Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36768674

RESUMEN

White lupin is a high-protein crop requiring drought tolerance improvement. This study focused on a genetically-broad population of 138 lines to investigate the phenotypic variation and genotype × environment interaction (GEI) for grain yield and other traits across drought-prone and moisture-favourable managed environments, the trait genetic architecture and relevant genomic regions by a GWAS using 9828 mapped SNP markers, and the predictive ability of genomic selection (GS) models. Water treatments across two late cropping months implied max. available soil water content of 60-80% for favourable conditions and from wilting point to 15% for severe drought. Line yield responses across environments featured a genetic correlation of 0.84. Relatively better line yield under drought was associated with an increased harvest index. Two significant QTLs emerged for yield in each condition that differed across conditions. Line yield under stress displayed an inverse linear relationship with the onset of flowering, confirmed genomically by a common major QTL. An adjusted grain yield computed as deviation from phenology-predicted yield acted as an indicator of intrinsic drought tolerance. On the whole, the yield in both conditions and the adjusted yield were polygenic, heritable, and exploitable by GS with a high predictive ability (0.62-0.78). Our results can support selection for climatically different drought-prone regions.


Asunto(s)
Resistencia a la Sequía , Sitios de Carácter Cuantitativo , Fenotipo , Sequías , Grano Comestible/genética , Variación Genética
2.
Theor Appl Genet ; 135(3): 1011-1024, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34988630

RESUMEN

KEY MESSAGE: GWAS identifies candidate gene controlling resistance to anthracnose disease in white lupin. White lupin (Lupinus albus L.) is a promising grain legume to meet the growing demand for plant-based protein. Its cultivation, however, is severely threatened by anthracnose disease caused by the fungal pathogen Colletotrichum lupini. To dissect the genetic architecture for anthracnose resistance, genotyping by sequencing was performed on white lupin accessions collected from the center of domestication and traditional cultivation regions. GBS resulted in 4611 high-quality single-nucleotide polymorphisms (SNPs) for 181 accessions, which were combined with resistance data observed under controlled conditions to perform a genome-wide association study (GWAS). Obtained disease phenotypes were shown to highly correlate with overall three-year disease assessments under Swiss field conditions (r > 0.8). GWAS results identified two significant SNPs associated with anthracnose resistance on gene Lalb_Chr05_g0216161 encoding a RING zinc-finger E3 ubiquitin ligase which is potentially involved in plant immunity. Population analysis showed a remarkably fast linkage disequilibrium decay, weak population structure and grouping of commercial varieties with landraces, corresponding to the slow domestication history and scarcity of modern breeding efforts in white lupin. Together with 15 highly resistant accessions identified in the resistance assay, our findings show promise for further crop improvement. This study provides the basis for marker-assisted selection, genomic prediction and studies aimed at understanding anthracnose resistance mechanisms in white lupin and contributes to improving breeding programs worldwide.


Asunto(s)
Lupinus , Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Lupinus/genética , Fitomejoramiento , Polimorfismo de Nucleótido Simple
3.
Food Microbiol ; 93: 103613, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32912585

RESUMEN

The composition of the bacterial community of Grana Padano (GP) cheese was evaluated by an amplicon-based metagenomic approach (DNA metabarcoding) and RAPD-PCR fingerprinting. One hundred eighteen cheeses, which included 118 dairies located in the production area of GP, were collected. Two hundred fifty-four OTUs were detected, of which 82 were further discriminated between dominant (32 OTUs; > 1% total reads) and subdominant (50 OTUs; between 0.1% and 1% total reads) taxa. Lactobacillus (L.) delbrueckii, Lacticaseibacillus (Lact.) rhamnosus, Lact. casei, Limosilactobacillus fermentum, Lactococcus (Lc.) raffinolactis, L. helveticus, Streptococcus thermophilus, and Lc. lactis were the major dominant taxa ('core microbiota'). The origin of samples significantly impacted on both richness, evenness, and the relative abundance of bacterial species, with peculiar pattern distribution among the five GP production regions. A differential analysis allowed to find bacterial species significantly associated with specific region pairings. The analysis of pattern similarity among RAPD-PCR profiles highlighted the presence of a 'core' community banding pattern present in all the GP samples, which was strictly associated with the core microbiota highlighted by DNA metabarcoding. A trend to group samples according to the five production regions was also observed. This study widened our knowledge on the bacterial composition and ecology of Grana Padano cheese.


Asunto(s)
Queso/microbiología , Código de Barras del ADN Taxonómico/métodos , Dermatoglifia del ADN/métodos , Microbiología de Alimentos , Microbiota/genética , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Biología Computacional , ADN Bacteriano/genética , Técnicas de Genotipaje , Lactobacillus/genética , Técnica del ADN Polimorfo Amplificado Aleatorio , Streptococcus thermophilus/genética , Tilacoides
4.
Plant Dis ; 105(6): 1719-1727, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33337235

RESUMEN

The seed- and air-borne pathogen Colletotrichum lupini, the causal agent of lupin anthracnose, is the most important disease in white lupin (Lupinus albus) worldwide and can cause total yield loss. The aims of this study were to establish a reliable high-throughput phenotyping tool to identify anthracnose resistance in white lupin germplasm and to evaluate a genomic prediction model, accounting for previously reported resistance quantitative trait loci, on a set of independent lupin genotypes. Phenotyping under controlled conditions, performing stem inoculation on seedlings, showed to be applicable for high throughput, and its disease score strongly correlated with field plot disease assessments (r = 0.95, P < 0.0001) and yield (r = -0.64, P = 0.035). Traditional one-row field disease phenotyping showed no significant correlation with field plot disease assessments (r = 0.31, P = 0.34) and yield (r = -0.45, P = 0.17). Genomically predicted resistance values showed no correlation with values observed under controlled or field conditions, and the parental lines of the recombinant inbred line population used for constructing the prediction model exhibited a resistance pattern opposite to that displayed in the original (Australian) environment used for model construction. Differing environmental conditions, inoculation procedures, or population structure may account for this result. Phenotyping a diverse set of 40 white lupin accessions under controlled conditions revealed eight accessions with improved resistance to anthracnose. The standardized area under the disease progress curves (sAUDPC) ranged from 2.1 to 2.8, compared with the susceptible reference accession with a sAUDPC of 3.85. These accessions can be incorporated into white lupin breeding programs. In conclusion, our data support stem inoculation-based disease phenotyping under controlled conditions as a time-effective approach to identify field-relevant resistance, which can now be applied to further identify sources of resistance and their underlying genetics.


Asunto(s)
Colletotrichum , Lupinus , Australia , Colletotrichum/genética , Lupinus/genética , Fitomejoramiento
5.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244428

RESUMEN

Terminal drought is the main stress limiting pea (Pisum sativum L.) grain yield in Mediterranean environments. This study aimed to investigate genotype × environment (GE) interaction patterns, define a genomic selection (GS) model for yield under severe drought based on single nucleotide polymorphism (SNP) markers from genotyping-by-sequencing, and compare GS with phenotypic selection (PS) and marker-assisted selection (MAS). Some 288 lines belonging to three connected RIL populations were evaluated in a managed-stress (MS) environment of Northern Italy, Marchouch (Morocco), and Alger (Algeria). Intra-environment, cross-environment, and cross-population predictive ability were assessed by Ridge Regression best linear unbiased prediction (rrBLUP) and Bayesian Lasso models. GE interaction was particularly large across moderate-stress and severe-stress environments. In proof-of-concept experiments performed in a MS environment, GS models constructed from MS environment and Marchouch data applied to independent material separated top-performing lines from mid- and bottom-performing ones, and produced actual yield gains similar to PS. The latter result would imply somewhat greater GS efficiency when considering same selection costs, in partial agreement with predicted efficiency results. GS, which exploited drought escape and intrinsic drought tolerance, exhibited 18% greater selection efficiency than MAS (albeit with non-significant difference between selections) and moderate to high cross-population predictive ability. GS can be cost-efficient to raise yields under severe drought.


Asunto(s)
Sequías , Grano Comestible/genética , Genoma de Planta , Pisum sativum/genética , Selección Genética , Aclimatación/genética , Aclimatación/fisiología , Argelia , Teorema de Bayes , Genotipo , Italia , Marruecos , Fenotipo , Polimorfismo de Nucleótido Simple , Estrés Fisiológico
6.
BMC Genomics ; 20(1): 603, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31331290

RESUMEN

BACKGROUND: A thorough verification of the ability of genomic selection (GS) to predict estimated breeding values for pea (Pisum sativum L.) grain yield is pending. Prediction for different environments (inter-environment prediction) has key importance when breeding for target environments featuring high genotype × environment interaction (GEI). The interest of GS would increase if it could display acceptable prediction accuracies in different environments also for germplasm that was not used in model training (inter-population prediction). RESULTS: Some 306 genotypes belonging to three connected RIL populations derived from paired crosses between elite cultivars were genotyped through genotyping-by-sequencing and phenotyped for grain yield, onset of flowering, lodging susceptibility, seed weight and winter plant survival in three autumn-sown environments of northern or central Italy. The large GEI for grain yield and its pattern (implying larger variation across years than sites mainly due to year-to-year variability for low winter temperatures) encouraged the breeding for wide adaptation. Wider within-population than between-population variation was observed for nearly all traits, supporting GS application to many lines of relatively few elite RIL populations. Bayesian Lasso without structure imputation and 1% maximum genotype missing rate (including 6058 polymorphic SNP markers) was selected for GS modelling after assessing different GS models and data configurations. On average, inter-environment predictive ability using intra-population predictions reached 0.30 for yield, 0.65 for onset of flowering, 0.64 for seed weight, and 0.28 for lodging susceptibility. Using inter-population instead of intra-population predictions reduced the inter-environment predictive ability to 0.19 for grain yield, 0.40 for onset of flowering, 0.28 for seed weight, and 0.22 for lodging susceptibility. A comparison of GS vs phenotypic selection (PS) based on predicted genetic gains per unit time for same selection costs suggested greater efficiency of GS for all traits under various selection scenarios. For yield, the advantage in predicted efficiency of GS over PS was at least 80% using intra-population predictions and 20% using inter-population predictions. A genome-wide association study confirmed the highly polygenic control of most traits. CONCLUSIONS: Genome-enabled predictions can increase the efficiency of pea line selection for wide adaptation to Italian environments relative to phenotypic selection.


Asunto(s)
Cruzamiento , Ambiente , Genómica , Pisum sativum/genética , Estudio de Asociación del Genoma Completo , Genotipo , Italia , Fenotipo
7.
Bioinformatics ; 33(12): 1879-1880, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28137710

RESUMEN

MOTIVATION: Formation of homodimers by identical Dscam1 protein isomers on cell surface is the key factor for the self-avoidance of growing neurites. Dscam1 immense diversity has a critical role in the formation of arthropod neuronal circuit, showing unique evolutionary properties when compared to other cell surface proteins. Experimental measures are available for 89 self-binding and 1722 hetero-binding protein samples, out of more than 19 thousands (self-binding) and 350 millions (hetero-binding) possible isomer combinations. RESULTS: We developed Dscam1 Web Server to quickly predict Dscam1 self- and hetero- binding affinity for batches of Dscam1 isomers. The server can help the study of Dscam1 affinity and help researchers navigate through the tens of millions of possible isomer combinations to isolate the strong-binding ones. AVAILABILITY AND IMPLEMENTATION: Dscam1 Web Server is freely available at: http://bioinformatics.tecnoparco.org/Dscam1-webserver . Web server code is available at https://gitlab.com/ne1s0n/Dscam1-binding . CONTACT: simone.marini@unipv.it or guangzhong.wang@picb.ac.cn. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Proteínas de Drosophila/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Programas Informáticos , Animales , Moléculas de Adhesión Celular , Drosophila/metabolismo , Neuronas/metabolismo , Multimerización de Proteína
8.
BMC Genomics ; 18(1): 432, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28583089

RESUMEN

BACKGROUND: Highly polygenic traits such as fruit weight, sugar content and acidity strongly influence the agroeconomic value of peach varieties. Genomic Selection (GS) can accelerate peach yield and quality gain if predictions show higher levels of accuracy compared to phenotypic selection. The available IPSC 9K SNP array V1 allows standardized and highly reliable genotyping, preparing the ground for GS in peach. RESULTS: A repeatability model (multiple records per individual plant) for genome-enabled predictions in eleven European peach populations is presented. The analysis included 1147 individuals derived from both commercial and non-commercial peach or peach-related accessions. Considered traits were average fruit weight (FW), sugar content (SC) and titratable acidity (TA). Plants were genotyped with the 9K IPSC array, grown in three countries (France, Italy, Spain) and phenotyped for 3-5 years. An analysis of imputation accuracy of missing genotypic data was conducted using the software Beagle, showing that two of the eleven populations were highly sensitive to increasing levels of missing data. The regression model produced, for each trait and each population, estimates of heritability (FW:0.35, SC:0.48, TA:0.53, on average) and repeatability (FW:0.56, SC:0.63, TA:0.62, on average). Predictive ability was estimated in a five-fold cross validation scheme within population as the correlation of true and predicted phenotypes. Results differed by populations and traits, but predictive abilities were in general high (FW:0.60, SC:0.72, TA:0.65, on average). CONCLUSIONS: This study assessed the feasibility of Genomic Selection in peach for highly polygenic traits linked to yield and fruit quality. The accuracy of imputing missing genotypes was as high as 96%, and the genomic predictive ability was on average 0.65, but could be as high as 0.84 for fruit weight or 0.83 for titratable acidity. The estimated repeatability may prove very useful in the management of the typical long cycles involved in peach productions. All together, these results are very promising for the application of genomic selection to peach breeding programmes.


Asunto(s)
Frutas/crecimiento & desarrollo , Genómica , Prunus persica/crecimiento & desarrollo , Prunus persica/genética , Cruzamiento , Genotipo , Polimorfismo de Nucleótido Simple , Estadística como Asunto
9.
BMC Genomics ; 18(1): 404, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28583082

RESUMEN

BACKGROUND: Peach (Prunus persica (L.) Batsch) is a major temperate fruit crop with an intense breeding activity. Breeding is facilitated by knowledge of the inheritance of the key traits that are often of a quantitative nature. QTLs have traditionally been studied using the phenotype of a single progeny (usually a full-sib progeny) and the correlation with a set of markers covering its genome. This approach has allowed the identification of various genes and QTLs but is limited by the small numbers of individuals used and by the narrow transect of the variability analyzed. In this article we propose the use of a multi-progeny mapping strategy that used pedigree information and Bayesian approaches that supports a more precise and complete survey of the available genetic variability. RESULTS: Seven key agronomic characters (data from 1 to 3 years) were analyzed in 18 progenies from crosses between occidental commercial genotypes and various exotic lines including accessions of other Prunus species. A total of 1467 plants from these progenies were genotyped with a 9 k SNP array. Forty-seven QTLs were identified, 22 coinciding with major genes and QTLs that have been consistently found in the same populations when studied individually and 25 were new. A substantial part of the QTLs observed (47%) would not have been detected in crosses between only commercial materials, showing the high value of exotic lines as a source of novel alleles for the commercial gene pool. Our strategy also provided estimations on the narrow sense heritability of each character, and the estimation of the QTL genotypes of each parent for the different QTLs and their breeding value. CONCLUSIONS: The integrated strategy used provides a broader and more accurate picture of the variability available for peach breeding with the identification of many new QTLs, information on the sources of the alleles of interest and the breeding values of the potential donors of such valuable alleles. These results are first-hand information for breeders and a step forward towards the implementation of DNA-informed strategies to facilitate selection of new cultivars with improved productivity and quality.


Asunto(s)
Cruzamiento , Prunus persica/genética , Sitios de Carácter Cuantitativo/genética , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Genotipo , Polimorfismo de Nucleótido Simple , Probabilidad , Prunus persica/crecimiento & desarrollo , Solubilidad
10.
BMC Genomics ; 16: 1020, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26626170

RESUMEN

BACKGROUND: Genomic selection based on genotyping-by-sequencing (GBS) data could accelerate alfalfa yield gains, if it displayed moderate ability to predict parent breeding values. Its interest would be enhanced by predicting ability also for germplasm/reference populations other than those for which it was defined. Predicting accuracy may be influenced by statistical models, SNP calling procedures and missing data imputation strategies. RESULTS: Landrace and variety material from two genetically-contrasting reference populations, i.e., 124 elite genotypes adapted to the Po Valley (sub-continental climate; PV population) and 154 genotypes adapted to Mediterranean-climate environments (Me population), were genotyped by GBS and phenotyped in separate environments for dry matter yield of their dense-planted half-sib progenies. Both populations showed no sub-population genetic structure. Predictive accuracy was higher by joint rather than separate SNP calling for the two data sets, and using random forest imputation of missing data. Highest accuracy was obtained using Support Vector Regression (SVR) for PV, and Ridge Regression BLUP and SVR for Me germplasm. Bayesian methods (Bayes A, Bayes B and Bayesian Lasso) tended to be less accurate. Random Forest Regression was the least accurate model. Accuracy attained about 0.35 for Me in the range of 0.30-0.50 missing data, and 0.32 for PV at 0.50 missing data, using at least 10,000 SNP markers. Cross-population predictions based on a smaller subset of common SNPs implied a relative loss of accuracy of about 25% for Me and 30% for PV. Genome-wide association analyses based on large subsets of M. truncatula-aligned markers revealed many SNPs with modest association with yield, and some genome areas hosting putative QTLs. A comparison of genomic vs. conventional selection for parent breeding value assuming 1-year vs. 5-year selection cycles, respectively, indicated over three-fold greater predicted yield gain per unit time for genomic selection. CONCLUSIONS: Genomic selection for alfalfa yield is promising, based on its moderate prediction accuracy, moderate value of cross-population predictions, and lack of sub-population structure. There is limited scope for searching individual QTLs with overwhelming effect on yield. Some of our results can contribute to better design of genomic selection experiments for alfalfa and other crops with similar mating systems.


Asunto(s)
Biomasa , Genética de Población , Genoma de Planta , Medicago sativa/genética , Selección Genética , Cruzamiento , Estudio de Asociación del Genoma Completo , Genotipo , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Reproducibilidad de los Resultados
11.
BMC Genomics ; 16: 283, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25881165

RESUMEN

BACKGROUND: In recent years, the use of genomic information in livestock species for genetic improvement, association studies and many other fields has become routine. In order to accommodate different market requirements in terms of genotyping cost, manufacturers of single nucleotide polymorphism (SNP) arrays, private companies and international consortia have developed a large number of arrays with different content and different SNP density. The number of currently available SNP arrays differs among species: ranging from one for goats to more than ten for cattle, and the number of arrays available is increasing rapidly. However, there is limited or no effort to standardize and integrate array- specific (e.g. SNP IDs, allele coding) and species-specific (i.e. past and current assemblies) SNP information. RESULTS: Here we present SNPchiMp v.3, a solution to these issues for the six major livestock species (cow, pig, horse, sheep, goat and chicken). Original data was collected directly from SNP array producers and specific international genome consortia, and stored in a MySQL database. The database was then linked to an open-access web tool and to public databases. SNPchiMp v.3 ensures fast access to the database (retrieving within/across SNP array data) and the possibility of annotating SNP array data in a user-friendly fashion. CONCLUSIONS: This platform allows easy integration and standardization, and it is aimed at both industry and research. It also enables users to easily link the information available from the array producer with data in public databases, without the need of additional bioinformatics tools or pipelines. In recognition of the open-access use of Ensembl resources, SNPchiMp v.3 was officially credited as an Ensembl E!mpowered tool. Availability at http://bioinformatics.tecnoparco.org/SNPchimp.


Asunto(s)
Bases de Datos Genéticas , Polimorfismo de Nucleótido Simple , Animales , Bovinos , Biología Computacional , Genoma , Cabras/genética , Internet , Especificidad de la Especie , Interfaz Usuario-Computador
12.
Genes (Basel) ; 15(4)2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38674384

RESUMEN

BACKGROUND: Alfalfa, the most economically important forage legume worldwide, features modest genetic progress due to long selection cycles and the extent of the non-additive genetic variance associated with its autotetraploid genome. METHODS: To improve the efficiency of genomic selection in alfalfa, we explored the effects of genome parametrization (as tetraploid and diploid dosages, plus allele ratios) and SNP marker subsetting (all available SNPs, only genic regions, and only non-genic regions) on genomic regressions, together with various levels of filtering on reading depth and missing rates. We used genotyping by sequencing-generated data and focused on traits of different genetic complexity, i.e., dry biomass yield in moisture-favorable (FE) and drought stress (SE) environments, leaf size, and the onset of flowering, which were assessed in 143 genotyped plants from a genetically broad European reference population and their phenotyped half-sib progenies. RESULTS: On average, the allele ratio improved the predictive ability compared with other genome parametrizations (+7.9% vs. tetraploid dosage, +12.6% vs. diploid dosage), while using all the SNPs offered an advantage compared with any specific SNP subsetting (+3.7% vs. genic regions, +7.6% vs. non-genic regions). However, when focusing on specific traits, different combinations of genome parametrization and subsetting achieved better performances. We also released Legpipe2, an SNP calling pipeline tailored for reduced representation (GBS, RAD) in medium-sized genotyping experiments.


Asunto(s)
Genoma de Planta , Medicago sativa , Polimorfismo de Nucleótido Simple , Tetraploidía , Medicago sativa/genética , Genoma de Planta/genética , Selección Genética , Genotipo , Fenotipo , Genómica/métodos , Marcadores Genéticos
13.
Sci Rep ; 14(1): 13188, 2024 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851759

RESUMEN

Genome interpretation (GI) encompasses the computational attempts to model the relationship between genotype and phenotype with the goal of understanding how the first leads to the second. While traditional approaches have focused on sub-problems such as predicting the effect of single nucleotide variants or finding genetic associations, recent advances in neural networks (NNs) have made it possible to develop end-to-end GI models that take genomic data as input and predict phenotypes as output. However, technical and modeling issues still need to be fixed for these models to be effective, including the widespread underdetermination of genomic datasets, making them unsuitable for training large, overfitting-prone, NNs. Here we propose novel GI models to address this issue, exploring the use of two types of transfer learning approaches and proposing a novel Biologically Meaningful Sparse NN layer specifically designed for end-to-end GI. Our models predict the leaf and seed ionome in A.thaliana, obtaining comparable results to our previous over-parameterized model while reducing the number of parameters by 8.8 folds. We also investigate how the effect of population stratification influences the evaluation of the performances, highlighting how it leads to (1) an instance of the Simpson's Paradox, and (2) model generalization limitations.


Asunto(s)
Arabidopsis , Genoma de Planta , Hojas de la Planta , Semillas , Arabidopsis/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Semillas/genética , Semillas/metabolismo , Redes Neurales de la Computación , Genómica/métodos , Fenotipo , Modelos Genéticos , Genotipo
14.
Plants (Basel) ; 12(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37176892

RESUMEN

Soybean is the most grown high-protein crop in the world. Despite the rapid increase of acreage and production volume, European soybean production accounts for only 34% of its consumption in Europe. This study aims to support the optimal exploitation of genetic resources by European breeding programs by investigating the genetic diversity and the genetic structure of 207 European cultivars or American introductions registered in Europe, which were genotyped by the SoySNP50K array. The expected heterozygosity (He) was 0.34 for the entire collection and ranged among countries from 0.24 for Swiss cultivars to 0.32 for American cultivars (partly reflecting differences in sample size between countries). Cluster analysis grouped all genotypes into two main clusters with eight subgroups that corresponded to the country of origin of cultivars and their maturity group. Pairwise Fst values between countries of origin showed the highest differentiation of Swiss cultivars from the rest of the European gene pool, while the lowest mean differentiation was found between American introductions and all other European countries. On the other hand, Fst values between maturity groups were much lower compared to those observed between countries. In analysis of molecular variance, the total genetic variation was partitioned either by country of origin or by maturity group, explaining 9.1% and 3.5% of the total genetic variance, respectively. On the whole, our results suggest that the European soybean gene pool still has sufficient diversity due to the different historical breeding practices in western and eastern countries and the relatively short period of breeding in Europe.

15.
PLoS One ; 18(7): e0289108, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37490502

RESUMEN

The aim of this study was to evaluate the ability of DNA metabarcoding, by rbcl as barcode marker, to identify and classify the small traces of plant DNA isolated from raw milk used to produce Grana Padano (GP) cheese. GP is one of the most popular Italian PDO (Protected Designation of Origin) produced in Italy in accordance with the GP PDO specification rules that define which forage can be used for feeding cows. A total of 42 GP bulk tank milk samples were collected from 14 dairies located in the Grana Padano production area. For the taxonomic classification, a local database with the rbcL sequences available in NCBI on September 2020/March 2021 for the Italian flora was generated. A total of 8,399,591 reads were produced with an average of 204,868 per sample (range 37,002-408,724) resulting in 16, 31 and 28 dominant OTUs at family, genus and species level, respectively. The taxonomic analysis of plant species in milk samples identified 7 families, 14 genera and 14 species, the statistical analysis conducted using alpha and beta diversity approaches, did not highlight differences among the investigated samples. However, the milk samples are featured by a high plant variability and the lack of differences at multiple taxonomic levels could be due to the standardisation of the feed rationing, as requested by the GP rules. The results suggest that DNA metabarcoding is a valuable resource to explore plant DNA traces in a complex matrix such as milk.


Asunto(s)
Queso , Leche , Femenino , Animales , Bovinos , ADN de Plantas/genética , Tilacoides , Italia , Queso/análisis
16.
Front Plant Sci ; 14: 1320506, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38186592

RESUMEN

Well-performing genomic prediction (GP) models for polygenic traits and molecular marker sets for oligogenic traits could be useful for identifying promising genetic resources in germplasm collections, setting core collections, and establishing molecular variety distinction. This study aimed at (i) defining GP models and key marker sets for predicting 15 agronomic or morphological traits in germplasm collections, (ii) verifying the GP model usefulness also for selection in breeding programs, (iii) investigating the consistency between molecular and phenotypic diversity patterns, and (iv) identifying genomic regions associated with to the target traits. The study was based on phenotyping data and over 41,000 genotyping-by-sequencing-generated SNP markers of 220 landraces or old cultivars belonging to a world germplasm collection and 11 modern cultivars. Non-metric multi-dimensional scaling (NMDS) and an analysis of population genetic structure indicated a high level of genetic differentiation of material from Western Asia, a major West-East diversity gradient, and quite limited genetic diversity of the improved germplasm. Mantel's test revealed a low correlation (r = 0.12) between phenotypic and molecular diversity, which increased (r = 0.45) when considering only the molecular diversity relative to significant SNPs from genome-wide association analyses. These analyses identified, inter alia, several areas of chromosome 6 involved in a largely pleiotropic control of vegetative or reproductive organ pigmentation. We found various significant SNPs for grain and straw yield under severe drought and onset of flowering, and one SNP on chromosome 5 for grain protein content. GP models displayed moderately high predictive ability (0.43 to 0.61) for protein content, grain and straw yield, and onset of flowering, and high predictive ability (0.76) for individual seed weight, based on intra-population, intra-environment cross-validations. The inter-population, inter-environment assessment of the models trained on the germplasm collection for breeding material of three recombinant inbred line (RIL) populations, which was challenged by much narrower diversity of the material, over eight-fold less available markers and quite different test environments, led to an overall loss of predictive ability of about 40% for seed weight, 50% for protein content and straw yield, and 60% for onset of flowering, and no prediction for grain yield. Within-RIL population predictive ability differed among populations.

17.
Food Res Int ; 172: 113102, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689872

RESUMEN

The microbial population of raw milk plays a crucial role in the development of distinctive traits of raw-milk cheeses particularly appreciated by consumers. It was previously demonstrated that the microbial population of raw milk is modified by a high-speed centrifugation (also called bactofugation) conducted at 39 °C. The aim of the present study was to evaluate the effects of this process, performed once or twice, on the microbial, compositional, biochemical, and sensory characteristics of the derived hard cheeses. Experimental and control cheesemaking were conducted in parallel at a cheese factory during a 13-month period. Cheeses were analysed after 9, 15 and 20 months of ripening for microbial count, composition, proteolysis extent, volatile compounds, and sensory profile. Results evidenced that experimental cheeses were characterized by lower numbers of viable lactobacilli respect to control. Experimental cheeses also showed differences in the progress of primary and secondary proteolysis which, in turn, caused different patterns of free amino acids at all ripening times. Experimental cheeses had significantly lower content of esters and were differentiated from control for some traits by assessors. In conclusion, use of high-speed centrifugation of milk shall be discouraged if characteristic traits of raw-milk cheeses, particularly PDO cheeses, want to be retained.


Asunto(s)
Queso , Microbiota , Animales , Leche , Aminoácidos , Centrifugación
18.
Plants (Basel) ; 12(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36903997

RESUMEN

White lupin is a promising high-protein crop, the cultivation of which is limited by a lack of adaptation to soils that are even just mildly calcareous. This study aimed to assess the phenotypic variation, the trait architecture based on a GWAS, and the predictive ability of genome-enabled models for grain yield and contributing traits of a genetically-broad population of 140 lines grown in an autumn-sown environment of Greece (Larissa) and a spring-sown environment of the Netherlands (Ens) that featured moderately calcareous and alkaline soils. We found large genotype × environment interaction and modest or nil genetic correlation for line responses across locations for grain yield, a lime susceptibility score, and other traits, with the exception of individual seed weight and plant height. The GWAS identified significant SNP markers associated with various traits that were markedly inconsistent across locations, while providing direct or indirect evidence for widespread polygenic trait control. Genomic selection proved to be a feasible strategy, owing to a moderate predictive ability for yield and lime susceptibility in Larissa (the site featuring greater lime soil stress). Other supporting results for breeding programs where the identification of a candidate gene for lime tolerance and the high reliability of genome-enabled predictions for individual seed weight.

19.
Sci Rep ; 12(1): 19889, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400808

RESUMEN

Deep learning is impacting many fields of data science with often spectacular results. However, its application to whole-genome predictions in plant and animal science or in human biology has been rather limited, with mostly underwhelming results. While most works focus on exploring alternative network architectures, in this study we propose an innovative representation of marker genotype data and tested it against the GBLUP (Genomic BLUP) benchmark with linear and nonlinear phenotypes. From publicly available cattle SNP genotype data, different types of genomic kinship matrices are stacked together in a 3D pile from where 2D grayscale slices are extracted and fed to a deep convolutional neural network (DNN). We simulated nine phenotype scenarios with combinations of additivity, dominance and epistasis, and compared the DNN to GBLUP-A (computed using only the additive kinship matrix) and GBLUP-optim (additive, dominance, and epistasis kinship matrices, as needed). Results varied depending on the accuracy metric employed, with DNN performing better in terms of root mean squared error (1-12% lower than GBLUP-A; 1-9% lower than GBLUP-optim) but worse in terms of Pearson's correlation (0.505 for DNN compared to 0.672 and 0.669 of GBLUP-A and GBLUP-optim for fully additive case; 0.274 for DNN, 0.279 for GBLUP-A, and 0.477 for GBLUP-optim for fully dominant case). The proposed approach offers a basis to explore further the application of DNN to tabular data in whole-genome predictions.


Asunto(s)
Modelos Genéticos , Polimorfismo de Nucleótido Simple , Humanos , Bovinos , Animales , Genoma , Genómica/métodos , Fenotipo
20.
Plant Genome ; 15(4): e20264, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36222346

RESUMEN

Alfalfa (Medicago sativa L.) selection for stress-prone regions has high priority for sustainable crop-livestock systems. This study assessed the genomic selection (GS) ability to predict alfalfa breeding values for drought-prone agricultural sites of Algeria, Morocco, and Argentina; managed-stress (MS) environments of Italy featuring moderate or intense drought; and one Tunisian site irrigated with moderately saline water. Additional aims were to investigate genotype × environment interaction (GEI) patterns and the effect on GS predictions of three single-nucleotide polymorphism (SNP) calling procedures, 12 statistical models that exclude or incorporate GEI, and allele dosage information. Our study included 127 genotypes from a Mediterranean reference population originated from three geographically contrasting populations, genotyped via genotyping-by-sequencing and phenotyped based on multi-year biomass dry matter yield of their dense-planted half-sib progenies. The GEI was very large, as shown by 27-fold greater additive genetic variance × environment interaction relative to the additive genetic variance and low genetic correlation for progeny yield responses across environments. The predictive ability of GS (using at least 37,969 SNP markers) exceeded 0.20 for moderate MS (representing Italian stress-prone sites) and the sites of Algeria and Argentina while being quite low for the Tunisian site and intense MS. Predictions of GS were complicated by rapid linkage disequilibrium decay. The weighted GBLUP model, GEI incorporation into GS models, and SNP calling based on a mock reference genome exhibited a predictive ability advantage for some environments. Our results support the specific breeding for each target region and suggest a positive role for GS in most regions when considering the challenges associated with phenotypic selection.


Asunto(s)
Medicago sativa , Selección Genética , Medicago sativa/genética , Fenotipo , Fitomejoramiento , Genómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA