Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 185(12): 2103-2115.e19, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35568035

RESUMEN

Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , COVID-19/virología , Cricetinae , Células Epiteliales , Humanos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética
2.
Cell ; 185(21): 3992-4007.e16, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36198317

RESUMEN

After the global spread of the SARS-CoV-2 Omicron BA.2, some BA.2 subvariants, including BA.2.9.1, BA.2.11, BA.2.12.1, BA.4, and BA.5, emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these BA.2 subvariants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1/2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. We further provided the structure of the BA.4/5 spike receptor-binding domain that binds to human ACE2 and considered how the substitutions in the BA.4/5 spike play roles in ACE2 binding and immune evasion. Moreover, experiments using hamsters suggested that BA.4/5 is more pathogenic than BA.2. Our multiscale investigations suggest that the risk of BA.2 subvariants, particularly BA.4/5, to global health is greater than that of original BA.2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Anticuerpos Antivirales , Humanos , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
3.
Nature ; 603(7902): 700-705, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35104835

RESUMEN

The emergence of the Omicron variant of SARS-CoV-2 is an urgent global health concern1. In this study, our statistical modelling suggests that Omicron has spread more rapidly than the Delta variant in several countries including South Africa. Cell culture experiments showed Omicron to be less fusogenic than Delta and than an ancestral strain of SARS-CoV-2. Although the spike (S) protein of Delta is efficiently cleaved into two subunits, which facilitates cell-cell fusion2,3, the Omicron S protein was less efficiently cleaved compared to the S proteins of Delta and ancestral SARS-CoV-2. Furthermore, in a hamster model, Omicron showed decreased lung infectivity and was less pathogenic compared to Delta and ancestral SARS-CoV-2. Our multiscale investigations reveal the virological characteristics of Omicron, including rapid growth in the human population, lower fusogenicity and attenuated pathogenicity.


Asunto(s)
COVID-19/patología , COVID-19/virología , Fusión de Membrana , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Internalización del Virus , Animales , COVID-19/epidemiología , Línea Celular , Cricetinae , Humanos , Técnicas In Vitro , Pulmón/patología , Pulmón/virología , Masculino , Mesocricetus , Mutación , SARS-CoV-2/clasificación , SARS-CoV-2/crecimiento & desarrollo , Sudáfrica/epidemiología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virulencia , Replicación Viral
4.
Nature ; 602(7896): 300-306, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34823256

RESUMEN

During the current coronavirus disease 2019 (COVID-19) pandemic, a variety of mutations have accumulated in the viral genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and, at the time of writing, four variants of concern are considered to be potentially hazardous to human society1. The recently emerged B.1.617.2/Delta variant of concern is closely associated with the COVID-19 surge that occurred in India in the spring of 2021 (ref. 2). However, the virological properties of B.1.617.2/Delta remain unclear. Here we show that the B.1.617.2/Delta variant is highly fusogenic and notably more pathogenic than prototypic SARS-CoV-2 in infected hamsters. The P681R mutation in the spike protein, which is highly conserved in this lineage, facilitates cleavage of the spike protein and enhances viral fusogenicity. Moreover, we demonstrate that the P681R-bearing virus exhibits higher pathogenicity compared with its parental virus. Our data suggest that the P681R mutation is a hallmark of the virological phenotype of the B.1.617.2/Delta variant and is associated with enhanced pathogenicity.


Asunto(s)
COVID-19/virología , Fusión de Membrana , Mutación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Sustitución de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , Cricetinae , Células Gigantes/metabolismo , Células Gigantes/virología , Masculino , Mesocricetus , Filogenia , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Virulencia/genética , Replicación Viral
5.
J Virol ; 97(10): e0101123, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37796123

RESUMEN

IMPORTANCE: Most studies investigating the characteristics of emerging SARS-CoV-2 variants have been focusing on mutations in the spike proteins that affect viral infectivity, fusogenicity, and pathogenicity. However, few studies have addressed how naturally occurring mutations in the non-spike regions of the SARS-CoV-2 genome impact virological properties. In this study, we proved that multiple SARS-CoV-2 Omicron BA.2 mutations, one in the spike protein and another downstream of the spike gene, orchestrally characterize this variant, shedding light on the importance of Omicron BA.2 mutations out of the spike protein.


Asunto(s)
Genoma Viral , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Genoma Viral/genética
6.
J Immunol ; 209(5): 970-978, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36130125

RESUMEN

The proinflammatory cytokine IL-32 is elevated in the plasma and tissues of HIV-1-infected individuals. However, its significance in HIV-1 infection remains unclear because IL-32 inhibits and stimulates viral production in monocyte-derived macrophages (MDMs) and CD4+ T cells, respectively. In this study, we initially found that the inhibitory effect on human MDMs depends on SAMHD1, a dNTP triphosphohydrolase that inhibits viral reverse transcription. IL-32 increased the unphosphorylated active form of SAMHD1, which was consistent with the reduced expression of the upstream cyclin-dependent kinases. Indeed, IL-32 lost its anti-HIV-1 activity in MDMs when SAMHD1 was depleted. These results explain why IL-32 inhibits HIV-1 in MDMs but not CD4+ T cells, because SAMHD1 restricts HIV-1 in noncycling MDMs but not in cycling CD4+ T cells. Another unique feature of IL-32 is the induction of the immunosuppressive molecule IDO1, which is beneficial for HIV-1 infection. In this study, we found that IL-32 also upregulates other immunosuppressive molecules, including PD-L1, in MDMs. Moreover, IL-32 promoted the motility of MDMs, which potentially facilitates intercellular HIV-1 transmission. Our findings indicate that IL-32 has both the direct inhibitory effect on HIV-1 production in MDMs and the indirect stimulatory effects through phenotypic modulation of MDMs, and they suggest that the stimulatory effects may outweigh the inhibitory effect because the window for IL-32 to inhibit HIV-1 is relatively confined to SAMHD1-mediated reverse transcription suppression in the viral life cycle.


Asunto(s)
Infecciones por VIH , VIH-1 , Interleucinas/metabolismo , Antígeno B7-H1/metabolismo , Células Cultivadas , Ciclinas/metabolismo , VIH-1/fisiología , Humanos , Proteína 1 que Contiene Dominios SAM y HD , Replicación Viral
7.
Retrovirology ; 17(1): 20, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32650782

RESUMEN

BACKGROUND: HIV-1 promotes the formation of tunneling nanotubes (TNTs) that connect distant cells, aiding cell-to-cell viral transmission between macrophages. Our recent study suggests that the cellular protein M-Sec plays a role in these processes. However, the timing, mechanism, and to what extent M-Sec contributes to HIV-1 transmission is not fully understood, and the lack of a cell line model that mimics macrophages has hindered in-depth analysis. RESULTS: We found that HIV-1 increased the number, length and thickness of TNTs in a manner dependent on its pathogenic protein Nef and M-Sec in U87 cells, as observed in macrophages. In addition, we found that M-Sec was required not only for TNT formation but also motility of U87 cells, both of which are beneficial for viral transmission. In fact, M-Sec knockdown in U87 cells led to a significantly delayed viral production in both cellular and extracellular fractions. This inhibition was observed for wild-type virus, but not for a mutant virus lacking Nef, which is known to promote not only TNT formation but also migration of infected macrophages. CONCLUSIONS: By taking advantage of useful features of U87 cells, we provided evidence that M-Sec mediates a rapid and efficient cell-cell transmission of HIV-1 at an early phase of infection by enhancing both TNT formation and cell motility.


Asunto(s)
Citocinas/metabolismo , VIH-1/fisiología , Uniones Intercelulares/virología , Línea Celular , Movimiento Celular , Citocinas/genética , VIH-1/genética , VIH-1/crecimiento & desarrollo , Humanos , Uniones Intercelulares/metabolismo , Macrófagos/virología , Mutación , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
8.
PLoS Pathog ; 14(11): e1007372, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30496280

RESUMEN

Apolipoprotein E (ApoE) belongs to a class of cellular proteins involved in lipid metabolism. ApoE is a polymorphic protein produced primarily in macrophages and astrocytes. Different isoforms of ApoE have been associated with susceptibility to various diseases including Alzheimer's and cardiovascular diseases. ApoE expression has also been found to affect susceptibility to several viral diseases, including Hepatitis C and E, but its effect on the life cycle of HIV-1 remains obscure. In this study, we initially found that HIV-1 infection selectively up-regulated ApoE in human monocyte-derived macrophages (MDMs). Interestingly, ApoE knockdown in MDMs enhanced the production and infectivity of HIV-1, and was associated with increased localization of viral envelope (Env) proteins to the cell surface. Consistent with this, ApoE over-expression in 293T cells suppressed Env expression and viral infectivity, which was also observed with HIV-2 Env, but not with VSV-G Env. Mechanistic studies revealed that the C-terminal region of ApoE was required for its inhibitory effect on HIV-1 Env expression. Moreover, we found that ApoE and Env co-localized in the cells, and ApoE associated with gp160, the precursor form of Env, and that the suppression of Env expression by ApoE was cancelled by the treatment with lysosomal inhibitors. Overall, our study revealed that ApoE is an HIV-1-inducible inhibitor of viral production and infectivity in macrophages that exerts its anti-HIV-1 activity through association with gp160 Env via the C-terminal region, which results in subsequent degradation of gp160 Env in the lysosomes.


Asunto(s)
Apolipoproteínas E/fisiología , Infecciones por VIH/metabolismo , Macrófagos/metabolismo , Adulto , Apolipoproteínas/metabolismo , Apolipoproteínas E/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Regulación de la Expresión Génica/genética , Células HEK293 , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteína gp41 de Envoltorio del VIH/metabolismo , Infecciones por VIH/prevención & control , VIH-1/metabolismo , Humanos , Macrófagos/virología , Masculino , Regulación hacia Arriba , Replicación Viral/genética , Replicación Viral/fisiología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
9.
J Immunol ; 196(4): 1832-41, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26773158

RESUMEN

Tunneling nanotubes (TNTs), the long membrane extensions connecting distant cells, have emerged as a novel form of cell-to-cell communication. However, it is not fully understood how and to what extent TNTs contribute to intercellular spread of pathogens including HIV-1. In this study, we show that HIV-1 promotes TNT formation per se via its protein Nef and a cellular protein M-Sec, which appears to mediate approximately half of viral spread among monocyte-derived macrophages (MDMs). A small compound that inhibits M-Sec-induced TNT formation reduced HIV-1 production by almost half in MDMs. Such inhibition was not observed with Nef-deficient mutant HIV-1 that fails to promote TNT formation and replicates less efficiently than the wild-type HIV-1 in MDMs. The TNT inhibitor-sensitive/Nef-promoting viral production was also observed in a T cell line ectopically expressing M-Sec, but not in another M-Sec(-) T cell line. Our results suggest the importance of TNTs in HIV-1 spread among MDMs and might answer the long-standing question how Nef promotes HIV-1 production in a cell type-specific manner.


Asunto(s)
Comunicación Celular/fisiología , VIH-1/metabolismo , VIH-1/patogenicidad , Macrófagos/virología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Western Blotting , Línea Celular , Citocinas/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
10.
J Immunol ; 195(9): 4341-50, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26416279

RESUMEN

Fibrocytes (fibroblastic leukocytes) are recently identified as unique hematopoietic cells with features of both macrophages and fibroblasts. Fibrocytes are known to contribute to the remodeling or fibrosis of various injured tissues. However, their role in viral infection is not fully understood. In this study, we show that differentiated fibrocytes are phenotypically distinguishable from macrophages but can be infected with HIV-1. Importantly, fibrocytes exhibited persistently infected cell-like phenotypes, the degree of which was more apparent than macrophages. The infected fibrocytes produced replication-competent HIV-1, but expressed HIV-1 mRNA at low levels and strongly resisted HIV-1-induced cell death, which enabled them to support an extremely long-term HIV-1 production at low but steady levels. More importantly, our results suggested that fibrocytes were susceptible to HIV-1 regardless of their differentiation state, in contrast to the fact that monocytes become susceptible to HIV-1 after the differentiation into macrophages. Our findings indicate that fibrocytes are the previously unreported HIV-1 host cells, and they suggest the importance of considering fibrocytes as one of the long-lived persistently infected cells for curing HIV-1.


Asunto(s)
Fibroblastos/virología , VIH-1/fisiología , Leucocitos/virología , Macrófagos/virología , Forma de la Célula/genética , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación Viral de la Expresión Génica , Infecciones por VIH/sangre , VIH-1/genética , Interacciones Huésped-Patógeno/genética , Humanos , Leucocitos/citología , Leucocitos/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Microscopía Confocal , Monocitos/citología , Monocitos/metabolismo , Monocitos/virología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Transcriptoma , Replicación Viral/genética
11.
J Immunol ; 192(11): 5083-9, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24748497

RESUMEN

M-CSF promotes the differentiation and survival of macrophages, and preferentially induces anti-inflammatory M2, rather than proinflammatory M1 macrophages. Recently, another cytokine, IL-32, was also shown to promote macrophage differentiation. In this article, we provide the first evidence, to our knowledge, that M-CSF has both additive and inhibitory effects on the macrophage-related activities of IL-32. When added to M-CSF-derived macrophages, M-CSF and IL-32 promoted macrophage survival, which was further enhanced by their combination. However, they had different effects on HIV-1 replication; that is, it was stimulated by M-CSF and inhibited by IL-32. Interestingly, the anti-HIV-1 activity of IL-32 was counteracted by M-CSF. Such inhibitory effect of M-CSF was not observed with IL-32-induced M1-like features including high cytokine/chemokine production and strong expression of the costimulatory molecule CD80. However, IL-32-treated macrophages unexpectedly showed also M2-like features including increased phagocytic activity, and high expression of CD14 and the scavenger receptor CD163, and the expression of CD14 and CD163 was further upregulated by cotreatment with M-CSF. The findings of this study regarding the unique functional interplay between M-CSF and IL-32 increase our understanding of the mechanisms that regulate the survival and M1/M2 ratio of macrophages, as well as HIV-1 replication in macrophages.


Asunto(s)
Infecciones por VIH/inmunología , VIH-1/fisiología , Interleucinas/inmunología , Factor Estimulante de Colonias de Macrófagos/inmunología , Macrófagos/inmunología , Replicación Viral/inmunología , Animales , Antígenos CD/inmunología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Células Cultivadas , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Humanos , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/patología , Macrófagos/virología , Masculino , Fagocitosis/efectos de los fármacos , Fagocitosis/inmunología , Replicación Viral/efectos de los fármacos
12.
EBioMedicine ; 104: 105181, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838469

RESUMEN

BACKGROUND: Although several SARS-CoV-2-related coronaviruses (SC2r-CoVs) were discovered in bats and pangolins, the differences in virological characteristics between SARS-CoV-2 and SC2r-CoVs remain poorly understood. Recently, BANAL-20-236 (B236) was isolated from a rectal swab of Malayan horseshoe bat and was found to lack a furin cleavage site (FCS) in the spike (S) protein. The comparison of its virological characteristics with FCS-deleted SARS-CoV-2 (SC2ΔFCS) has not been conducted yet. METHODS: We prepared human induced pluripotent stem cell (iPSC)-derived airway and lung epithelial cells and colon organoids as human organ-relevant models. B236, SARS-CoV-2, and artificially generated SC2ΔFCS were used for viral experiments. To investigate the pathogenicity of B236 in vivo, we conducted intranasal infection experiments in hamsters. FINDINGS: In human iPSC-derived airway epithelial cells, the growth of B236 was significantly lower than that of the SC2ΔFCS. A fusion assay showed that the B236 and SC2ΔFCS S proteins were less fusogenic than the SARS-CoV-2 S protein. The infection experiment in hamsters showed that B236 was less pathogenic than SARS-CoV-2 and even SC2ΔFCS. Interestingly, in human colon organoids, the growth of B236 was significantly greater than that of SARS-CoV-2. INTERPRETATION: Compared to SARS-CoV-2, we demonstrated that B236 exhibited a tropism toward intestinal cells rather than respiratory cells. Our results are consistent with a previous report showing that B236 is enterotropic in macaques. Altogether, our report strengthens the assumption that SC2r-CoVs in horseshoe bats replicate primarily in the intestinal tissues rather than respiratory tissues. FUNDING: This study was supported in part by AMED ASPIRE (JP23jf0126002, to Keita Matsuno, Kazuo Takayama, and Kei Sato); AMED SCARDA Japan Initiative for World-leading Vaccine Research and Development Centers "UTOPIA" (JP223fa627001, to Kei Sato), AMED SCARDA Program on R&D of new generation vaccine including new modality application (JP223fa727002, to Kei Sato); AMED SCARDA Hokkaido University Institute for Vaccine Research and Development (HU-IVReD) (JP223fa627005h0001, to Takasuke Fukuhara, and Keita Matsuno); AMED Research Program on Emerging and Re-emerging Infectious Diseases (JP21fk0108574, to Hesham Nasser; JP21fk0108493, to Takasuke Fukuhara; JP22fk0108617 to Takasuke Fukuhara; JP22fk0108146, to Kei Sato; JP21fk0108494 to G2P-Japan Consortium, Keita Matsuno, Shinya Tanaka, Terumasa Ikeda, Takasuke Fukuhara, and Kei Sato; JP21fk0108425, to Kazuo Takayama and Kei Sato; JP21fk0108432, to Kazuo Takayama, Takasuke Fukuhara and Kei Sato; JP22fk0108534, Terumasa Ikeda, and Kei Sato; JP22fk0108511, to Yuki Yamamoto, Terumasa Ikeda, Keita Matsuno, Shinya Tanaka, Kazuo Takayama, Takasuke Fukuhara, and Kei Sato; JP22fk0108506, to Kazuo Takayama and Kei Sato); AMED Research Program on HIV/AIDS (JP22fk0410055, to Terumasa Ikeda; and JP22fk0410039, to Kei Sato); AMED Japan Program for Infectious Diseases Research and Infrastructure (JP22wm0125008 to Keita Matsuno); AMED CREST (JP21gm1610005, to Kazuo Takayama; JP22gm1610008, to Takasuke Fukuhara; JST PRESTO (JPMJPR22R1, to Jumpei Ito); JST CREST (JPMJCR20H4, to Kei Sato); JSPS KAKENHI Fund for the Promotion of Joint International Research (International Leading Research) (JP23K20041, to G2P-Japan Consortium, Keita Matsuno, Takasuke Fukuhara and Kei Sato); JST SPRING (JPMJSP2108 to Shigeru Fujita); JSPS KAKENHI Grant-in-Aid for Scientific Research C (22K07103, to Terumasa Ikeda); JSPS KAKENHI Grant-in-Aid for Scientific Research B (21H02736, to Takasuke Fukuhara); JSPS KAKENHI Grant-in-Aid for Early-Career Scientists (22K16375, to Hesham Nasser; 20K15767, to Jumpei Ito); JSPS Core-to-Core Program (A. Advanced Research Networks) (JPJSCCA20190008, to Kei Sato); JSPS Research Fellow DC2 (22J11578, to Keiya Uriu); JSPS Research Fellow DC1 (23KJ0710, to Yusuke Kosugi); JSPS Leading Initiative for Excellent Young Researchers (LEADER) (to Terumasa Ikeda); World-leading Innovative and Smart Education (WISE) Program 1801 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (to Naganori Nao); Ministry of Health, Labour and Welfare (MHLW) under grant 23HA2010 (to Naganori Nao and Keita Matsuno); The Cooperative Research Program (Joint Usage/Research Center program) of Institute for Life and Medical Sciences, Kyoto University (to Kei Sato); International Joint Research Project of the Institute of Medical Science, the University of Tokyo (to Terumasa Ikeda and Takasuke Fukuhara); The Tokyo Biochemical Research Foundation (to Kei Sato); Takeda Science Foundation (to Terumasa Ikeda and Takasuke Fukuhara); Mochida Memorial Foundation for Medical and Pharmaceutical Research (to Terumasa Ikeda); The Naito Foundation (to Terumasa Ikeda); Hokuto Foundation for Bioscience (to Tomokazu Tamura); Hirose Foundation (to Tomokazu Tamura); and Mitsubishi Foundation (to Kei Sato).


Asunto(s)
COVID-19 , Quirópteros , SARS-CoV-2 , Animales , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Humanos , COVID-19/virología , Quirópteros/virología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Organoides/virología , Organoides/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/virología , Cricetinae , Furina/metabolismo , Células Epiteliales/virología , Células Vero , Chlorocebus aethiops
13.
Nat Commun ; 15(1): 1176, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332154

RESUMEN

Circulation of SARS-CoV-2 Omicron XBB has resulted in the emergence of XBB.1.5, a new Variant of Interest. Our phylogenetic analysis suggests that XBB.1.5 evolved from XBB.1 by acquiring the S486P spike (S) mutation, subsequent to the acquisition of a nonsense mutation in ORF8. Neutralization assays showed similar abilities of immune escape between XBB.1.5 and XBB.1. We determine the structural basis for the interaction between human ACE2 and the S protein of XBB.1.5, showing similar overall structures between the S proteins of XBB.1 and XBB.1.5. We provide the intrinsic pathogenicity of XBB.1 and XBB.1.5 in hamsters. Importantly, we find that the ORF8 nonsense mutation of XBB.1.5 resulted in impairment of MHC suppression. In vivo experiments using recombinant viruses reveal that the XBB.1.5 mutations are involved with reduced virulence of XBB.1.5. Together, our study identifies the two viral functions defined the difference between XBB.1 and XBB.1.5.


Asunto(s)
COVID-19 , Animales , Cricetinae , Humanos , Codón sin Sentido , Filogenia , SARS-CoV-2/genética , Bioensayo
14.
Cell Host Microbe ; 32(2): 170-180.e12, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38280382

RESUMEN

In late 2023, several SARS-CoV-2 XBB descendants, notably EG.5.1, were predominant worldwide. However, a distinct SARS-CoV-2 lineage, the BA.2.86 variant, also emerged. BA.2.86 is phylogenetically distinct from other Omicron sublineages, accumulating over 30 amino acid mutations in its spike protein. Here, we examined the virological characteristics of the BA.2.86 variant. Our epidemic dynamics modeling suggested that the relative reproduction number of BA.2.86 is significantly higher than that of EG.5.1. Additionally, four clinically available antivirals were effective against BA.2.86. Although the fusogenicity of BA.2.86 spike is similar to that of the parental BA.2 spike, the intrinsic pathogenicity of BA.2.86 in hamsters was significantly lower than that of BA.2. Since the growth kinetics of BA.2.86 are significantly lower than those of BA.2 both in vitro and in vivo, the attenuated pathogenicity of BA.2.86 is likely due to its decreased replication capacity. These findings uncover the features of BA.2.86, providing insights for control and treatment.


Asunto(s)
COVID-19 , Animales , Cricetinae , SARS-CoV-2/genética , Aminoácidos , Cinética , Mutación
15.
mBio ; 14(4): e0078223, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37555667

RESUMEN

HIV-1 must overcome multiple innate antiviral mechanisms to replicate in CD4+ T lymphocytes and macrophages. Previous studies have demonstrated that the apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) family of proteins (at least A3D, A3F, A3G, and stable A3H haplotypes) contribute to HIV-1 restriction in CD4+ T lymphocytes. Virus-encoded virion infectivity factor (Vif) counteracts this antiviral activity by degrading A3 enzymes allowing HIV-1 replication in infected cells. In addition to A3 proteins, Vif also targets other cellular proteins in CD4+ T lymphocytes, including PPP2R5 proteins. However, whether Vif primarily degrades only A3 proteins during viral replication is currently unknown. Herein, we describe the development and characterization of A3F-, A3F/A3G-, and A3A-to-A3G-null THP-1 cells. In comparison to Vif-proficient HIV-1, Vif-deficient viruses have substantially reduced infectivity in parental and A3F-null THP-1 cells, and a more modest decrease in infectivity in A3F/A3G-null cells. Remarkably, disruption of A3A-A3G protein expression completely restores the infectivity of Vif-deficient viruses in THP-1 cells. These results indicate that the primary function of Vif during infectious HIV-1 production from THP-1 cells is the targeting and degradation of A3 enzymes. IMPORTANCE HIV-1 Vif neutralizes the HIV-1 restriction activity of A3 proteins. However, it is currently unclear whether Vif has additional essential cellular targets. To address this question, we disrupted A3A to A3G genes in the THP-1 myeloid cell line using CRISPR and compared the infectivity of wild-type HIV-1 and Vif mutants with the selective A3 neutralization activities. Our results demonstrate that the infectivity of Vif-deficient HIV-1 and the other Vif mutants is fully restored by ablating the expression of cellular A3A to A3G proteins. These results indicate that A3 proteins are the only essential target of Vif that is required for fully infectious HIV-1 production from THP-1 cells.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/fisiología , Citidina Desaminasa/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Unión Proteica , Desaminasa APOBEC-3G/metabolismo , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Línea Celular , Células Mieloides/metabolismo , Virión/metabolismo , Desaminasas APOBEC/metabolismo
16.
bioRxiv ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37034786

RESUMEN

HIV-1 must overcome multiple innate antiviral mechanisms to replicate in CD4 + T lymphocytes and macrophages. Previous studies have demonstrated that the APOBEC3 (A3) family of proteins (at least A3D, A3F, A3G, and stable A3H haplotypes) contribute to HIV-1 restriction in CD4 + T lymphocytes. Virus-encoded virion infectivity factor (Vif) counteracts this antiviral activity by degrading A3 enzymes allowing HIV-1 replication in infected cells. In addition to A3 proteins, Vif also targets other cellular proteins in CD4 + T lymphocytes, including PPP2R5 proteins. However, whether Vif primarily degrades only A3 proteins or has additional essential targets during viral replication is currently unknown. Herein, we describe the development and characterization of A3F -, A3F/A3G -, and A3A -to- A3G -null THP-1 cells. In comparison to Vif-proficient HIV-1, Vif-deficient viruses have substantially reduced infectivity in parental and A3F -null THP-1 cells, and a more modest decrease in infectivity in A3F/A3G -null cells. Remarkably, disruption of A3Aâ€"A3G protein expression completely restores the infectivity of Vif-deficient viruses in THP-1 cells. These results indicate that the primary function of Vif during HIV-1 replication in THP-1 cells is the targeting and degradation of A3 enzymes. Importance: HIV-1 Vif neutralizes the HIV-1 restriction activity of A3 proteins. However, it is currently unclear whether Vif has additional essential cellular targets. To address this question, we disrupted A3A to A3G genes in the THP-1 myeloid cell line using CRISPR and compared the infectivity of wildtype HIV-1 and Vif mutants with the selective A3 neutralization activities. Our results demonstrate that the infectivity of Vif-deficient HIV-1 and the other Vif mutants is fully restored by ablating the expression of cellular A3A to A3G proteins. These results indicate that A3 proteins are the only essential target of Vif that is required for HIV-1 replication in THP-1 cells.

17.
Nat Commun ; 14(1): 2671, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169744

RESUMEN

In late 2022, various Omicron subvariants emerged and cocirculated worldwide. These variants convergently acquired amino acid substitutions at critical residues in the spike protein, including residues R346, K444, L452, N460, and F486. Here, we characterize the convergent evolution of Omicron subvariants and the properties of one recent lineage of concern, BQ.1.1. Our phylogenetic analysis suggests that these five substitutions are recurrently acquired, particularly in younger Omicron lineages. Epidemic dynamics modelling suggests that the five substitutions increase viral fitness, and a large proportion of the fitness variation within Omicron lineages can be explained by these substitutions. Compared to BA.5, BQ.1.1 evades breakthrough BA.2 and BA.5 infection sera more efficiently, as demonstrated by neutralization assays. The pathogenicity of BQ.1.1 in hamsters is lower than that of BA.5. Our multiscale investigations illuminate the evolutionary rules governing the convergent evolution for known Omicron lineages as of 2022.


Asunto(s)
COVID-19 , Animales , Cricetinae , Filogenia , SARS-CoV-2/genética , Sustitución de Aminoácidos , Bioensayo , Anticuerpos Neutralizantes , Anticuerpos Antivirales
18.
Nat Commun ; 14(1): 2800, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193706

RESUMEN

In late 2022, SARS-CoV-2 Omicron subvariants have become highly diversified, and XBB is spreading rapidly around the world. Our phylogenetic analyses suggested that XBB emerged through the recombination of two cocirculating BA.2 lineages, BJ.1 and BM.1.1.1 (a progeny of BA.2.75), during the summer of 2022. XBB.1 is the variant most profoundly resistant to BA.2/5 breakthrough infection sera to date and is more fusogenic than BA.2.75. The recombination breakpoint is located in the receptor-binding domain of spike, and each region of the recombinant spike confers immune evasion and increases fusogenicity. We further provide the structural basis for the interaction between XBB.1 spike and human ACE2. Finally, the intrinsic pathogenicity of XBB.1 in male hamsters is comparable to or even lower than that of BA.2.75. Our multiscale investigation provides evidence suggesting that XBB is the first observed SARS-CoV-2 variant to increase its fitness through recombination rather than substitutions.


Asunto(s)
COVID-19 , Animales , Cricetinae , Humanos , Masculino , Filogenia , SARS-CoV-2/genética , Recombinación Genética , Glicoproteína de la Espiga del Coronavirus/genética
19.
J Biochem ; 171(3): 339-347, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-34928331

RESUMEN

Exposure of cultured mammalian cells to paraformaldehyde (PFA) is an effective approach to induce membrane blebs, which is followed by their detachment from the cellular cortex to yield giant membrane vesicles in extracellular spaces. Although PFA-induced giant vesicles have attracted significant interest in the field of cell membrane dynamics, their biochemical components and cytocompatibility remain largely unknown. In this report, we exposed human cervical cancer HeLa cells to PFA under metal-free buffer conditions to produce giant vesicles. We analyzed the components and structure of the purified PFA-induced giant vesicles. Co-culturing PFA-induced giant vesicles with exponentially growing HeLa cells resulted in docking of a significant number of the giant vesicles to the cell surface with seemingly no cytotoxicity. Intriguingly, we found that pre-treatment of HeLa cells with peptide-N-glycosidase and neuraminidase was effective in facilitating cellular uptake of constituents residing inside the vesicles. The results revealed further details about the effect of PFA on cell membranes and provide insights for studying the interaction between PFA-induced giant vesicles and cultured cells.


Asunto(s)
Formaldehído , Animales , Humanos , Membrana Celular/metabolismo , Formaldehído/análisis , Formaldehído/metabolismo , Formaldehído/farmacología , Células HeLa , Polímeros/metabolismo , Polímeros/farmacología
20.
STAR Protoc ; 3(4): 101773, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36313538

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein mediates membrane fusion between the virus and the target cells, triggering viral entry into the latter. Here, we describe a SARS-CoV-2 spike-protein-mediated membrane fusion assay using a dual functional split reporter protein to quantitatively monitor the fusion kinetics of the viral and target cell membranes in living cells. This approach can be applied in various cell types, potentially predicting the pathogenicity of newly emerging variants. For complete details on the use and execution of this protocol, please refer to Kimura et al. (2022b), Kimura et al. (2022c), Motozono et al. (2021), Saito et al. (2022a), Saito et al. (2022b), Suzuki et al. (2022), and Yamasoba et al. (2022).


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Fusión de Membrana , SARS-CoV-2/genética , Membrana Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA