Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(25): e2307328, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38196157

RESUMEN

In the development of nanomaterial electrodes for improved electrocatalytic activity, much attention is paid to the compositions, lattice, and surface morphologies. In this study, a new concept to enhance electrocatalytic activity is proposed by reducing impedance inside nanomaterial electrodes. Gold nanodendrites (AuNDs) are grown along silver nanowires (AgNWs) on flexible polydimethylsiloxane (PDMS) support. The AuNDs/AgNWs/PDMS electrode affords an oxidative peak current density of 50 mA cm-2 for ethanol electrooxidation, a value ≈20 times higher than those in the literature do. Electrochemical impedance spectroscopy (EIS) demonstrates the significant contribution of the AgNWs to reduce impedance. The peak current densities for ethanol electrooxidation are decreased 7.5-fold when the AgNWs are electrolytically corroded. By in situ surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) simulation, it is validated that the ethanol electrooxidation favors the production of acetic acid with undetectable CO, resulting in a more complete oxidation and long-term stability, while the AgNWs corrosion greatly decreases acetic acid production. This novel strategy for fabricating nanomaterial electrodes using AgNWs as a charge transfer conduit may stimulate insights into the design of nanomaterial electrodes.

2.
Opt Lett ; 49(9): 2413-2416, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691732

RESUMEN

A novel, to the best of our knowledge, cross-spectral optical computing imaging experiment has been achieved through a single exposure of a charge-coupled device. The experimental setup integrates single-pixel imaging (SPI) with ghost imaging (GI) through a photoelectric conversion circuit and a synchronous modulation system. The experimental process involves modulation in one wavelength band (in SPI) and demodulation using the GI algorithm in another. Significantly, our approach utilizes optical computing demodulation, a departure from the conventional electronic demodulation in GI (SPI), which involves the convolution between the bucket optical signals and the modulated patterns on the digital micromirror device. A proof-of-concept cross-band imaging experiment from near-infrared to visible light has been carried out. The results highlight the system's ability to capture images at up to 20 frames per second using near-infrared illumination, which are then reconstructed in the visible light spectrum. This success not only validates the feasibility of our approach but also expands the potential applications in the SPI or GI fields, particularly in scenarios where two-dimensional detector arrays are either unavailable or prohibitively expensive in certain electromagnetic spectra such as x-ray and terahertz.

3.
Acta Pharmacol Sin ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641746

RESUMEN

Acute kidney injury (AKI) is defined as sudden loss of renal function characterized by increased serum creatinine levels and reduced urinary output with a duration of 7 days. Ferroptosis, an iron-dependent regulated necrotic pathway, has been implicated in the progression of AKI, while ferrostatin-1 (Fer-1), a selective inhibitor of ferroptosis, inhibited renal damage, oxidative stress and tubular cell death in AKI mouse models. However, the clinical translation of Fer-1 is limited due to its lack of efficacy and metabolic instability. In this study we designed and synthesized four Fer-1 analogs (Cpd-A1, Cpd-B1, Cpd-B2, Cpd-B3) with superior plasma stability, and evaluated their therapeutic potential in the treatment of AKI. Compared with Fer-1, all the four analogs displayed a higher distribution in mouse renal tissue in a pharmacokinetic assay and a more effective ferroptosis inhibition in erastin-treated mouse tubular epithelial cells (mTECs) with Cpd-A1 (N-methyl-substituted-tetrazole-Fer-1 analog) being the most efficacious one. In hypoxia/reoxygenation (H/R)- or LPS-treated mTECs, treatment with Cpd-A1 (0.25 µM) effectively attenuated cell damage, reduced inflammatory responses, and inhibited ferroptosis. In ischemia/reperfusion (I/R)- or cecal ligation and puncture (CLP)-induced AKI mouse models, pre-injection of Cpd-A1 (1.25, 2.5, 5 mg·kg-1·d-1, i.p.) dose-dependently improved kidney function, mitigated renal tubular injury, and abrogated inflammation. We conclude that Cpd-A1 may serve as a promising therapeutic agent for the treatment of AKI.

4.
Ecotoxicol Environ Saf ; 273: 116149, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412632

RESUMEN

It is still a serious public health issue that chronic kidney disease of uncertain etiology (CKDu) in Sri Lanka poses challenges in identification, prevention, and treatment. What environmental factors in drinking water cause kidney damage remains unclear. This study aimed to investigate the risks of various environmental factors that may induce CKDu, including water hardness, fluoride (HF), heavy metals (HM), microcystin-LR (MC-LR), and their combined exposure (HFMM). The research focused on comprehensive metabolome analysis, and correlation with transcriptomic and gut microbiota changes. Results revealed that chronic exposure led to kidney damage and pancreatic toxicity in adult zebrafish. Metabolomics profiling showed significant alterations in biochemical processes, with enriched metabolic pathways of oxidative phosphorylation, folate biosynthesis, arachidonic acid metabolism, FoxO signaling pathway, lysosome, pyruvate metabolism, and purine metabolism. The network analysis revealed significant changes in metabolites associated with renal function and diseases, including 20-Hydroxy-LTE4, PS(18:0/22:2(13Z,16Z)), Neuromedin N, 20-Oxo-Leukotriene E4, and phenol sulfate, which are involved in the fatty acyls and glycerophospholipids class. These metabolites were closely associated with the disrupted gut bacteria of g_ZOR0006, g_Pseudomonas, g_Tsukamurella, g_Cetobacterium, g_Flavobacterium, which belonged to dominant phyla of Firmicutes and Proteobacteria, etc., and differentially expressed genes (DEGs) such as egln3, ca2, jun, slc2a1b, and gls2b in zebrafish. Exploratory omics analyses revealed the shared significantly changed pathways in transcriptome and metabolome like calcium signaling and necroptosis, suggesting potential biomarkers for assessing kidney disease.


Asunto(s)
Agua Potable , Insuficiencia Renal Crónica , Animales , Agua Potable/análisis , Pez Cebra , Sri Lanka , Insuficiencia Renal Crónica/etiología , Metaboloma
5.
Anal Chem ; 95(4): 2413-2419, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36633558

RESUMEN

The roadblocks for the planar silver/silver chloride (Ag/AgCl) quasi-reference electrode (qRE) development are the potential stability and long-term reliability as potentiometric sensors. Although there is a significant amount of work on potentiometric screen-printed and inkjet-printed sensors, none of the REs has comparable performance to that of the conventional glass RE and knowledge on reliable planar Ag/AgCl qREs is still limited. Here, a novel fishbone-structured flexible Ag/AgCl qRE (Fishbone-Ag/AgCl qRE) was developed and its stability and long-term reliability were significantly improved. The stability of the Fishbone-Ag/AgCl qRE was comparable to that of a commercial glass Ag/AgCl RE. In a long-term stability test, the Fishbone-Ag/AgCl qRE could continuously and stably operate for more than 4 h. Shelf-life testing revealed a 6 month life span. The conductivity and diameter of the nanowires in the fishbone structure of the Ag/AgCl qRE had important influences on electrochemical properties. The conductivity of the qRE influenced the charge-transfer rate in the electrode so that it affected the potential stability. Thicker diameter and slight chlorination on the surface of the AgNWs resulted in enhanced long-term reliability of the qRE. The capabilities of this new nanostructured material were applied in vivo for noninvasive monitoring of electrocardiogram. The discovery is elementary and substantially informs improved nanostructure RE design for testing and commercial medical device applications.


Asunto(s)
Nanocables , Plata , Plata/química , Reproducibilidad de los Resultados , Electrodos , Electrocardiografía
6.
Acta Pharmacol Sin ; 44(11): 2201-2215, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37433872

RESUMEN

Pulmonary arterial hypertension (PH) is a chronic disease induced by a progressive increase in pulmonary vascular resistance and failure of the right heart function. A number of studies show that the development of PH is closely related to the gut microbiota, and lung-gut axis might be a potential therapeutic target in the PH treatment. A. muciniphila has been reported to play a critical role in treating cardiovascular disorders. In this study we evaluated the therapeutic effects of A. muciniphila against hypoxia-induced PH and the underlying mechanisms. Mice were pretreated with A. muciniphila suspension (2 × 108 CFU in 200 µL sterile anaerobic PBS, i.g.) every day for 3 weeks, and then exposed to hypoxia (9% O2) for another 4 weeks to induce PH. We showed that A. muciniphila pretreatment significantly facilitated the restoration of the hemodynamics and structure of the cardiopulmonary system, reversed the pathological progression of hypoxia-induced PH. Moreover, A. muciniphila pretreatment significantly modulated the gut microbiota in hypoxia-induced PH mice. miRNA sequencing analysis reveals that miR-208a-3p, a commensal gut bacteria-regulated miRNA, was markedly downregulated in lung tissues exposed to hypoxia, which was restored by A. muciniphila pretreatment. We showed that transfection with miR-208a-3p mimic reversed hypoxia-induced abnormal proliferation of human pulmonary artery smooth muscle cells (hPASMCs) via regulating the cell cycle, whereas knockdown of miR-208a-3p abolished the beneficial effects of A. muciniphila pretreatment in hypoxia-induced PH mice. We demonstrated that miR-208a-3p bound to the 3'-untranslated region of NOVA1 mRNA; the expression of NOVA1 was upregulated in lung tissues exposed to hypoxia, which was reversed by A. muciniphila pretreatment. Furthermore, silencing of NOVA1 reversed hypoxia-induced abnormal proliferation of hPASMCs through cell cycle modulation. Our results demonstrate that A. muciniphila could modulate PH through the miR-208a-3p/NOVA1 axis, providing a new theoretical basis for PH treatment.


Asunto(s)
Hipertensión Pulmonar , MicroARNs , Hipertensión Arterial Pulmonar , Humanos , Ratones , Animales , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Pulmón/patología , Arteria Pulmonar/metabolismo , Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas de Unión al ARN/metabolismo , Proliferación Celular/fisiología , Antígeno Ventral Neuro-Oncológico
7.
J Clin Lab Anal ; 37(5): e24845, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36861291

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a persistent and systemic autoimmunity disease. The abnormal differentiation of Treg cells is important in pathogenesis. Despite previous studies showed that microRNAs (miRNAs, miR) are pivotal modulators of Treg cells, the effect of miRNAs on Treg cell differentiation and function is not clear. Our study wants to reveal the relationship of miR-143-3p with the differentiative ability and biofunction of Treg cells during the development of RA. METHODS: The Expressing level of miR-143-3p and cell factor generation in peripheral blood (PB) of RA sufferers were identified by ELISA or RT-qPCR. The roles of miR-143-3p in Treg cell differentiation were studied via ShRNA/lentivirus transfection. Male DBA/1 J mice were separated into control, model, control mimics, and miR-143-3p mimics groups to analyze the anti-arthritis efficacy, the differentiative ability of Treg cells, and the expression level of miR-143-3p. RESULTS: Our team discovered that the Expressing level of miR-143-3p was related to RA disease activities in a negative manner, and remarkably related to antiinflammation cell factor IL-10. In vitro, the expression of miR-143-3p in the CD4+ T cells upregulated the percentage of CD4+ CD25+ Fxop3+ cells (Tregs) and forkhead box protein 3 (Foxp3) mRNA expression. Evidently, miR-143-3p mimic intervention considerably upregulated the content of Treg cells in vivo, validly avoided CIA progression, and remarkably suppressed the inflammatory events of joints in mice. CONCLUSION: Our findings indicated that miR-143-3p could ameliorate CIA through polarizing naive CD4+ T cells into Treg cells, which may be a novel strategy to treat autoimmune diseases such as RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , MicroARNs , Masculino , Ratones , Animales , Linfocitos T Reguladores , Artritis Experimental/genética , Artritis Experimental/terapia , Ratones Endogámicos DBA , MicroARNs/metabolismo
8.
Pharm Biol ; 61(1): 459-472, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36794740

RESUMEN

CONTEXT: Rheumatoid arthritis (RA) is an autoimmune disease with aberrant Th17 cell differentiation. Panax notoginseng (Burk.) F. H. Chen (Araliaceae) saponins (PNS) have an anti-inflammatory effect and can suppress Th17 cell differentiation. OBJECTIVE: To investigate mechanisms of PNS on Th17 cell differentiation in RA, and the role of pyruvate kinase M2 (PKM2). MATERIALS AND METHODS: Naive CD4+T cells were treated with IL-6, IL-23 and TGF-ß to induce Th17 cell differentiation. Apart from the Control group, other cells were treated with PNS (5, 10, 20 µg/mL). After the treatment, Th17 cell differentiation, PKM2 expression, and STAT3 phosphorylation were measured via flow cytometry, western blots, or immunofluorescence. PKM2-specific allosteric activator (Tepp-46, 50, 100, 150 µM) and inhibitor (SAICAR, 2, 4, 8 µM) were used to verify the mechanisms. A CIA mouse model was established and divided into control, model, and PNS (100 mg/kg) groups to assess an anti-arthritis effect, Th17 cell differentiation, and PKM2/STAT3 expression. RESULTS: PKM2 expression, dimerization, and nuclear accumulation were upregulated upon Th17 cell differentiation. PNS inhibited the Th17 cells, RORγt expression, IL-17A levels, PKM2 dimerization, and nuclear accumulation and Y705-STAT3 phosphorylation in Th17 cells. Using Tepp-46 (100 µM) and SAICAR (4 µM), we demonstrated that PNS (10 µg/mL) inhibited STAT3 phosphorylation and Th17 cell differentiation by suppressing nuclear PKM2 accumulation. In CIA mice, PNS attenuated CIA symptoms, reduced the number of splenic Th17 cells and nuclear PKM2/STAT3 signaling. DISCUSSION AND CONCLUSIONS: PNS inhibited Th17 cell differentiation through the inhibition of nuclear PKM2-mediated STAT3 phosphorylation. PNS may be useful for treating RA.


Asunto(s)
Panax notoginseng , Saponinas , Ratones , Animales , Saponinas/farmacología , Células Th17 , Fosforilación , Diferenciación Celular
9.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4711-4721, 2023 Sep.
Artículo en Zh | MEDLINE | ID: mdl-37802810

RESUMEN

This study aimed to investigate the protective effect and underlying mechanism of Mailuo Shutong Pills(MLST) on posterior limb swelling caused by femur fracture in rats. The rats were randomly divided into a sham operation group, a model group, a low-dose MLST group(1.8 g·kg~(-1)·d~(-1)), a high-dose MLST group(3.6 g·kg~(-1)·d~(-1)), and a positive drug group(60 mg·kg~(-1)·d~(-1) Maizhiling Tablets). The femur in the sham operation group was exposed and the wound was sutured, while the other four groups underwent mechanical damage to cause femur fracture. The rats were treated with corresponding drugs by gavage 7 days before modeling and 5 days after modeling, while those in the sham operation group and the model group were given an equivalent dose of distilled water by gavage. Hematoxylin-eosin(HE) staining was used to detect the pathological injury of the posterior limb muscle tissues in rats, and the degree of hind limb swelling was measured. The enzyme-linked immunosorbent assay(ELISA) kit was used to detect the expression levels of interleukin-6(IL-6), interleukin-1ß(IL-1ß), and tumor necrosis factor-α(TNF-α) in the serum of rats in each group. The activity of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and glutathione peroxidase(GSH-Px) in rat serum was also measured. Western blot was used to detect the protein expression levels of heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), and nuclear transcription factor E2-related factor 2(Nrf2) in rat posterior limb muscle tissues. The changes in the intestinal flora and intestinal metabolites in rats were detected by 16S rDNA sequencing and ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS), respectively, to explore the underlying mechanism of MLST in treating posterior limb swelling caused by femur fracture in rats. Compared with the model group, MLST significantly improved the degree of posterior limb swelling in rats, reduced the levels of serum inflammatory factors, and alleviated oxidative stress injury. The HE staining results showed that the inflammatory infiltration in the posterior limb muscle tissues of rats in the MLST groups was significantly improved. Western blot results showed that MLST significantly increased the protein expression of HO-1, NQO1, and Nrf2 in rat posterior limb muscle tissues compared with the model group. The 16S rDNA sequencing results showed that MLST improved the disorder of intestinal flora in rats after femur fracture. The UPLC-MS/MS results showed that MLST significantly affected the bile acid biosynthesis and metabolism pathway in the intestine after femur fracture, and the Spearman analysis confirmed that the metabolite deoxycholic acid involved in bile acid biosynthesis was positively correlated with the abundance of Turicibacter. The metabolite cholic acid was positively correlated with the abundance of Papilibacter, Staphylococcus, and Intestinimonas. The metabolite lithocholic acid was positively correlated with Papilibacter and Intestinimonas. The above results indicated that MLST could protect against the posterior limb swelling caused by femur fracture in rats. This protective effect may be achieved by improving the pathological injury of the posterior limb muscle, reducing the expression levels of inflammatory and oxidative stress-related factors in serum, reducing the oxidative injury of the posterior limb muscle, improving intestinal flora, and balancing the biosynthesis of bile acids in the intestine.


Asunto(s)
Microbioma Gastrointestinal , Factor 2 Relacionado con NF-E2 , Ratas , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Cromatografía Liquida , Tipificación de Secuencias Multilocus , Espectrometría de Masas en Tándem , Estrés Oxidativo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fémur , Ácidos y Sales Biliares , ADN Ribosómico , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
10.
J Chem Phys ; 157(5): 054301, 2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35933208

RESUMEN

Uranium nitride-oxide cations [NUO]+ and their complexes with equatorial N2 ligands, [NUO·(N2)n]+ (n = 1-7), were synthesized in the gas phase. Mass-selected infrared photodissociation spectroscopy and quantum chemical calculations confirm [NUO·(N2)5]+ to be a sterically fully coordinated cation, with electronic singlet ground state of 1A1, linear [NUO]+ core, and C5v structure. The presence of short N-U bond distances and high stretching modes, with slightly elongated U-O bond distances and lowered stretching modes, is rationalized by attributing them to cooperative covalent and dative [ǀN≡U≡Oǀ]+ triple bonds. The mutual trans-interaction through flexible electronic U-5f6d7sp valence shell and the linearly increasing perturbation with increase in the number of equatorial dative N2 ligands has also been explained, highlighting the bonding characteristics and distinct features of uranium chemistry.

11.
Mar Drugs ; 20(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35323500

RESUMEN

Hematopoietic damage is a serious side effect of cytotoxic drugs, and agents promoting hematopoiesis are quite important for decreasing the death rate in cancer patients. In our previous work, we prepared the simulated digestive product of fucoidan from Sargassum fusiforme, DSFF, and found that DSFF could activate macrophages. However, more investigations are needed to further evaluate whether DSFF could promote hematopoiesis in the chemotherapy process. In this study, the protective effect of DSFF (1.8-7.2 mg/kg, i.p.) on cyclophosphamide-induced hematopoietic damage in mice and the underlying mechanisms were investigated. Our results show that DSFF could restore the numbers of white blood cells, neutrophils, and platelets in the peripheral blood, and could also retard bone marrow cell decrease in mice with cyclophosphamide-induced hematopoietic damage. UPLC/Q-Extraction Orbitrap/MS/MS-based lipidomics results reveal 16 potential lipid biomarkers in a serum that responded to hematopoietic damage in mice. Among them, PC (20:1/14:0) and SM (18:0/22:0) were the key lipid molecules through which DSFF exerted protective actions. In a validation experiment, DSFF (6.25-100 µg/mL) could also promote K562 cell proliferation and differentiation in vitro. The current findings indicated that DSFF could affect the blood cells and bone marrow cells in vivo and thus showed good potential and application value in alleviating the hematopoietic damage caused by cyclophosphamide.


Asunto(s)
Ciclofosfamida/toxicidad , Hematopoyesis/efectos de los fármacos , Agonistas Mieloablativos/toxicidad , Polisacáridos/farmacología , Sustancias Protectoras/farmacología , Sargassum , Animales , Biomarcadores/sangre , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Proliferación Celular/efectos de los fármacos , ADN/metabolismo , Humanos , Células K562 , Recuento de Leucocitos , Lipidómica , Ratones , Neutrófilos/efectos de los fármacos , Recuento de Plaquetas
12.
Immunopharmacol Immunotoxicol ; 44(6): 838-849, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35657277

RESUMEN

CONTEXT: Rheumatoid arthritis (RA) is an autoimmune disease with the aberrant differentiation of T helper 17 (Th17) cells. Pyruvate kinase M2 (PKM2), a key enzyme of glycolysis, was associated with Th17 cell differentiation. AIM: To investigate the potential therapeutic effects of triptolide (TP) in collagen-induced arthritis (CIA) and Th17 cell differentiation, and elucidated the underlying mechanisms. METHODS: PKM2 expression and IL-17A production in peripheral blood of RA patients were detected by RT-qPCR or ELISA. Flow cytometry and ELISA were employed to assess the effect of Th17 cell differentiation by TP. PKM2 expression and other glycolysis-related factors were detected using RT-qPCR and Western Blot. PKM2 specific inhibitor Compound 3 K was used to verify the mechanisms. Male DBA/1J mice were divided into control, model, and TP (60 µg/kg) groups to assess the anti-arthritis effect, Th17 cell differentiation and PKM2 expression. RESULTS: PKM2 expression positively correlated with IL-17A production in RA patients. PKM2 expression was increased upon Th17 cell differentiation. Down-regulating PKM2 expression could strongly reduce Th17 cell differentiation. Molecular docking analysis predicted that TP targeted PKM2. TP treatment significantly reduced Th17 cell differentiation, PKM2 expression, pyruvate, and lactate production. In addition, compared with down-regulating PKM2 alone (Compound 3 K treatment), co-treatment with TP and Compound 3 K further significantly decreased PKM2-mediated glycolysis and Th17 cell differentiation. In CIA mice, TP repressed the PKM2-mediated glycolysis and attenuated joint inflammation. CONCLUSION: TP inhibited Th17 cell differentiation through the inhibition of PKM2-mediated glycolysis. We highlight a novel strategy for the use of TP in RA treatment.


Asunto(s)
Artritis Reumatoide , Interleucina-17 , Masculino , Animales , Ratones , Ratones Endogámicos DBA , Simulación del Acoplamiento Molecular , Artritis Reumatoide/tratamiento farmacológico , Diferenciación Celular
13.
J Transl Med ; 19(1): 304, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34256777

RESUMEN

BACKGROUND: Panic disorder (PD) is thought to be related with deficits in emotion regulation, especially in cognitive reappraisal. According to the cognitive model, PD patients' intrinsic and unconscious misappraisal strategies are the cause of panic attacks. However, no studies have yet been performed to explore the underlying neuromechanism of cognitive reappraisal that occur on an unconscious level in PD patients. METHODS: Twenty-six patients with PD and 25 healthy controls (HC) performed a fully-verified event-block design emotional regulation task aimed at investigating responses of implicit cognitive reappraisal during an fMRI scan. Participants passively viewed negatively valanced pictures that were beforehand neutrally, positively, or adversely portrayed in the task. RESULTS: Whole-brain analysis of fMRI data showed that PD patients exhibited less activation in the right dorsolateral prefrontal cortex (dlPFC) and right dorsomedial prefrontal cortex (dmPFC) compared to HC, but presented greater activation in parietal cortex when negative pictures were preceded by positive/neutral vs negative descriptions. Simultaneously, interactive effects of Group × Condition were observed in the right amygdala across both groups. Furthermore, activation in dlPFC and dmPFC was is negatively correlated to severity of anxiety and panic in PD when negative images were preceded by non-negative vs negative descriptions. CONCLUSIONS: Emotional dysregulation in PD is likely the result of deficient activation in dlPFC and dmPFC during implicit cognitive reappraisal, in line with impaired automatic top-down regulation. Correlations between severity of anxiety and panic attack and activation of right dlPFC and dmPFC suggest that the failure to engage prefrontal region during implicit cognitive reappraisal might be associated wtih the severity of anxiety and panic; such functional patterns might be the target of possible treatments.


Asunto(s)
Trastorno de Pánico , Mapeo Encefálico , Cognición , Emociones , Humanos , Imagen por Resonancia Magnética , Trastorno de Pánico/complicaciones , Trastorno de Pánico/diagnóstico por imagen
14.
Cell Immunol ; 365: 104382, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34049010

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disease, and the abnormal differentiation of IL-17-producing T helper (Th17) cells is an important factor in the pathogenesis. Previous studies have shown that microRNAs (miRNAs, miR) act as key regulators of Th17 cells. However, the effects of miRNAs on Th17 cell differentiation and plasticity in RA are not clear. In this study, not only low miR-26b-5p expression and high IL-17A level were observed in the peripheral blood of RA patients, but also the negative correlation between miR-26b-5p and IL-17A was explored. The changes in collagen-induced arthritis (CIA) mice were consistent with those in RA patients. The results of in vitro experiments showed that miR-26b-5p mainly inhibited the initial differentiation of Th17 cells but did not impact the differentiation of induced-Treg into Th17-like cells. Meanwhile, miR-26b-5p mimics treatment alleviated inflammatory responses and reduced Th17 proportion in CIA mice. These results indicated that miR-26b-5p could alleviate the development of mice CIA by inhibiting the excessive Th17 cells, and that miR-26b-5p could modulate the plasticity of Th17 cell differentiation in RA, mainly block the initial differentiation. This may provide a novel strategy for the clinical treatment of RA.


Asunto(s)
Artritis Experimental/genética , MicroARNs/genética , Células Th17/inmunología , Animales , Artritis Experimental/terapia , Artritis Reumatoide , Biomimética , Diferenciación Celular , Plasticidad de la Célula , Femenino , Terapia Genética , Humanos , Interleucina-17/metabolismo , Masculino , Ratones , Persona de Mediana Edad
15.
Curr Microbiol ; 78(4): 1648-1655, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33651189

RESUMEN

Phycosphere hosts the boundary of unique holobionts harboring dynamic algae-bacteria interactions. During our investigating the microbial consortia composition of phycosphere microbiota (PM) derived from diverse harmful algal blooms (HAB) dinoflagellates, a novel rod-shaped, motile and faint yellow-pigmented bacterium, designated as strain LZ-6 T, was isolated from HAB Alexandrium catenella LZT09 which produces high levels paralytic shellfish poisoning toxins. Phylogenetic analysis based on 16S rRNA gene and two housekeeping genes, rpoA and pheS sequences showed that the novel isolate shared the highest gene similarity with Marinobacter shengliensis CGMCC 1.12758 T (99.6%) with the similarity values of 99.6%, 99.9% and 98.5%, respectively. Further phylogenomic calculations of average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values between strains LZ-6 T and the type strain of M. shengliensis were 95.9%, 96.4% and 68.5%, respectively. However, combined phenotypic and chemotaxonomic characterizations revealed that the new isolate was obviously different from the type strain of M. shengliensis. The obtained taxonomic evidences supported that strain LZ-6 T represents a novel subspecies of M. shengliensis, for which the name is proposed, Marinobacter shengliensis subsp. alexandrii subsp. nov. with the type strain LZ-6 T (= CCTCC AB 2018388TT = KCTC 72197 T). This proposal automatically creates Marinobacter shengliensis subsp. shengliensis for which the type strain is SL013A34A2T (= LMG 27740 T = CGMCC 1.12758 T).


Asunto(s)
Dinoflagelados , Microbiota , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Dinoflagelados/genética , Ácidos Grasos/análisis , Marinobacter , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
J Cell Mol Med ; 24(13): 7094-7101, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32406586

RESUMEN

Interleukin (IL)-15 is a recently identified cytokine, which belongs to the interleukin-2(IL-2) family, and plays an important role in innate and adaptive immunoreaction. Given the fact that the structure of IL-15 is partially similar to IL-2, they share some common biological effects, including immunoregulation. IL-2 was proven to protect cardiac function in mouse myocardial infarction models. Cardiovascular diseases (CVDs) dominate the cause of mortality worldwide. Besides atherosclerosis, inflammation is also widely involved in the pathogenesis of many CVDs including hypertension, heart failure (HF) and aneurysm. IL-15, as a pro-inflammatory cytokine, is up-regulated in some cardiovascular diseases, such as myocardial infarction and atherosclerosis. The current understanding of IL-15, including its signal pathway and cellular function, was described. Furthermore, IL-15 has a protective effect in myocardial infarction and myocarditis by decreasing cardiomyocyte death and improving heart function. The inhibited effect of IL-15 in ductus arteriosus (DA) should be focused on. IL-15 promoted atherogenesis. IL-15 may be a good target in treatment of cardiovascular diabetology. Finally, future research direction of IL-15 deserves attention. Since IL-15 plays several roles in CVDs, understanding the role of the IL-15/IL-15R system may provide a scientific basis for the development of new approaches that use IL-15 for the treatment of CVDs.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Interleucina-15/metabolismo , Animales , Biomarcadores/metabolismo , Glucosa/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Interleucina-15/química , Modelos Cardiovasculares
17.
J Transl Med ; 18(1): 406, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33121497

RESUMEN

BACKGROUND: Interleukin-6 (IL-6) was proposed to be associated with the severity of coronavirus disease 2019 (COVID-19). The present study aimed to explore the kinetics of IL-6 levels, validate this association in COVID-19 patients, and report preliminary data on the efficacy of IL-6 receptor blockade. METHODS: We conducted a retrospective single-institutional study of 901 consecutive confirmed cases. Serum IL-6 concentrations were tested on admission and/or during hospital stay. Tocilizumab was given to 16 patients with elevated IL-6 concentration. RESULTS: 366 patients were defined as common cases, 411 patients as severe, and 124 patients as critical according to the Chinese guideline on diagnosis and treatment of COVID-19. The median concentration of IL-6 was < 1.5 pg/ml (IQR < 1.50-2.15), 1.85 pg/ml (IQR < 1.50-5.21), and 21.55 pg/ml (IQR 6.47-94.66) for the common, severe, and critical groups respectively (P < 0.001). The follow-up kinetics revealed serum IL-6 remained high in critical patients even when cured. An IL-6 concentration higher than 37.65 pg/ml was predictive of in-hospital death (AUC 0.97 [95% CI 0.95-0.99], P < 0.001) with a sensitivity of 91.7% and a specificity of 95.7%. In the 16 patients who received tocilizumab, IL-6 concentrations were significantly increased after administration, and survival outcome was not significantly different from that of propensity-score matched counterparts (n = 53, P = 0.12). CONCLUSION: Serum IL-6 should be included in diagnostic work-up to stratify disease severity, but the benefit of tocilizumab needs further confirmation. Trial registration retrospectively registered.


Asunto(s)
Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/tratamiento farmacológico , Interleucina-6/sangre , Neumonía Viral/sangre , Neumonía Viral/tratamiento farmacológico , Anciano , Anticuerpos Monoclonales Humanizados/administración & dosificación , Betacoronavirus , COVID-19 , Comorbilidad , Femenino , Humanos , Cinética , Masculino , Persona de Mediana Edad , Pandemias , Puntaje de Propensión , Estudios Retrospectivos , SARS-CoV-2 , Resultado del Tratamiento , Tratamiento Farmacológico de COVID-19
18.
Clin Sci (Lond) ; 134(14): 1935-1956, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32639005

RESUMEN

The regulation of macrophages during inflammatory responses is a crucial process in alcoholic liver disease (ALD) and aberrant macrophage DNA methylation is associated with inflammation. Our preliminary screening results of macrophage methylation in the present study demonstrated the zinc finger SWI2/SNF2 and MuDR (SWIM)-domain containing 3 (ZSWIM3) were hypermethylated in the 5' untranslated region (5'-UTR) region. ZSWIM3, a novel zinc finger-chelate domain of SWIM, is predicted to function in DNA-binding and protein-binding interactions. Its expression was found to be consistently decreased in macrophages isolated from livers of ethyl alcohol (EtOH)-fed mice and in EtOH+lipopolysaccharide (LPS)-induced RAW264.7 cells. Over-expression of ZSWIM3 was found to attenuate chronic+binge ethanol feeding-induced liver injury and inhibit inflammatory responses in vivo. Enforced expression of ZSWIM3 in vitro was also found to have anti-inflammatory effects. Aberrant expression of ZSWIM3 in alcohol-induced liver injury (ALI) was found to be associated with hypermethylation. Analysis of CpG prediction indicated the presence of two methylated sites in the ZSWIM3 promoter region and methylation inhibitor and DNA methyltransferases (DNMTs)-siRNA transfection were found to restore down-regulated ZSWIM3. Chromatin immunoprecipitation (ChIP) assay and molecular docking affirmed the role of DNMT 3b (DNMT3b) as a principal regulator of ZSWIM3 expression. Mechanistically, ZSWIM3 might affect inflammation by binding with tumor necrosis factor receptor-associated factor 2 (TRAF2), which further mediates the activation of the nuclear transcription factor κB (NF-κB) pathway. The present study, therefore, provides detailed insights into the possible structure and function of ZSWIM3 and thus, contributes new substantial research in the elucidation of the pathogenesis of ALI.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Hepatopatías Alcohólicas/metabolismo , Macrófagos/metabolismo , Animales , Metilación de ADN , Modelos Animales de Enfermedad , Hepatopatías Alcohólicas/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Factor 2 Asociado a Receptor de TNF/metabolismo , ADN Metiltransferasa 3B
19.
Sensors (Basel) ; 20(10)2020 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-32429461

RESUMEN

Matched filtering is widely used in active sonar because of its simplicity and ease of implementation. However, the resolution performance generally depends on the transmitted waveform. Moreover, its detection performance is limited by the high-level sidelobes and seriously degraded in a shallow water environment due to time spread induced by multipath propagation. This paper proposed a method named iterative deconvolution-time reversal (ID-TR), on which the energy of the cross-ambiguity function is modeled, as a convolution of the energy of the auto-ambiguity function of the transmitted signal with the generalized target reflectivity density. Similarly, the generalized target reflectivity density is a convolution of the spread function of channel with the reflectivity density of target as well. The ambiguity caused by the transmitted signal and the spread function of channel are removed by Richardson-Lucy iterative deconvolution and the time reversal processing, respectively. Moreover, this is a special case of the Richardson-Lucy algorithm that the blur function is one-dimensional and time-invariant. Therefore, the iteration deconvolution is actually implemented by the iterative temporal time reversal processing. Due to the iterative time reversal method can focus more and more energy on the strongest target with the iterative number increasing and then the peak-signal power increases, the simulated result shows that the noise reduction can achieve 250 dB in the "ideal" free field environment and 100 dB in a strong multipaths waveguide environment if a 1-ms linear frequency modulation with a 4-kHz frequency bandwidth is transmitted and the number of iteration is 10. Moreover, the range resolution is approximately a delta function. The results of the experiment in a tank show that the noise level is suppressed by more than 70 dB and the reverberation level is suppressed by 3 dB in the case of a single target and the iteration number being 8.

20.
J Stroke Cerebrovasc Dis ; 29(8): 104867, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32689632

RESUMEN

OBJECTIVE: To establish a model for predicting the outcome according to the clinical and computed tomography(CT) image data of patients with intracerebral hemorrhage(ICH). METHODS: The clinical and CT image data of the patients with ICH in Qinghai Provincial People's Hospital and Xuzhou Central Hospital were collected. The risk factors related to the poor outcome of the patients were determined by univariate and multivariate logistic regression analysis. To determine the effect of factors related to poor outcome, the nomogram model was made by software of R 3.5.2 and the support vector machine operation was completed by software of SPSS Modelor. RESULTS: A total of 8265 patients were collected and 1186 patients met the criteria of the study. Age, hospitalization days, blend sign, intraventricular extension, subarachnoid hemorrhage, midline shift, diabetes and baseline hematoma volume were independent predictors of poor outcome. Among these factors, baseline hematoma volume๥20ml (odds ratio:13.706, 95% confidence interval:9.070-20.709, p < 0.001) was the most significant factor for poor outcome, followed by the volume among 10ml-20ml (odds ratio:11.834, 95% confidence interval:7.909-17.707, p < 0.001). It was concluded that the highest percentage of weight in outcome was baseline hematoma volume (25.0%), followed by intraventricular hemorrhage (23.0%). CONCLUSION: This predictive model might accurately predict the outcome of patients with ICH. It might have a wide range of application prospects in clinical.


Asunto(s)
Hemorragia Cerebral/diagnóstico por imagen , Técnicas de Apoyo para la Decisión , Nomogramas , Máquina de Vectores de Soporte , Tomografía Computarizada por Rayos X , Hemorragia Cerebral/fisiopatología , Hemorragia Cerebral/terapia , China , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA