHRs (fSHRs, n = 4-10/group) are related to interferences on brain angiotensin II AT1 receptors (AT1r). After WD-PR, E2 reduced 0.3 M NaCl intake (1.3 ± 0.6, vs. vehicle: 3.5 ± 1.2 ml/30 min), the number of hedonic responses to intraoral NaCl infusion (57 ± 11, vs. vehicle: 176 ± 32/min), and the relative angiotensin AT1r (Agtr1a) mRNA expression in the hypothalamus. Losartan (AT1r antagonist, 100 µg) intracerebroventricularly in OVX fSHRs treated with vehicle subcutaneously abolished 0.3 M NaCl intake (0.1 ± 0.1 ml/30 min) and only transiently reduced hedonic responses to intraoral NaCl. Losartan combined with E2 decreased the number of hedonic and increased the number of aversive responses to intraoral NaCl and abolished 0.3 M NaCl intake. E2 also reduced the pressor and dipsogenic responses to intracerebroventricular angiotensin II. The results suggest that AT1r activation increases palatability and induces NaCl intake in WD-PR fSHRs. E2 reduced hypothalamic Agtr1a mRNA expression, which may account for the effects of E2 on NaCl intake and palatability and intracerebroventricular angiotensin II-induced pressor and dipsogenic responses in OVX fSHRs. Future studies considering natural fluctuations in estrogen secretion might help to determine the degree of such interference in brain neuronal activity.


Asunto(s)
Angiotensina II , Losartán , Angiotensina II/farmacología , Animales , Estradiol/farmacología , Femenino , Humanos , Losartán/farmacología , ARN Mensajero , Ratas , Ratas Endogámicas SHR , Receptor de Angiotensina Tipo 1/genética , Cloruro de Sodio
2.
Horm Behav ; 130: 104952, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33647281

RESUMEN

Spontaneously hypertensive rats (SHRs) ingest more NaCl than normotensive strains. Here we investigated NaCl intake and taste reactivity in adult male SHRs and normotensive Holtzman rats treated or not with AT1 receptor antagonist centrally in euhydrated condition and after fluid depletion. Taste reactivity was measured by the number of orofacial expressions to intra-oral infusions of 0.3 M NaCl. In euhydrated condition, intra-oral infusions of 0.3 M NaCl produced greater number of hedonic responses in SHRs than in normotensive rats, without differences in the number of aversive responses. Compared to euhydrated condition, the treatment with the diuretic furosemide + low dose of captopril (angiotensin converting enzyme blocker) increased the number of hedonic and reduced the number of aversive responses to intra-oral NaCl in normotensive rats, without changing the number of hedonic or aversive responses in SHRs. Losartan (AT1 receptor antagonist, 100 ng/1 µl) injected intracerebroventricularly in SHRs abolished 0.3 M NaCl intake induced by water deprivation + partial rehydration, whereas only transiently (first 30 min of the 60 min test) reduced hedonic responses, without changes in aversive responses to intra-oral NaCl. Losartan intracerebroventricularly also only transiently (first 30 min) reduced the number of hedonic responses to intra-oral NaCl in euhydrated SHRs. The results suggest that NaCl palatability is increased and independent from body fluid balance in SHRs. The results also suggest that central AT1 receptors are part of the mechanisms activated to increase NaCl intake and palatability in SHRs. A partial dissociation between NaCl intake and palatability in SHRs is also suggested.


Asunto(s)
Captopril , Sodio , Animales , Captopril/farmacología , Furosemida/farmacología , Losartán/farmacología , Masculino , Ratas , Ratas Endogámicas SHR
3.
Appetite ; 158: 105037, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33186624

RESUMEN

The renin-angiotensin system (RAS) controls hypertonic NaCl intake driven by sodium appetite. Here we investigated whether the antagonism of RAS interferes with hedonic and aversive orofacial motor responses, or palatability, to intraoral infusion of 0.3 M NaCl (hNaCl). Adult rats were depleted of sodium by combined sc injection of furosemide and 24 h removal of ambient sodium. In experiment 1, losartan (AT1 angiotensin II receptor antagonist, intracerebroventricular, 200 µg/µl), produced a three-fold increase in aversive orofacial motor responses to hNaCl. Losartan also suppressed hNaCl intake recorded immediately thereafter. In experiment 2, each animal had repeated recordings of hNaCl intake and orofacial responses to hNaCl distributed for 180 min. Paired recordings of intake and orofacial responses occurred within five successive blocks after the recordings of only orofacial responses when the animals were still sodium deplete (block zero). Captopril (angiotensin converting enzyme blocker, intraperitoneal, 30 mg/kg) inhibited by 75% the hedonic orofacial responses to hNaCl in blocks zero and 1. The hedonic responses to captopril remained the same throughout blocks, but became similar to vehicle from blocks 2 to 5. There was no difference in aversive responses to 0.3 M NaCl between captopril and vehicle. Captopril produced a 70-100% inhibition of hNaCl intake in blocks 1 to 5. The results suggest that angiotensin II acts in the brain increasing the palatability of hypertonic sodium during the consummatory phase of sodium appetite.


Asunto(s)
Sistema Renina-Angiotensina , Sodio , Animales , Apetito , Captopril/farmacología , Losartán/farmacología , Ratas , Cloruro de Sodio
4.
Appetite ; 155: 104822, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32795566

RESUMEN

Behavioral sensitization occurs during sodium appetite (expressed as sodium intake to compensate for depleted sodium) and need-free sodium intake (expressed as daily overnight sodium intake in excess of dietary sodium need). Previously, we found that a slow-onset sodium appetite protocol cross-sensitized need-free sucrose intake in sucrose-naïve adult rats. That is, a history of sodium depletion elevated later sucrose intake. The objective of the present work was, first, to investigate whether a protocol that evokes a rapid-onset (within 2 h) sodium appetite using furosemide along with a low dose captopril (Furo/Cap), also cross-sensitizes sucrose intake. Then, we investigated whether 1) sensitization of need-free 0.3 M NaCl intake interacts with need-free sucrose intake, and 2) MK-801, a glutamate NMDA receptor antagonist, inhibits cross-sensitization of sucrose intake. Groups received 3-4 Furo/Cap or vehicle treatments with 48/72-h intervals. We investigated sucrose intake in hydrated and fed conditions for 2 h/day for 5 days, starting 6-10 days after the last Furo/Cap treatment. Episodes of Furo/Cap sensitized need-free sodium intake, as expected. Similar to our prior work, the rapid-onset Furo/Cap protocol cross-sensitized sucrose intake in sucrose-naïve rats and had no persistent effect on blood biochemistry. MK-801 treatment along with Furo/Cap injections appeared to prevent cross-sensitization of sucrose consumption. Sucrose intake tests unexpectedly reduced sensitized need-free sodium intake. However, MK-801 treatment allowed a rebound in need-free sodium intake subsequent to the last sucrose intake test. The results suggest that plasticity in glutamatergic mechanisms mediate inverse and reciprocal interactions between the production of sodium appetite and sucrose intake.


Asunto(s)
Apetito , Sodio en la Dieta , Animales , Diuréticos/farmacología , Ratas , Ratas Sprague-Dawley , Sodio , Azúcares
5.
Appetite ; 133: 252-261, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30458200

RESUMEN

Excessive salt intake has been associated with the development or worsening of chronic diseases such as hypertension and spontaneously hypertensive rats (SHR) have a typical increased sodium preference. Estrogens reduce sodium appetite, but we do not know whether such effect relates to alterations in sodium palatability. Here we evaluated the influence of ovarian hormones on orofacial motor responses, an index of palatability, to intra-oral infusion of 0.3 M NaCl (IONaCl). Adult female SHR and normotensive Holtzman rats (HTZ) were used. Sodium appetite was produced by water deprivation followed immediately by partial rehydration by drinking water to satiation (WD-PR protocol). Immediately at the end of WD-PR, animals received an IO-NaCl for videotape recording of orofacial motor responses. At the end of IO-NaCl, they had access to two bottles containing 0.3 M NaCl and water to ingest (sodium appetite test). Bilateral ovariectomy (OVX) enhanced 0.3 M NaCl intake during the sodium appetite test and increased the frequency of orofacial hedonic responses to IO-NaCl in both strains. It had no effect on aversive responses. Estradiol treatment in SHR-OVX decreased hedonic responses and increased aversive responses to IO-NaCl. It also reduced 0.3 M NaCl intake during the sodium appetite test, but had no effect on baseline mean arterial pressure and heart rate. The results suggest that ovarian hormones restrain WD-PR-induced sodium appetite by reducing the hedonic properties of sodium taste. The results also suggest that estrogens mediate such reduction, particularly in SHR.


Asunto(s)
Estradiol/farmacología , Cloruro de Sodio/administración & dosificación , Privación de Agua , Animales , Femenino , Ovariectomía , Distribución Aleatoria , Ratas Endogámicas SHR , Ratas Sprague-Dawley , Gusto/fisiología
6.
J Physiol ; 594(6): 1617-25, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26095748

RESUMEN

With the global epidemic of obesity, breathing disorders associated with excess body weight have markedly increased. Respiratory dysfunctions caused by obesity were originally attributed to mechanical factors; however, recent studies have suggested a pathophysiological component that involves the central nervous system (CNS) and hormones such as leptin produced by adipocytes as well as other cells. Leptin is suggested to stimulate breathing and leptin deficiency causes an impairment of the chemoreflex, which can be reverted by leptin therapy. This facilitation of the chemoreflex may depend on the action of leptin in the hindbrain areas involved in the respiratory control such as the nucleus of the solitary tract (NTS), a site that receives chemosensory afferents, and the ventral surface of the medulla that includes the retrotrapezoid nucleus (RTN), a central chemosensitive area, and the rostral ventrolateral medulla (RVLM). Although the mechanisms and pathways activated by leptin to facilitate breathing are still not completely clear, evidence suggests that the facilitatory effects of leptin on breathing require the brain melanocortin system, including the POMC-MC4R pathway, a mechanism also activated by leptin to modulate blood pressure. The results of all the studies that have investigated the effect of leptin on breathing suggest that disruption of leptin signalling as caused by obesity-induced reduction of central leptin function (leptin resistance) is a relevant mechanism that may contribute to respiratory dysfunctions associated with obesity.


Asunto(s)
Sistema Nervioso Central/fisiología , Leptina/metabolismo , Obesidad/fisiopatología , Respiración , Animales , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiopatología , Humanos , Obesidad/metabolismo
7.
Am J Physiol Regul Integr Comp Physiol ; 301(1): R185-92, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21474430

RESUMEN

Lipopolysaccharide (LPS), an endotoxin from the wall of Escherichia coli, produces a general behavioral inhibition and affects several aspects of fluid-electrolyte balance. LPS inhibits thirst; however, it is not clear if it also inhibits sodium appetite. The present results show that LPS (0.3-2.5 mg/kg body wt) injected intraperitoneally produces a dose-dependent reduction of sodium appetite expressed as 0.3 M NaCl intake induced by sodium depletion (furosemide plus removal of ambient sodium for 24 h). The high doses of LPS (1.2-2.5 mg/kg) also produced transient hypothermia at the beginning of the sodium appetite test; however, no dose produced hyperthermia. LPS also increased the stomach liquid content (an index of gastric emptying) after a load of 0.3 M NaCl given intragastrically by gavage to sodium-depleted rats. The α(2)-adrenoceptor antagonist yohimbine (5 mg/kg ip) abolished the effect of LPS on 0.3 M NaCl intake, without changing the effect of LPS on gastric emptying. Injection of RX-821002 (160 nmol), another α(2)-adrenoceptor antagonist, in the lateral cerebral ventricle (LV) also reversed the inhibition of sodium appetite produced by LPS. Yohimbine intraperitoneally or RX-821002 in the LV alone had no effect on sodium intake. Although yohimbine plus LPS produced a slight hypotension, RX-821002 plus LPS produced no change in arterial pressure, suggesting that the blockade of the effects of LPS on sodium intake by the α(2)-adrenoceptor antagonists is independent from changes in arterial pressure. The results suggest an inhibitory role for LPS in sodium appetite that is mediated by central α(2)-adrenoceptors.


Asunto(s)
Apetito/efectos de los fármacos , Lipopolisacáridos/farmacología , Receptores Adrenérgicos alfa 2/fisiología , Cloruro de Sodio Dietético/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Animales , Apetito/fisiología , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Temperatura Corporal/efectos de los fármacos , Temperatura Corporal/fisiología , Relación Dosis-Respuesta a Droga , Vaciamiento Gástrico/efectos de los fármacos , Vaciamiento Gástrico/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Idazoxan/análogos & derivados , Idazoxan/farmacología , Inyecciones Intraperitoneales , Lipopolisacáridos/administración & dosificación , Masculino , Modelos Animales , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 2/efectos de los fármacos , Yohimbina/farmacología
8.
Peptides ; 136: 170439, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33166587

RESUMEN

Spontaneously hypertensive rats (SHRs) have increased daily or induced sodium intake compared to normotensive rats. In normotensive rats, angiotensin II (ANG II)-induced sodium intake is blocked by the inactivation of p42/44 mitogen-activated protein kinase, also known as extracellular signal-regulated protein kinase1/2 (ERK1/2). Here we investigated if inhibition of ERK1/2 pathway centrally would change sodium appetite and intracerebroventricular (icv) ANG II-induced pressor response in SHRs. SHRs (280-330 g, n = 07-14/group) with stainless steel cannulas implanted in the lateral ventricle (LV) were used. Water and 0.3 M NaCl intake was induced by the treatment with the diuretic furosemide + captopril (angiotensin converting enzyme blocker) subcutaneously or 24 h of water deprivation (WD) followed by 2 h of partial rehydration with only water (PR). The blockade of ERK1/2 activation with icv injections of U0126 (MEK1/2 inhibitor, 2 mM; 2 µl) reduced 0.3 M NaCl intake induced by furosemide + captopril (5.0 ± 1.0, vs. vehicle: 7.3 ± 0.7 mL/120 min) or WD-PR (4.6 ± 1.3, vs. vehicle: 10.3 ± 1.4 mL/120 min). PEP7 (selective inhibitor of AT1 receptor-mediated ERK1/2 activation, 2 nmol/2 µL) icv also reduced WD-PR-induced 0.3 M NaCl (2.8 ± 0.7, vs. vehicle: 6.8 ± 1.4 mL/120 min). WD-PR-induced water intake was also reduced by U0126 or PEP7. In addition, U0126 or PEP7 icv reduced the pressor response to icv ANG II. Therefore, the present results suggest that central AT1 receptor-mediated ERK1/2 activation is part of the mechanisms involved in sodium appetite and ANG II-induced pressor response in SHRs.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Angiotensina II/genética , Apetito/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Receptor de Angiotensina Tipo 1/genética , Animales , Apetito/genética , Butadienos/farmacología , Captopril/farmacología , Modelos Animales de Enfermedad , Furosemida/farmacología , Humanos , Hipertensión/genética , Hipertensión/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Nitrilos/farmacología , Ratas , Ratas Endogámicas SHR , Sodio/metabolismo
9.
Brain Res ; 1720: 146299, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31220425

RESUMEN

Recent studies demonstrated an important natriorexigenic mechanism activated by aldosterone acting in the hindbrain. Studies have also shown that aldosterone effects are intensified by angiotensin II (ANG II) and vice-versa. Thus, the aim of the present work was to test if angiotensinergic mechanisms in the forebrain are involved on sodium appetite to aldosterone infused into the 4th V and also if aldosterone into the 4th V might facilitate ingestive and cardiovascular responses to central ANG II. Male Holtzman rats with stainless steel cannulas implanted into the 4th ventricle (4th V) and lateral ventricle (LV) had access to 1.8% NaCl during 2 h/day. Chronic infusion of aldosterone (100 ng/h) into the 4th V for 7 days strongly increased 1.8% NaCl intake (16.1 ±â€¯2.2 ml/2h/day). Losartan (AT1 receptor antagonist, 50 µg/1 µl) acutely injected into the LV reduced 1.8% NaCl intake induced by aldosterone infusion into the 4th V (8.8 ±â€¯2.3 ml/2h/day). The pressor response to ANG II (50 ng/1 µl) into the LV increased in rats treated with aldosterone into the 4th V (45 ±â€¯5 mmHg, vs. vehicle infusion: 26 ±â€¯4 mmHg). Similarly, fluid intake (water + 1.8% NaCl) also increased when rats receiving aldosterone infusion were treated with ANG II acutely into the LV. These results suggest that forebrain angiotensinergic mechanisms are important for sodium intake produced by aldosterone acting in the hindbrain. In addition, aldosterone in the hindbrain produces sensitization of the central pressor mechanisms activated by ANG II acting in the forebrain.


Asunto(s)
Aldosterona/metabolismo , Angiotensina II/metabolismo , Sodio/metabolismo , Aldosterona/farmacología , Angiotensina II/administración & dosificación , Animales , Apetito/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Ingestión de Líquidos/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Losartán/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Cloruro de Sodio/química , Cloruro de Sodio/metabolismo , Sodio en la Dieta/metabolismo
10.
Neuroscience ; 155(2): 350-8, 2008 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-18602454

RESUMEN

Opioid mechanisms are involved in the control of water and NaCl intake and opioid receptors are present in the lateral parabrachial nucleus (LPBN), a site of important inhibitory mechanisms related to the control of sodium appetite. Therefore, in the present study we investigated the effects of opioid receptor activation in the LPBN on 0.3 M NaCl and water intake in rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally in the LPBN were used. In normohydrated and satiated rats, bilateral injections of the opioid receptor agonist beta-endorphin (2 nmol/0.2 microl) into the LPBN induced 0.3 M NaCl (17.8+/-5.9 vs. saline: 0.9+/-0.5 ml/240 min) and water intake (11.4+/-3.0 vs. saline: 1.0+/-0.4 ml/240 min) in a two-bottle test. Bilateral injections of the opioid antagonist naloxone (100 nmol/0.2 microl) into the LPBN abolished sodium and water intake induced by beta-endorphin into the LPBN and also reduced 0.3 M NaCl intake (12.8+/-1.5 vs. vehicle: 22.4+/-3.1 ml/180 min) induced by 24 h of sodium depletion (produced by the treatment with the diuretic furosemide s.c.+sodium deficient food for 24 h). Bilateral injections of beta-endorphin into the LPBN in satiated rats produced no effect on water or 2% sucrose intake when water alone or simultaneously with 2% sucrose was offered to the animals. The results show that opioid receptor activation in the LPBN induces hypertonic sodium intake in satiated and normohydrated rats, an effect not due to general ingestive behavior facilitation. In addition, sodium depletion induced 0.3 M NaCl intake also partially depends on opioid receptor activation in the LPBN. The results suggest that deactivation of inhibitory mechanisms by opioid receptor activation in the LPBN releases sodium intake if excitatory signals were activated (sodium depletion) or not.


Asunto(s)
Puente/efectos de los fármacos , Puente/fisiología , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Cloruro de Sodio/farmacocinética , betaendorfina/farmacología , Animales , Ingestión de Líquidos/efectos de los fármacos , Ingestión de Líquidos/fisiología , Interacciones Farmacológicas , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Masculino , Microinyecciones , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Opioides delta/antagonistas & inhibidores , Receptores Opioides mu/antagonistas & inhibidores , Respuesta de Saciedad/efectos de los fármacos , Respuesta de Saciedad/fisiología , Sacarosa/farmacología , Agua/metabolismo , betaendorfina/metabolismo
11.
Brain Res ; 1698: 70-80, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29928872

RESUMEN

Aldosterone infusion into the 4th ventricle (4th V), upstream the nucleus of the solitary tract (NTS), produces strong 0.3 M NaCl intake. In the present study, we investigated whether aldosterone infusion into the 4th V activates HSD2 neurons, changes renal excretion, or alters blood pressure and cardiovascular reflexes. Chronic infusion of aldosterone (100 ng/h) into the 4th V increased daily 0.3 M NaCl intake (up to 44 ±â€¯10, vs. vehicle: 5.6 ±â€¯3.4 ml/24 h) and also c-Fos expression in HSD2 neurons in the NTS and in non-HSD2 neurons in the NTS. Natriuresis, diuresis and positive sodium balance were present in rats that ingested 0.3 M NaCl, however, renal excretion was not modified by 4th V aldosterone in rats that had no access to NaCl. 4th V aldosterone also reduced baroreflex sensitivity (-2.8 ±â€¯0.5, vs. vehicle: -5.1 ±â€¯0.9 bpm/mmHg) in animals that had sodium available, without changing blood pressure. The results suggest that sodium intake induced by aldosterone infused into the 4th V is associated with activation of NTS neurons, among them the HSD2 neurons. Aldosterone infused into the 4th V in association with sodium intake also impairs baroreflex sensitivity, without changing arterial pressure.


Asunto(s)
Aldosterona/farmacología , Apetito/efectos de los fármacos , Cloruro de Sodio/metabolismo , Aldosterona/metabolismo , Animales , Barorreflejo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Encéfalo/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Cuarto Ventrículo/efectos de los fármacos , Sustancia Gris/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/fisiología , Masculino , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Sodio/metabolismo , Núcleo Solitario/efectos de los fármacos
12.
Braz J Med Biol Res ; 40(8): 1121-7, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17665049

RESUMEN

The nucleus of the solitary tract (NTS) is the primary site of the cardiovascular afferent information about arterial blood pressure and volume. The NTS projects to areas in the central nervous system involved in cardiovascular regulation and hydroelectrolyte balance, such as the anteroventral third ventricle region and the lateral parabrachial nucleus. The aim of the present study was to investigate the effects of electrolytic lesion of the commissural NTS on water and 0.3 M NaCl intake and the cardiovascular responses to subcutaneous injection of isoproterenol. Male Holtzman rats weighing 280 to 320 g were submitted to sham lesion or electrolytic lesion of the commissural NTS (N = 6-15/group). The sham-lesioned rats had the electrode placed along the same coordinates, except that no current was passed. Water intake induced by subcutaneous isoproterenol (30 microg/kg body weight) significantly increased in chronic (15 days) commissural NTS-lesioned rats (to 2.4 +/- 0.2 vs sham: 1.9 +/- 0.2 mL 100 g body weight-1 60 min-1). Isoproterenol did not induce any sodium intake in sham or in commissural NTS-lesioned rats. The isoproterenol-induced hypotension (sham: -27 +/- 4 vs commissural NTS-lesioned rats: -22 +/- 4 mmHg/20 min) and tachycardia (sham: 168 +/- 10 vs commissural NTS: 144 +/- 24 bpm/20 min) were not different between groups. The present results suggest that the commissural NTS is part of an inhibitory neural pathway involved in the control of water intake induced by subcutaneous isoproterenol, and that the overdrinking observed in lesioned rats is not the result of a cardiovascular imbalance in these animals.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Ingestión de Líquidos/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Isoproterenol/farmacología , Sodio en la Dieta , Núcleo Solitario/lesiones , Animales , Inyecciones Subcutáneas , Masculino , Ratas , Ratas Sprague-Dawley , Núcleo Solitario/efectos de los fármacos
13.
Braz J Med Biol Res ; 40(5): 707-12, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17464434

RESUMEN

Water deprivation-induced thirst is explained by the double-depletion hypothesis, which predicts that dehydration of the two major body fluid compartments, the extracellular and intracellular compartments, activates signals that combine centrally to induce water intake. However, sodium appetite is also elicited by water deprivation. In this brief review, we stress the importance of the water-depletion and partial extracellular fluid-repletion protocol which permits the distinction between sodium appetite and thirst. Consistent enhancement or a de novo production of sodium intake induced by deactivation of inhibitory nuclei (e.g., lateral parabrachial nucleus) or hormones (oxytocin, atrial natriuretic peptide), in water-deprived, extracellular-dehydrated or, contrary to tradition, intracellular-dehydrated rats, suggests that sodium appetite and thirst share more mechanisms than previously thought. Water deprivation has physiological and health effects in humans that might be related to the salt craving shown by our species.


Asunto(s)
Apetito/fisiología , Conducta de Ingestión de Líquido/fisiología , Homeostasis/fisiología , Sed/fisiología , Privación de Agua/fisiología , Animales , Humanos , Ratas , Cloruro de Sodio
14.
Neuroscience ; 346: 94-101, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28104456

RESUMEN

Chronic infusion of aldosterone into the 4th ventricle (4th V) induces robust daily sodium intake, whereas acute injection of aldosterone into the 4th V produces no sodium intake. The inhibitory mechanism of the lateral parabrachial nucleus (LPBN) restrains sodium intake induced by different natriorexigenic stimuli and might affect the acute response to aldosterone into the 4th V. In the present study, 1.8% NaCl and water intake was tested in rats treated with acute injections of aldosterone into the 4th V combined with the blockade of the inhibitory mechanisms with injections of moxonidine (α2 adrenergic/imidazoline agonist) or methysergide (a serotonergic antagonist) into the LPBN. Male Holtzman rats with stainless steel cannulas implanted in the 4th V and bilaterally in the LPBN were used. Aldosterone (250 or 500ng) into the 4th V combined with vehicle into the LPBN induced no 1.8% NaClintake compared to control (1.5±1.1 and 1.1±0.4, respectively, vs. vehicle into 4th V: 1.0±0.5ml/2h). However, aldosterone (250 or 500ng) into the 4th V combined with moxonidine (0.5nmol) into the LPBN induced strong ingestion of 1.8% NaCl (12.7±4.6 and 17.6±3.7ml/2h, respectively). Aldosterone (250ng) into the 4th V combined with methysergide (4µg) into the LPBN also induced 1.8% NaCl intake (17.6±5.4ml/2h). These data suggest that the inhibitory mechanisms of the LPBN counteract the facilitation of sodium intake produced by aldosterone injected into the 4th, restraining sodium intake in this condition.


Asunto(s)
Aldosterona/administración & dosificación , Ingestión de Líquidos , Núcleos Parabraquiales/efectos de los fármacos , Núcleos Parabraquiales/fisiología , Cloruro de Sodio Dietético , Animales , Conducta de Ingestión de Líquido/efectos de los fármacos , Cuarto Ventrículo , Imidazoles/administración & dosificación , Inyecciones Intraventriculares , Masculino , Ratas , Ratas Sprague-Dawley
15.
Neuroscience ; 142(1): 21-8, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16890365

RESUMEN

The inhibition of sodium intake by increased plasma osmolarity may depend on inhibitory mechanisms present in the lateral parabrachial nucleus. Activation of alpha(2)-adrenergic receptors in the lateral parabrachial nucleus is suggested to deactivate inhibitory mechanisms present in this area increasing fluid depletion-induced 0.3 M NaCl intake. Considering the possibility that lateral parabrachial nucleus inhibitory mechanisms are activated and restrain sodium intake in animals with increased plasma osmolarity, in the present study we investigated the effects on water and 0.3 M NaCl intake produced by the activation of alpha(2)-adrenergic receptors in the lateral parabrachial nucleus in rats with increased plasma osmolarity. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the lateral parabrachial nucleus were used. One hour after intragastric 2 M NaCl load (2 ml), bilateral injections of moxonidine (alpha(2)-adrenergic/imidazoline receptor agonist, 0.5 nmol/0.2 microl, n=10) into the lateral parabrachial nucleus induced a strong ingestion of 0.3 M NaCl intake (19.1+/-5.5 ml/2 h vs. vehicle: 1.8+/-0.6 ml/2 h), without changing water intake (15.8+/-3.0 ml/2 h vs. vehicle: 9.3+/-2.0 ml/2 h). However, moxonidine into the lateral parabrachial nucleus in satiated rats not treated with 2 M NaCl produced no change on 0.3 M NaCl intake. The pre-treatment with RX 821002 (alpha(2)-adrenergic receptor antagonist, 20 nmol/0.2 microl) into the lateral parabrachial nucleus almost abolished the effects of moxonidine on 0.3 M NaCl intake (4.7+/-3.4 ml/2 h). The present results suggest that alpha(2)-adrenergic receptor activation in the lateral parabrachial nucleus blocks inhibitory mechanisms, thereby allowing ingestion of hypertonic NaCl under conditions of extracellular hyperosmolarity. We suggest that during cell dehydration, circuits subserving sodium appetite are activated, but at the same time strongly inhibited through the lateral parabrachial nucleus.


Asunto(s)
Conducta de Ingestión de Líquido/fisiología , Bulbo Raquídeo/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Cloruro de Sodio Dietético/metabolismo , Antagonistas Adrenérgicos alfa/farmacología , Animales , Antihipertensivos/farmacología , Conducta Animal , Ingestión de Líquidos/efectos de los fármacos , Ingestión de Líquidos/fisiología , Conducta de Ingestión de Líquido/efectos de los fármacos , Interacciones Farmacológicas , Idazoxan/análogos & derivados , Idazoxan/farmacología , Imidazoles/farmacología , Masculino , Bulbo Raquídeo/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Ratas , Factores de Tiempo
16.
Neuroscience ; 134(3): 725-35, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16009500

RESUMEN

Inhibitory serotonergic and cholecystokinergic mechanisms in the lateral parabrachial nucleus and central GABAergic mechanisms are involved in the regulation of water and NaCl intake. In the present study we investigated if the GABA(A) receptors in the lateral parabrachial nucleus are involved in the control of water, NaCl and food intake in rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the lateral parabrachial nucleus were used. Bilateral injections of muscimol (0.2 nmol/0.2 microl) into the lateral parabrachial nucleus strongly increased 0.3 M NaCl (20.3+/-7.2 vs. saline: 2.6+/-0.9 ml/180 min) without changing water intake induced by the treatment with the diuretic furosemide combined with low dose of the angiotensin converting enzyme inhibitor captopril s.c. In euhydrated and satiated rats, bilateral lateral parabrachial nucleus injections of muscimol (0.2 and 0.5 nmol/0.2 microl) induced 0.3 M NaCl intake (12.1+/-6.5 and 32.5+/-7.3 ml/180 min, respectively, vs. saline: 0.4+/-0.2 ml/180 min) and water intake (5.2+/-2.0 and 7.6+/-2.8 ml/180 min, respectively, vs. saline: 0.8+/-0.4 ml/180 min), but no food intake (2+/-0.4 g/240 min vs. saline: 1+/-0.3 g/240 min). Bilateral lateral parabrachial nucleus injections of the GABA(A) antagonist bicuculline (1.6 nmol/0.2 microl) abolished the effects of muscimol (0.5 nmol/0.2 microl) on 0.3 M NaCl and water intake. Muscimol (0.5 nmol/0.2 microl) into the lateral parabrachial nucleus also induced a slight ingestion of water (4.2+/-1.6 ml/240 min vs. saline: 1.1+/-0.3 ml/240 min) when only water was available, a long lasting (for at least 2 h) increase on mean arterial pressure (14+/-4 mm Hg, vs. saline: -1+/-1 mm Hg) and only a tendency to increase urinary volume and Na+ and K+ renal excretion. Therefore the activation of GABA(A) receptors in the lateral parabrachial nucleus induces strong NaCl intake, a small ingestion of water and pressor responses, without changes on food intake.


Asunto(s)
Ingestión de Líquidos/fisiología , Ingestión de Alimentos/fisiología , Puente/fisiología , Receptores de GABA-A/fisiología , Solución Salina Hipertónica/metabolismo , Análisis de Varianza , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Conducta Animal , Bicuculina/farmacología , Presión Sanguínea/efectos de los fármacos , Captopril/farmacología , Diuresis/efectos de los fármacos , Diuréticos/farmacología , Ingestión de Líquidos/efectos de los fármacos , Interacciones Farmacológicas , Ingestión de Alimentos/efectos de los fármacos , Furosemida/farmacología , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Muscimol/farmacología , Puente/efectos de los fármacos , Potasio/orina , Ratas , Ratas Sprague-Dawley , Sodio/orina , Factores de Tiempo
17.
Braz J Med Biol Res ; 38(7): 1123-31, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16007284

RESUMEN

We investigated the effects of bilateral injections of the GABA receptor agonists muscimol (GABA A) and baclofen (GABA B) into the nucleus tractus solitarius (NTS) on the bradycardia and hypotension induced by iv serotonin injections (5-HT, 2 microg/rat) in awake male Holtzman rats. 5-HT was injected in rats with stainless steel cannulas implanted bilaterally in the NTS, before and 5, 15, and 60 min after bilateral injections of muscimol or baclofen into the NTS. The responses to 5-HT were tested before and after the injection of atropine methyl bromide. Muscimol (50 pmol/50 nl, N = 8) into the NTS increased basal mean arterial pressure (MAP) from 115 +/- 4 to 144 +/- 6 mmHg, did not change basal heart rate (HR) and reduced the bradycardia (-40 +/- 14 and -73 +/- 26 bpm at 5 and 15 min, respectively, vs -180 +/- 20 bpm for the control) and hypotension (-11 +/- 4 and -14 +/- 4 mmHg, vs -40 +/- 9 mmHg for the control) elicited by 5-HT. Baclofen (12.5 pmol/50 nl, N = 7) into the NTS also increased basal MAP, but did not change basal HR, bradycardia or hypotension in response to 5-HT injections. Atropine methyl bromide (1 mg/kg body weight) injected iv reduced the bradycardic and hypotensive responses to 5-HT injections. The stimulation of GABA A receptors in the NTS of awake rats elicits a significant increase in basal MAP and decreases the cardiac Bezold-Jarisch reflex responses to iv 5-HT injections.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Agonistas del GABA/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Receptores de GABA-A/efectos de los fármacos , Serotonina/farmacología , Núcleo Solitario/efectos de los fármacos , Animales , Baclofeno/farmacología , Bradicardia/fisiopatología , Hipotensión/fisiopatología , Masculino , Muscimol/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/fisiología , Serotonina/administración & dosificación , Núcleo Solitario/fisiología
18.
Neuroscience ; 284: 768-774, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25264033

RESUMEN

The activation of α2-adrenoceptors with bilateral injections of moxonidine (α2-adrenoceptor and imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) increases 1.8% NaCl intake induced by treatment with furosemide (FURO)+captopril (CAP) subcutaneously. In the present study, we analyzed licking microstructure during water and 1.8% NaCl intake to investigate the changes in orosensory and postingestive signals produced by moxonidine injected into the LPBN. Male Sprague-Dawley rats were treated with FURO+CAP combined with bilateral injections of vehicle or moxonidine (0.5 nmol/0.2 µl) into the LPBN. Bilateral injections of moxonidine into the LPBN increased FURO+CAP-induced 1.8% NaCl intake, without changing water intake. Microstructural analysis of licking behavior found that this increase in NaCl intake was a function of increased number of licking bursts from 15 to 75 min of the test (maximum of 49±9 bursts/bin, vs. vehicle: 2±2 bursts/bin). Analysis of the first 15 min of the test, when most of the licking behavior occurred, found no effect of moxonidine on the number of licks/burst for sodium intake (24±5 licks/burst, vs. vehicle: 27±8 licks/burst). This finding suggests that activation of α2-adrenoceptors in the LPBN affects postingestive signals that are important to inhibit and limit sodium intake by FURO+CAP-treated rats.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Conducta de Ingestión de Líquido/efectos de los fármacos , Ingestión de Líquidos/efectos de los fármacos , Imidazoles/farmacología , Núcleos Parabraquiales/efectos de los fármacos , Cloruro de Sodio , Animales , Captopril/farmacología , Catéteres de Permanencia , Diuréticos/farmacología , Ingestión de Líquidos/fisiología , Conducta de Ingestión de Líquido/fisiología , Agua Potable/administración & dosificación , Furosemida/farmacología , Receptores de Imidazolina/agonistas , Receptores de Imidazolina/metabolismo , Masculino , Núcleos Parabraquiales/metabolismo , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 2/metabolismo , Cloruro de Sodio/administración & dosificación
19.
Neuroscience ; 284: 611-621, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25453778

RESUMEN

Cholinergic activation of the medial septal area (MSA) with carbachol produces thirst, natriuresis, antidiuresis and pressor response. In the brain, hydrogen peroxide (H2O2) modulates autonomic and behavioral responses. In the present study, we investigated the effects of the combination of carbachol and H2O2 injected into the MSA on water intake, renal excretion, cardiovascular responses and the activity of vasopressinergic and oxytocinergic neurons in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Furthermore, the possible modulation of carbachol responses by H2O2 acting through K+ATP channels was also investigated. Male Holtzman rats (280-320 g) with stainless steel cannulas implanted in the MSA were used. The pre-treatment with H2O2 in the MSA reduced carbachol-induced thirst (7.9±1.0, vs. carbachol: 13.2±2.0 ml/60 min), antidiuresis (9.6±0.5, vs. carbachol: 7.0±0.8 ml/120 min,), natriuresis (385±36, vs. carbachol: 528±46 µEq/120 min) and pressor response (33±5, vs. carbachol: 47±3 mmHg). Combining H2O2 and carbachol into the MSA also reduced the number of vasopressinergic neurons expressing c-Fos in the PVN (46.4±11.2, vs. carbachol: 98.5±5.9 c-Fos/AVP cells) and oxytocinergic neurons expressing c-Fos in the PVN (38.5±16.1, vs. carbachol: 75.1±8.5 c-Fos/OT cells) and in the SON (57.8±10.2, vs. carbachol: 102.7±7.4 c-Fos/OT cells). Glibenclamide (K+ATP channel blocker) into the MSA partially reversed H2O2 inhibitory responses. These results suggest that H2O2 acting through K+ATP channels in the MSA attenuates responses induced by cholinergic activation in the same area.


Asunto(s)
Carbacol/farmacología , Fármacos del Sistema Nervioso Central/farmacología , Agonistas Colinérgicos/farmacología , Peróxido de Hidrógeno/farmacología , Tabique del Cerebro/efectos de los fármacos , Animales , Presión Arterial/efectos de los fármacos , Presión Arterial/fisiología , Catéteres de Permanencia , Diuresis/efectos de los fármacos , Diuresis/fisiología , Ingestión de Líquidos/efectos de los fármacos , Ingestión de Líquidos/fisiología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Canales KATP/metabolismo , Masculino , Neuronas/efectos de los fármacos , Neuronas/fisiología , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Sprague-Dawley , Tabique del Cerebro/fisiología , Núcleo Supraóptico/efectos de los fármacos , Núcleo Supraóptico/fisiología , Sed/efectos de los fármacos , Sed/fisiología , Vasopresinas/metabolismo
20.
Behav Brain Res ; 278: 535-41, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25448435

RESUMEN

Alpha2-adrenergic, gabaergic or opioidergic activation in the lateral parabrachial nucleus (LPBN) increases sodium intake. In the present study, we investigated the effects of single or combined blockade of opioidergic and gabaergic receptors in the LPBN on the increase of 0.3M NaCl intake induced by α2-adrenoceptor activation in the LPBN. Male Holtzman rats (n=5-9/group) with cannulas implanted bilaterally in the LPBN were treated with the diuretic furosemide (10 mg/kg b wt.) combined with low dose of the angiotensin converting enzyme inhibitor captopril (5 mg/kg b wt.) subcutaneously. Bilateral injections of moxonidine (alpha2-adrenergic/imidazoline receptor agonist, 0.5 nmol) into the LPBN increased furosemide+captopril-induced 0.3M NaCl intake (25.8±1.4, vs. vehicle: 3.8±1.1 ml/60 min). The opioidergic receptor antagonist naloxone (100 nmol) or the GABAA receptor antagonist bicuculline (5 nmol) injected into the LPBN partially reduced the increase of 0.3M NaCl intake produced by LPBN moxonidine (11.8±4.0 and 22.8±4.5, respectively, vs. vehicle+moxonidine: 31.6±4.0 ml/60 min, respectively). Similar to the treatment with each antagonist alone, the combined injections of naloxone (100 nmol) and bicuculline (5 nmol) into the LPBN also partially reduced moxonidine effects on 0.3M NaCl intake (15.5±6.5 ml/60 min). The GABAB receptor antagonist saclofen (5 nmol) injected into the LPBN did not change the effects of moxonidine on 0.3M NaCl intake (24.3±7.8 ml/120 min). These results suggest that the increase of 0.3M NaCl intake by α2-adrenergic receptor activation in the LPBN is partially dependent on GABAA and opioid receptor activation in this area.


Asunto(s)
Núcleos Parabraquiales/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Receptores de GABA/metabolismo , Receptores Opioides/metabolismo , Cloruro de Sodio/metabolismo , Animales , Antihipertensivos/farmacología , Baclofeno/farmacología , Bicuculina/farmacología , Captopril/farmacología , Inhibidores Enzimáticos/farmacología , Furosemida/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Agonistas de Receptores GABA-B/farmacología , Imidazoles/farmacología , Masculino , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Núcleos Parabraquiales/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA