Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 324(3): C658-C664, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36717104

RESUMEN

Small-conductance Ca2+-activated potassium channels subtype 2 (KCa2.2, also called SK2) are operated exclusively by a Ca2+-calmodulin gating mechanism. Heterozygous genetic mutations of KCa2.2 channels have been associated with autosomal dominant neurodevelopmental disorders including cerebellar ataxia and tremor in humans and rodents. Taking advantage of these pathogenic mutations, we performed structure-function studies of the rat KCa2.2 channel. No measurable current was detected from HEK293 cells heterologously expressing these pathogenic KCa2.2 mutants. When coexpressed with the KCa2.2_WT channel, mutations of the pore-lining amino acid residues (I360M, Y362C, G363S, and I389V) and two proline substitutions (L174P and L433P) dominant negatively suppressed and completely abolished the activity of the coexpressed KCa2.2_WT channel. Coexpression of the KCa2.2_I289N and the KCa2.2_WT channels reduced the apparent Ca2+ sensitivity compared with the KCa2.2_WT channel, which was rescued by a KCa2.2 positive modulator.


Asunto(s)
Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Animales , Humanos , Ratas , Células HEK293 , Mutación , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
2.
J Neurosci Res ; 101(11): 1699-1710, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37466411

RESUMEN

One group of the K+ ion channels, the small-conductance Ca2+ -activated potassium channels (KCa 2.x, also known as SK channels family), is widely expressed in neurons as well as the heart, endothelial cells, etc. They are named small-conductance Ca2+ -activated potassium channels (SK channels) due to their comparatively low single-channel conductance of about ~10 pS. These channels are insensitive to changes in membrane potential and are activated solely by rises in the intracellular Ca2+ . According to the phylogenic research done on the KCa 2.x channels family, there are three channels' subtypes: KCa 2.1, KCa 2.2, and KCa 2.3, which are encoded by KCNN1, KCNN2, and KCNN3 genes, respectively. The KCa 2.x channels regulate neuronal excitability and responsiveness to synaptic input patterns. KCa 2.x channels inhibit excitatory postsynaptic potentials (EPSPs) in neuronal dendrites and contribute to the medium afterhyperpolarization (mAHP) that follows the action potential bursts. Multiple brain regions, including the hippocampus, express the KCa 2.2 channel encoded by the KCNN2 gene on chromosome 5. Of particular interest, rat cerebellar Purkinje cells express KCa 2.2 channels, which are crucial for various cellular processes during development and maturation. Patients with a loss-of-function of KCNN2 mutations typically exhibit extrapyramidal symptoms, cerebellar ataxia, motor and language developmental delays, and intellectual disabilities. Studies have revealed that autosomal dominant neurodevelopmental movement disorders resembling rodent symptoms are caused by heterozygous loss-of-function mutations, which are most likely to induce KCNN2 haploinsufficiency. The KCa 2.2 channel is a promising drug target for spinocerebellar ataxias (SCAs). SCAs exhibit the dysregulation of firing in cerebellar Purkinje cells which is one of the first signs of pathology. Thus, selective KCa 2.2 modulators are promising potential therapeutics for SCAs.


Asunto(s)
Células Endoteliales , Canales de Potasio , Ratas , Animales , Canales de Potasio/fisiología , Neuronas/fisiología , Potenciales de la Membrana/fisiología , Células de Purkinje
3.
Rapid Commun Mass Spectrom ; 37(15): e9537, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184249

RESUMEN

RATIONALE: There is currently no treatment for spinocerebellar ataxias (SCAs), which are a group of genetic disorders that often cause a lack of coordination, difficulty walking, slurred speech, tremors, and eventually death. Activation of KCa 2.2/KCa 2.3 channels reportedly exerts beneficial effects in SCAs. Here, we report the development and validation of an analytical method for quantitating a recently developed positive allosteric modulator of KCa 2.2/KCa 2.3 channels (compound 2q) in mouse plasma. METHODS: Mouse plasma samples (10 µL) containing various concentrations of 2q were subjected to protein precipitation in the presence of a structurally similar internal standard (IS). Subsequently, the analytes were separated on a C18 ultrahigh-performance liquid chromatography column and detected by a tandem mass spectrometer. The method was validated using US Food and Drug Administration (FDA) guidelines. Finally, the validated assay was applied to the measurement of the plasma concentrations of 2q in plasma samples taken from mice after single intravenous doses of 2 mg/kg of 2q, and the pharmacokinetic parameters of 2q were determined. RESULTS: The calibration standards were linear (r2 ≥ 0.99) in the range of 1.56-200 nM of 2q with intra- and inter-run accuracy and precision values within the FDA guidelines. The lower limit of quantitation of the assay was 1.56 nM (0.258 pg on the column). The recoveries of 2q and IS from plasma were >94%, with no appreciable matrix effect. The assay showed no significant carryover, and the plasma samples stored at -80°C or the processed samples stored in the autosampler at 10°C were stable for at least 3 weeks and 36 h, respectively. After intravenous injection, 2q showed a bi-exponential decline pattern in the mouse plasma, with a clearance of 30 mL/min/kg, a terminal volume of distribution of 1.93 mL/kg, and a terminal half-life of 45 min. CONCLUSIONS: The developed assay is suitable for preclinical pharmacokinetic-pharmacodynamic studies of 2q as a potential drug candidate for ataxias.


Asunto(s)
Plasma , Espectrometría de Masas en Tándem , Ratones , Animales , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Plasma/química , Reproducibilidad de los Resultados
4.
Acta Pharmacol Sin ; 44(2): 259-267, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35715699

RESUMEN

Small- and intermediate-conductance Ca2+-activated K+ (KCa2.x/KCa3.1 also called SK/IK) channels are gated exclusively by intracellular Ca2+. The Ca2+ binding protein calmodulin confers sub-micromolar Ca2+ sensitivity to the channel-calmodulin complex. The calmodulin C-lobe is constitutively associated with the proximal C-terminus of the channel. Interactions between calmodulin N-lobe and the channel S4-S5 linker are Ca2+-dependent, which subsequently trigger conformational changes in the channel pore and open the gate. KCNN genes encode four subtypes, including KCNN1 for KCa2.1 (SK1), KCNN2 for KCa2.2 (SK2), KCNN3 for KCa2.3 (SK3), and KCNN4 for KCa3.1 (IK). The three KCa2.x channel subtypes are expressed in the central nervous system and the heart. The KCa3.1 subtype is expressed in the erythrocytes and the lymphocytes, among other peripheral tissues. The impact of dysfunctional KCa2.x/KCa3.1 channels on human health has not been well documented. Human loss-of-function KCa2.2 mutations have been linked with neurodevelopmental disorders. Human gain-of-function mutations that increase the apparent Ca2+ sensitivity of KCa2.3 and KCa3.1 channels have been associated with Zimmermann-Laband syndrome and hereditary xerocytosis, respectively. This review article discusses the physiological significance of KCa2.x/KCa3.1 channels, the pathophysiology of the diseases linked with KCa2.x/KCa3.1 mutations, the structure-function relationship of the mutant KCa2.x/KCa3.1 channels, and potential pharmacological therapeutics for the KCa2.x/KCa3.1 channelopathy.


Asunto(s)
Canalopatías , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Humanos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Mutación
5.
Proc Natl Acad Sci U S A ; 117(33): 19982-19993, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32753382

RESUMEN

The underlying mechanism of necroptosis in relation to cancer is still unclear. Here, MYC, a potent oncogene, is an antinecroptotic factor that directly suppresses the formation of the RIPK1-RIPK3 complex. Gene set enrichment analyses reveal that the MYC pathway is the most prominently down-regulated signaling pathway during necroptosis. Depletion or deletion of MYC promotes the RIPK1-RIPK3 interaction, thereby stabilizing the RIPK1 and RIPK3 proteins and facilitating necroptosis. Interestingly, MYC binds to RIPK3 in the cytoplasm and inhibits the interaction between RIPK1 and RIPK3 in vitro. Furthermore, MYC-nick, a truncated form that is mainly localized in the cytoplasm, prevented TNF-induced necroptosis. Finally, down-regulation of MYC enhances necroptosis in leukemia cells and suppresses tumor growth in a xenograft model upon treatment with birinapant and emricasan. MYC-mediated suppression of necroptosis is a mechanism of necroptosis resistance in cancer, and approaches targeting MYC to induce necroptosis represent an attractive therapeutic strategy for cancer.


Asunto(s)
Leucemia/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Leucemia/genética , Leucemia/fisiopatología , Ratones , Ratones Endogámicos BALB C , Necroptosis , Unión Proteica , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-myc/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Transducción de Señal
6.
J Biol Chem ; 290(30): 18281-92, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26041776

RESUMEN

The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes.


Asunto(s)
Celobiosa/química , Disacáridos/química , Gammaproteobacteria/enzimología , Fosforilasas/química , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Celobiosa/metabolismo , Celulosa/química , Celulosa/metabolismo , Cristalografía por Rayos X , Análisis Mutacional de ADN , Disacáridos/metabolismo , Gammaproteobacteria/química , Oxidación-Reducción , Fosforilasas/genética , Fosforilasas/metabolismo , Estructura Terciaria de Proteína , Especificidad por Sustrato
7.
Biochim Biophys Acta ; 1854(5): 333-40, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25644306

RESUMEN

Infant gut-associated bifidobacteria possess a metabolic pathway to utilize lacto-N-biose (Gal-ß1,3-GlcNAc) and galacto-N-biose (Gal-ß1,3-GalNAc) from human milk and glycoconjugates specifically. In this pathway, N-acetylhexosamine 1-kinase (NahK) catalyzes the phosphorylation of GlcNAc or GalNAc at the anomeric C1 position with ATP. Crystal structures of NahK have only been determined in the closed state. In this study, we determined open state structures of NahK in three different forms (apo, ADP complex, and ATP complex). A comparison of the open and closed state structures revealed an induced fit structural change defined by two rigid domains. ATP binds to the small N-terminal domain, and binding of the N-acetylhexosamine substrate to the large C-terminal domain induces a closing conformational change with a rotation angle of 16°. In the nucleotide binding site, two magnesium ions bridging the α-γ and ß-γ phosphates were identified. A mutational analysis indicated that a residue coordinating both of the two magnesium ions (Asp228) is essential for catalysis. The involvement of two magnesium ions in the catalytic machinery is structurally similar to the catalytic structures of protein kinases and aminoglycoside phosphotransferases, but distinct from the structures of other anomeric kinases or sugar 6-kinases. These findings help to elucidate the possible evolutionary adaptation of substrate specificities and induced fit mechanism.


Asunto(s)
Bifidobacterium/enzimología , Magnesio/metabolismo , Fosfotransferasas/química , Fosfotransferasas/metabolismo , Pliegue de Proteína , Acetilglucosamina/metabolismo , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Hexosaminas/metabolismo , Humanos , Iones , Ligandos , Magnesio/química , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína
8.
Extremophiles ; 18(1): 99-110, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24292509

RESUMEN

The putative gene (st2133) for ferredoxin:NADP(+) oxidoreductase (FNR) from Sulfolobus tokodaii, a thermoacidophilic crenarchaeon, was heterologously expressed. About 90% of the purified product was a homodimer containing 0.46 mol FAD/mol subunit, and showing NADPH:DCPIP oxidoreductase activity, V max being 1.38 and 21.8 U/mg (70 °C) in the absence and presence of 1 mM FMN. NADPH was a much better electron donor than NADH with various electron acceptors, such as oxygen, hydrogen peroxide, DCPIP, cytochrome c, and dithiobisnitrobenzoate. Most of the reactions were activated by 15- to 140-fold on addition of FMN, while FAD was 5-10 times less effective. Ferredoxin (Fd) from S. tokodaii served as an electron carrier in both Fd-dependent NADPH formation and NADPH-dependent Fd reduction. ST2133 belongs to the thioredoxin reductase-like protein family, which is slightly distantly related to FNR family proteins from bacteria, plants and man. This is the first report on FNR from a crenarchaeon, providing a clue to the recycling of Fd during archaeal metabolism.


Asunto(s)
Proteínas Arqueales/genética , Ferredoxina-NADP Reductasa/genética , Sulfolobus/enzimología , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Secuencia de Bases , Ferredoxina-NADP Reductasa/química , Ferredoxina-NADP Reductasa/metabolismo , Datos de Secuencia Molecular , Filogenia
9.
Biochem J ; 452(2): 211-21, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23537284

RESUMEN

GH3 (glycoside hydrolase family 3) BGLs (ß-glucosidases) from filamentous fungi have been widely and commercially used for the supplementation of cellulases. AaBGL1 (Aspergillus aculeatus BGL1) belongs to the GH3 and shows high activity towards cellooligosaccharides up to high degree of polymerization. In the present study we determined the crystal structure of AaBGL1. In addition to the substrate-free structure, the structures of complexes with glucose and various inhibitors were determined. The structure of AaBGL1 is highly glycosylated with 88 monosaccharides (18 N-glycan chains) in the dimer. The largest N-glycan chain comprises ten monosaccharides and is one of the largest glycans ever observed in protein crystal structures. A prominent insertion region exists in a fibronectin type III domain, and this region extends to cover a wide surface area of the enzyme. The subsite +1 of AaBGL1 is highly hydrophobic. Three aromatic residues are present at subsite +1 and are located in short loop regions that are uniquely present in this enzyme. There is a long cleft extending from subsite +1, which appears to be suitable for binding long cellooligosaccharides. The crystal structures of AaBGL1 from the present study provide an important structural basis for the technical improvement of enzymatic cellulosic biomass conversion.


Asunto(s)
Aspergillus/enzimología , Proteínas Fúngicas/química , beta-Glucosidasa/química , Conformación de Carbohidratos , Secuencia de Carbohidratos , Dominio Catalítico , Cristalografía por Rayos X , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/metabolismo , Glicosilación , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Polisacáridos/química , Conformación Proteica , beta-Glucosidasa/antagonistas & inhibidores , beta-Glucosidasa/metabolismo
10.
Cell Death Differ ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789573

RESUMEN

Tumour necrosis factor receptor 1 (TNFR1) induces the nuclear factor kappa-B (NF-κB) signalling pathway and regulated cell death processes when TNF-α ligates with it. Although mechanisms regulating the downstream pathways of TNFR1 have been elucidated, the direct regulation of TNFR1 itself is not well known. In this study, we showed that the kinase domain of the epidermal growth factor receptor (EGFR) regulates NF-κB signalling and TNF-α-induced cell death by directly phosphorylating TNFR1 at Tyr 360 and 401 in its death domain. In contrast, EGFR inhibition by EGFR inhibitors, such as erlotinib and gefitinib, prevented their interaction. Once TNFR1 is phosphorylated, its death domain induces the suppression of the NF-κB pathways, complex II-mediated apoptosis, or necrosome-dependent necroptosis. Physiologically, in mouse models, EGF treatment mitigates TNF-α-dependent necroptotic skin inflammation induced by treatment with IAP and caspase inhibitors. Our study revealed a novel role for EGFR in directly regulating TNF-α-related pathways.

11.
Front Physiol ; 15: 1320086, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348223

RESUMEN

Numerous neurodegenerative diseases result from altered ion channel function and mutations. The intracellular redox status can significantly alter the gating characteristics of ion channels. Abundant neurodegenerative diseases associated with oxidative stress have been documented, including Parkinson's, Alzheimer's, spinocerebellar ataxia, amyotrophic lateral sclerosis, and Huntington's disease. Reactive oxygen and nitrogen species compounds trigger posttranslational alterations that target specific sites within the subunits responsible for channel assembly. These alterations include the adjustment of cysteine residues through redox reactions induced by reactive oxygen species (ROS), nitration, and S-nitrosylation assisted by nitric oxide of tyrosine residues through peroxynitrite. Several ion channels have been directly investigated for their functional responses to oxidizing agents and oxidative stress. This review primarily explores the relationship and potential links between oxidative stress and ion channels in neurodegenerative conditions, such as cerebellar ataxias and Parkinson's disease. The potential correlation between oxidative stress and ion channels could hold promise for developing innovative therapies for common neurodegenerative diseases.

12.
Int Immunopharmacol ; 139: 112600, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39002524

RESUMEN

Immunotherapy has emerged as a promising approach to cancer treatment that utilizes the potential of the immune system to precisely identify and eradicate cancerous cells. Despite significant progress in immunotherapy, innovative approaches are required to enhance the effectiveness and safety of these treatments. Interleukin-12 (IL-12), widely recognized for its essential function in immune responses, has been explored as a potential candidate for treating cancer. However, early attempts involving the systemic administration of IL-12 were ineffective, with significant adverse effects, thus underscoring the need for innovation. To address these challenges, we developed a therapeutic molecule that utilizes a single-chain IL-12 mutant (IL-12mut) linked to a tumor-targeting arm. Here, we describe the development of a highly effective IL-12-based TMEkine™ platform by employing a B-cell lymphoma model (termed CD20-IL-12mut). CD20-IL-12mut combined the attenuated activities of IL-12 with targeted delivery to the tumor, thereby maximizing therapeutic potential while minimizing off-target effects. Our results revealed that CD20-IL-12mut exhibited potent anticancer activity by inducing complete regression and generating immunological memory for tumor antigens. Collectively, our data provide a basis for additional research on CD20-IL-12mut as a potential treatment choice for patients with B-cell lymphomas such as non-Hodgkin's lymphoma.

13.
Hum Genet ; 132(6): 657-68, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23456092

RESUMEN

Alcohol dependence (AD) is a multifactorial and polygenic disorder involving complex gene-to-gene and gene-to-environment interactions. Several genome-wide association studies have reported numerous risk factors for AD, but replication results following these studies have been controversial. To identify new candidate genes, the present study used GWAS and replication studies in a Korean cohort with AD. Genome-wide association analysis revealed that two chromosome regions on Chr. 4q22-q23 (ADH gene cluster, including ADH5, ADH4, ADH6, ADH1A, ADH1B, and ADH7) and Chr. 12q24 (ALDH2) showed multiple association signals for the risk of AD. To investigate detailed genetic effects of these ADH genes on AD, a follow-up study of the ADH gene cluster on 4q22-q23 was performed. A total of 90 SNPs, including ADH1B rs1229984 (H47R), were genotyped in an additional 975 Korean subjects. In case-control analysis, ADH1B rs1229984 (H47R) showed the most significant association with the risk of AD (p = 2.63 × 10(-21), OR = 2.35). Moreover, subsequent conditional analyses revealed that all positive associations of other ADH genes in the cluster disappeared, which suggested that ADH1B rs1229984 (H47R) might be the sole functional genetic marker across the ADH gene cluster. Our findings could provide additional information on the ADH gene cluster regarding the risk of AD, as well as a new and important insight into the genetic factors associated with AD.


Asunto(s)
Alcoholismo/genética , Pueblo Asiatico , Familia de Multigenes , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Cromosomas Humanos Par 12/genética , Cromosomas Humanos Par 4/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Riesgo , Adulto Joven
14.
Biomedicines ; 11(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37509419

RESUMEN

K+ channels are involved in many critical functions in lung physiology. Recently, the family of Ca2+-activated K+ channels (KCa) has received more attention, and a massive amount of effort has been devoted to developing selective medications targeting these channels. Within the family of KCa channels, three small-conductance Ca2+-activated K+ (KCa2) channel subtypes, together with the intermediate-conductance KCa3.1 channel, are voltage-independent K+ channels, and they mediate Ca2+-induced membrane hyperpolarization. Many KCa2 channel members are involved in crucial roles in physiological and pathological systems throughout the body. In this article, different subtypes of KCa2 and KCa3.1 channels and their functions in respiratory diseases are discussed. Additionally, the pharmacology of the KCa2 and KCa3.1 channels and the link between these channels and respiratory ciliary regulations will be explained in more detail. In the future, specific modulators for small or intermediate Ca2+-activated K+ channels may offer a unique therapeutic opportunity to treat muco-obstructive lung diseases.

15.
Cell Death Differ ; 30(6): 1575-1584, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37085671

RESUMEN

Tumor necrosis factor α (TNF-α) is a pro-inflammatory cytokine capable of inducing extrinsic apoptosis and necroptosis. Tumor necrosis factor receptor-associated factor 6 (TRAF6), an E3 ligase, is a member of the TRAF family of proteins, which mediates inflammatory signals by activating nuclear factor kappa B (NFкB) and mitogen-activated protein kinase (MAPK). Although the functions of TRAF6 have been identified, its role in TNF-α-induced cell death remains poorly understood. Here, we report that TRAF6 is a negative modulator of TNF-α-induced cell death but does not affect TNF-α-induced NFκB activation. TRAF6 deficiency accelerates both TNF-α-induced apoptosis and necroptosis; however, the acceleration can be reversed by reconstituting TRAF6 or TRAF6C70A, suggesting that E3 ligase activity is not required for this activity. Mechanistically, TRAF6 directly interacts with RIPK1 during TNF-α-induced cell death signaling, which prevents RIPK1 from interacting with components of the cell death complex such as itself, FADD or RIPK3. These processes suppress the assembly of the death complex. Notably, IKK was required for TRAF6 to interact with RIPK1. In vivo, Traf6-/- embryos exhibited higher levels of cell death in the liver but could be rescued by the simultaneous knockout of Tnf. Finally, TRAF6 knockdown xenografts were highly sensitive to necroptotic stimuli. We concluded that TRAF6 suppresses TNF-α-induced cell death in coordination with IKK complexes in vivo and in vitro by suppressing the assembly of cell death complex.


Asunto(s)
Factor 6 Asociado a Receptor de TNF , Factor de Necrosis Tumoral alfa , Animales , Humanos , Apoptosis , Muerte Celular , FN-kappa B/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Rodilla de Cuadrúpedos/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ratones , Quinasa I-kappa B
16.
Cell Calcium ; 102: 102538, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35030515

RESUMEN

Small- and intermediate-conductance Ca2+-activated potassium (KCa2.x and KCa3.1, also called SK and IK) channels are activated exclusively by a Ca2+-calmodulin gating mechanism. Wild-type KCa2.3 channels have a Ca2+ EC50 value of ∼0.3 µM, while the apparent Ca2+ sensitivity of wild-type KCa3.1 channels is ∼0.27 µM. Heterozygous genetic mutations of KCa2.3 channels have been associated with Zimmermann-Laband syndrome and idiopathic noncirrhotic portal hypertension, while KCa3.1 channel mutations were reported in hereditary xerocytosis patients. KCa2.3_S436C and KCa2.3_V450L channels with mutations in the S45A/S45B helices exhibited hypersensitivity to Ca2+. The corresponding mutations in KCa3.1 channels also elevated the apparent Ca2+ sensitivity. KCa3.1_S314P, KCa3.1_A322V and KCa3.1_R352H channels with mutations in the HA/HB helices are hypersensitive to Ca2+, whereas KCa2.3 channels with the equivalent mutations are not. The different effects of the equivalent mutations in the HA/HB helices on the apparent Ca2+ sensitivity of KCa2.3 and KCa3.1 channels may imply distinct modulation of the two channel subtypes by the HA/HB helices. AP14145 reduced the apparent Ca2+ sensitivity of the hypersensitive mutant KCa2.3 channels, suggesting the potential therapeutic usefulness of negative gating modulators.


Asunto(s)
Canalopatías , Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Mutación/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética
17.
Br J Pharmacol ; 179(3): 460-472, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34458981

RESUMEN

BACKGROUND AND PURPOSE: In the activated state of small-conductance Ca2+ -activated potassium (KCa 2) channels, calmodulin interacts with the HA/HB helices and the S4-S5 linker. CyPPA potentiates KCa 2.2a and KCa 2.3 channel activity but not the KCa 2.1 and KCa 3.1 subtypes. EXPERIMENTAL APPROACH: Site-directed mutagenesis, patch-clamp recordings and in silico modelling were utilised to explore the structural determinants for the subtype-selective modulation of KCa 2 channels by CyPPA. KEY RESULTS: Mutating residues in the HA (V420) and HB (K467) helices of KCa 2.2a channels to their equivalent residues in KCa 3.1 channels diminished the potency of CyPPA. CyPPA elicited prominent responses on mutant KCa 3.1 channels with an arginine residue in the HB helix substituted for its equivalent lysine residue in the KCa 2.2a channels (R355K). KCa 2.1 channels harbouring a three-amino-acid insertion upstream of the cognate R438 residues in the HB helix showed no response to CyPPA, whereas the deletion mutant (KCa 2.1_ΔA434/Q435/K436) became sensitive to CyPPA. In molecular dynamics simulations, CyPPA docked between calmodulin C-lobe and the HA/HB helices widens the cytoplasmic gate of KCa 2.2a channels. CONCLUSION AND IMPLICATIONS: Selectivity of CyPPA among KCa 2 and KCa 3.1 channel subtypes relies on the HA/HB helices.


Asunto(s)
Calmodulina , Canales de Potasio Calcio-Activados , Mutagénesis Sitio-Dirigida
18.
J Med Chem ; 65(1): 303-322, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34962403

RESUMEN

A series of modified N-cyclohexyl-2-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methylpyrimidin-4-amine (CyPPA) analogues were synthesized by replacing the cyclohexane moiety with different 4-substituted cyclohexane rings, tyrosine analogues, or mono- and dihalophenyl rings and were subsequently studied for their potentiation of KCa2 channel activity. Among the N-benzene-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine derivatives, halogen decoration at positions 2 and 5 of benzene-substituted 4-pyrimidineamine in compound 2q conferred a ∼10-fold higher potency, while halogen substitution at positions 3 and 4 of benzene-substituted 4-pyrimidineamine in compound 2o conferred a ∼7-fold higher potency on potentiating KCa2.2a channels, compared to that of the parent template CyPPA. Both compounds retained the KCa2.2a/KCa2.3 subtype selectivity. Based on the initial evaluation, compounds 2o and 2q were selected for testing in an electrophysiological model of spinocerebellar ataxia type 2 (SCA2). Both compounds were able to normalize the abnormal firing of Purkinje cells in cerebellar slices from SCA2 mice, suggesting the potential therapeutic usefulness of these compounds for treating symptoms of ataxia.


Asunto(s)
Cerebelo , Moduladores del Transporte de Membrana , Canales de Potasio Calcio-Activados , Células de Purkinje , Pirimidinas , Ataxias Espinocerebelosas , Animales , Femenino , Masculino , Ratones , Cerebelo/efectos de los fármacos , Modelos Animales de Enfermedad , Activación del Canal Iónico , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/farmacología , Canales de Potasio Calcio-Activados/agonistas , Canales de Potasio Calcio-Activados/metabolismo , Células de Purkinje/efectos de los fármacos , Pirimidinas/química , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología , Relación Estructura-Actividad
19.
ACS Chem Biol ; 17(8): 2344-2354, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35947779

RESUMEN

Small-conductance Ca2+-activated potassium (KCa2.x) channels are gated exclusively by intracellular Ca2+. The activation of KCa2.3 channels induces hyperpolarization, which augments Ca2+ signaling in endothelial cells. Cilia are specialized Ca2+ signaling compartments. Here, we identified compound 4 that potentiates human KCa2.3 channels selectively. The subtype selectivity of compound 4 for human KCa2.3 over rat KCa2.2a channels relies on an isoleucine residue in the HA/HB helices. Positive modulation of KCa2.3 channels by compound 4 increased flow-induced Ca2+ signaling and cilia length, while negative modulation by AP14145 reduced flow-induced Ca2+ signaling and cilia length. These findings were corroborated by the increased cilia length due to the expression of Ca2+-hypersensitive KCa2.3_G351D mutant channels and the reduced cilia length resulting from the expression of Ca2+-hyposensitive KCa2.3_I438N channels. Collectively, we were able to associate functions of KCa2.3 channels and cilia, two crucial components in the flow-induced Ca2+ signaling of endothelial cells, with potential implications in vasodilation and ciliopathic hypertension.


Asunto(s)
Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Animales , Cilios/metabolismo , Células Endoteliales/metabolismo , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Ratas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Vasodilatación
20.
Chromosome Res ; 18(3): 325-36, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20198418

RESUMEN

Chromosomes often serve as one of the most important molecular aspects of studying the evolution of species. Indeed, most of the crucial mutations that led to differentiation of species during the evolution have occurred at the chromosomal level. Furthermore, the analysis of pachytene chromosomes appears to be an invaluable tool for the study of evolution due to its effectiveness in chromosome identification and precise physical gene mapping. By applying fluorescence in situ hybridization of 45S rDNA and CsCent1 probes to cucumber pachytene chromosomes, here, we demonstrate that cucumber chromosomes 1 and 2 may have evolved from fusions of ancestral karyotype with chromosome number n = 12. This conclusion is further supported by the centromeric sequence similarity between cucumber and melon, which suggests that these sequences evolved from a common ancestor. It may be after or during speciation that these sequences were specifically amplified, after which they diverged and specific sequence variants were homogenized. Additionally, a structural change on the centromeric region of cucumber chromosome 4 was revealed by fiber-FISH using the mitochondrial-related repetitive sequences, BAC-E38 and CsCent1. These showed the former sequences being integrated into the latter in multiple regions. The data presented here are useful resources for comparative genomics and cytogenetics of Cucumis and, in particular, the ongoing genome sequencing project of cucumber.


Asunto(s)
Cucumis/genética , Análisis Citogenético , Secuencias Repetitivas de Ácidos Nucleicos/genética , Secuencia de Bases , Centrómero/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , ADN Mitocondrial/genética , ADN Satélite/genética , Hibridación Fluorescente in Situ , Cariotipificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA