Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Prog Mol Subcell Biol ; 59: 215-237, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34050869

RESUMEN

Intracellular Ca2+ signaling regulates a plethora of cellular functions. A central role in these processes is reserved for the inositol 1,4,5-trisphosphate receptor (IP3R), a ubiquitously expressed Ca2+-release channel, mainly located in the endoplasmic reticulum (ER). Three IP3R isoforms (IP3R1, IP3R2 and IP3R3) exist, encoded respectively by ITPR1, ITPR2 and ITPR3. The proteins encoded by these genes are each about 2700 amino acids long and assemble into large tetrameric channels, which form the target of many regulatory proteins, including several tumor suppressors and oncogenes. Due to the important role of the IP3Rs in cell function, their dysregulation is linked to multiple pathologies. In this review, we highlight the complex role of the IP3R in cancer, as it participates in most of the so-called "hallmarks of cancer". In particular, the IP3R directly controls cell death and cell survival decisions via regulation of autophagy and apoptosis. Moreover, the IP3R impacts cellular proliferation, migration and invasion. Typical examples of the role of the IP3Rs in these various processes are discussed. The relative levels of the IP3R isoforms expressed and their subcellular localization, e.g. at the ER-mitochondrial interface, is hereby important. Finally, evidence is provided about how the knowledge of the regulation of the IP3R by tumor suppressors and oncogenes can be exploited to develop novel therapeutic approaches to fight cancer.


Asunto(s)
Retículo Endoplásmico , Neoplasias , Biología , Calcio/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Neoplasias/genética
2.
Cell Mol Life Sci ; 76(19): 3843-3859, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30989245

RESUMEN

Bcl-2 proteins have emerged as critical regulators of intracellular Ca2+ dynamics by directly targeting and inhibiting the IP3 receptor (IP3R), a major intracellular Ca2+-release channel. Here, we demonstrate that such inhibition occurs under conditions of basal, but not high IP3R activity, since overexpressed and purified Bcl-2 (or its BH4 domain) can inhibit IP3R function provoked by low concentration of agonist or IP3, while fails to attenuate against high concentration of agonist or IP3. Surprisingly, Bcl-2 remained capable of inhibiting IP3R1 channels lacking the residues encompassing the previously identified Bcl-2-binding site (a.a. 1380-1408) located in the ARM2 domain, part of the modulatory region. Using a plethora of computational, biochemical and biophysical methods, we demonstrate that Bcl-2 and more particularly its BH4 domain bind to the ligand-binding domain (LBD) of IP3R1. In line with this finding, the interaction between the LBD and Bcl-2 (or its BH4 domain) was sensitive to IP3 and adenophostin A, ligands of the IP3R. Vice versa, the BH4 domain of Bcl-2 counteracted the binding of IP3 to the LBD. Collectively, our work reveals a novel mechanism by which Bcl-2 influences IP3R activity at the level of the LBD. This allows for exquisite modulation of Bcl-2's inhibitory properties on IP3Rs that is tunable to the level of IP3 signaling in cells.


Asunto(s)
Señalización del Calcio , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Secuencia de Aminoácidos , Animales , Unión Competitiva , Células COS , Células Cultivadas , Chlorocebus aethiops , Receptores de Inositol 1,4,5-Trifosfato/agonistas , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Ligandos , Ratones , Simulación del Acoplamiento Molecular , Dominios Proteicos , Proteínas Proto-Oncogénicas c-bcl-2/química , Eliminación de Secuencia
3.
Adv Exp Med Biol ; 1131: 243-270, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31646513

RESUMEN

The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a Ca2+-release channel mainly located in the endoplasmic reticulum (ER). Three IP3R isoforms are responsible for the generation of intracellular Ca2+ signals that may spread across the entire cell or occur locally in so-called microdomains. Because of their ubiquitous expression, these channels are involved in the regulation of a plethora of cellular processes, including cell survival and cell death. To exert their proper function a fine regulation of their activity is of paramount importance. In this review, we will highlight the recent advances in the structural analysis of the IP3R and try to link these data with the newest information concerning IP3R activation and regulation. A special focus of this review will be directed towards the regulation of the IP3R by protein-protein interaction. Especially the protein family formed by calmodulin and related Ca2+-binding proteins and the pro- and anti-apoptotic/autophagic Bcl-2-family members will be highlighted. Finally, recently identified and novel IP3R regulatory proteins will be discussed. A number of these interactions are involved in cancer development, illustrating the potential importance of modulating IP3R-mediated Ca2+ signaling in cancer treatment.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Receptores de Inositol 1,4,5-Trifosfato , Señalización del Calcio , Supervivencia Celular/genética , Retículo Endoplásmico/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
4.
Int J Mol Sci ; 21(24)2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371518

RESUMEN

The store-operated calcium entry, better known as SOCE, forms the main Ca2+ influx pathway in non-excitable cells, especially in leukocytes, where it is required for cell activation and the immune response. During the past decades, several inhibitors were developed, but they lack specificity or efficacy. From the non-specific SOCE inhibitor 2-aminoethyl diphenylborinate (2-APB), we synthetized 16 new analogues by replacing/modifying the phenyl groups. Among them, our compound P11 showed the best inhibitory capacity with a Ki ≈ 75 nM. Furthermore, below 1 µM, P11 was devoid of any inhibitory activity on the two other main cellular targets of 2-APB, the IP3 receptors, and the SERCA pumps. Interestingly, Jurkat T cells secrete interleukin-2 under phytohemagglutinin stimulation but undergo cell death and stop IL-2 synthesis when stimulated in the presence of increasing P11 concentrations. Thus, P11 could represent the first member of a new and potent family of immunosuppressors.


Asunto(s)
Apoptosis , Compuestos de Boro/farmacología , Bloqueadores de los Canales de Calcio/síntesis química , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/química , Calcio/metabolismo , Interleucina-2/metabolismo , Compuestos de Boro/química , Humanos , Células Jurkat , Fitohemaglutininas/farmacología
5.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916960

RESUMEN

STIM1 is an endoplasmic reticulum (ER) protein that modulates the activity of a number of Ca2+ transport systems. By direct physical interaction with ORAI1, a plasma membrane Ca2+ channel, STIM1 activates the ICRAC current, whereas the binding with the voltage-operated Ca2+ channel CaV1.2 inhibits the current through this latter channel. In this way, STIM1 is a key regulator of Ca2+ signaling in excitable and non-excitable cells, and altered STIM1 levels have been reported to underlie several pathologies, including immunodeficiency, neurodegenerative diseases, and cancer. In both sporadic and familial Alzheimer's disease, a decrease of STIM1 protein levels accounts for the alteration of Ca2+ handling that compromises neuronal cell viability. Using SH-SY5Y cells edited by CRISPR/Cas9 to knockout STIM1 gene expression, this work evaluated the molecular mechanisms underlying the cell death triggered by the deficiency of STIM1, demonstrating that STIM1 is a positive regulator of ITPR3 gene expression. ITPR3 (or IP3R3) is a Ca2+ channel enriched at ER-mitochondria contact sites where it provides Ca2+ for transport into the mitochondria. Thus, STIM1 deficiency leads to a strong reduction of ITPR3 transcript and ITPR3 protein levels, a consequent decrease of the mitochondria free Ca2+ concentration ([Ca2+]mit), reduction of mitochondrial oxygen consumption rate, and decrease in ATP synthesis rate. All these values were normalized by ectopic expression of ITPR3 in STIM1-KO cells, providing strong evidence for a new mode of regulation of [Ca2+]mit mediated by the STIM1-ITPR3 axis.


Asunto(s)
Señalización del Calcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocondrias/metabolismo , Proteínas de Neoplasias/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Técnicas de Inactivación de Genes , Humanos , Proteínas de Neoplasias/genética , Molécula de Interacción Estromal 1/genética
6.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842284

RESUMEN

The European Calcium Society (ECS) is very glad to present the realization of a special issue of the International Journal of Molecular Sciences (IJMS) related to the eighth ECS workshop organized this year around the theme of "Calcium Signaling in Aging and Neurodegenerative Diseases" [...].


Asunto(s)
Envejecimiento/metabolismo , Señalización del Calcio , Calcio/metabolismo , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Humanos , Enfermedades Neurodegenerativas/patología
7.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 968-976, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27913204

RESUMEN

Anti-apoptotic B cell-lymphoma-2 (Bcl-2) proteins are emerging as therapeutic targets in a variety of cancers for precision medicines, like the BH3-mimetic drug venetoclax (ABT-199), which antagonizes the hydrophobic cleft of Bcl-2. However, the impact of venetoclax on intracellular Ca2+ homeostasis and dynamics in cell systems has not been characterized in detail. Here, we show that venetoclax did not affect Ca2+-transport systems from the endoplasmic reticulum (ER) in permeabilized cell systems. Venetoclax (1µM) did neither trigger Ca2+ release by itself nor affect agonist-induced Ca2+ release in a variety of intact cell models. Among the different cell types, we also studied two Bcl-2-dependent cancer cell models with a varying sensitivity towards venetoclax, namely SU-DHL-4 and OCI-LY-1, both diffuse large B-cell lymphoma cell lines. Acute application of venetoclax did also not dysregulate Ca2+ signaling in these Bcl-2-dependent cancer cells. Moreover, venetoclax-induced cell death was independent of intracellular Ca2+ overload, since Ca2+ buffering using BAPTA-AM did not suppress venetoclax-induced cell death. This study therefore shows that venetoclax does not dysregulate the intracellular Ca2+ homeostasis in a variety of cell types, which may underlie its limited toxicity in human patients. Furthermore, venetoclax-induced cell death in Bcl-2-dependent cancer cells is not mediated by intracellular Ca2+ overload. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Señalización del Calcio/efectos de los fármacos , Imitación Molecular , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Sulfonamidas/farmacología , Línea Celular Tumoral , Humanos
8.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 947-956, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28254579

RESUMEN

Previous work revealed that intracellular Ca2+ signals and the inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) are essential to increase autophagic flux in response to mTOR inhibition, induced by either nutrient starvation or rapamycin treatment. Here, we investigated whether autophagy induced by resveratrol, a polyphenolic phytochemical reported to trigger autophagy in a non-canonical way, also requires IP3Rs and Ca2+ signaling. Resveratrol augmented autophagic flux in a time-dependent manner in HeLa cells. Importantly, autophagy induced by resveratrol (80µM, 2h) was completely abolished in the presence of 10µM BAPTA-AM, an intracellular Ca2+-chelating agent. To elucidate the IP3R's role in this process, we employed the recently established HEK 3KO cells lacking all three IP3R isoforms. In contrast to the HEK293 wt cells and to HEK 3KO cells re-expressing IP3R1, autophagic responses in HEK 3KO cells exposed to resveratrol were severely impaired. These altered autophagic responses could not be attributed to alterations in the mTOR/p70S6K pathway, since resveratrol-induced inhibition of S6 phosphorylation was not abrogated by chelating cytosolic Ca2+ or by knocking out IP3Rs. Finally, we investigated whether resveratrol by itself induced Ca2+ release. In permeabilized HeLa cells, resveratrol neither affected the sarco- and endoplasmic reticulum Ca2+ ATPase (SERCA) activity nor the IP3-induced Ca2+ release nor the basal Ca2+ leak from the ER. Also, prolonged (4 h) treatment with 100µM resveratrol did not affect subsequent IP3-induced Ca2+ release. However, in intact HeLa cells, although resveratrol did not elicit cytosolic Ca2+ signals by itself, it acutely decreased the ER Ca2+-store content irrespective of the presence or absence of IP3Rs, leading to a dampened agonist-induced Ca2+ signaling. In conclusion, these results reveal that IP3Rs and cytosolic Ca2+ signaling are fundamentally important for driving autophagic flux, not only in response to mTOR inhibition but also in response to non-canonical autophagy inducers like resveratrol. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Asunto(s)
Autofagia/efectos de los fármacos , Calcio/metabolismo , Citosol/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Estilbenos/farmacología , Células HEK293 , Células HeLa , Humanos , Resveratrol
9.
Biochim Biophys Acta ; 1863(6 Pt B): 1364-78, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26772784

RESUMEN

Intracellular Ca(2+) signals that arise from the endoplasmic reticulum (ER), the major intracellular Ca(2+)-storage organelle, impact several mitochondrial functions and dictate cell survival and cell death processes. Furthermore, alterations in Ca(2+) signaling in cancer cells promote survival and establish a high tolerance towards cell stress and damage, so that the on-going oncogenic stress does not result in the activation of cell death. Over the last years, the mechanisms underlying these oncogenic alterations in Ca(2+) signaling have started to emerge. An important aspect of this is the identification of several major oncogenes, including Bcl-2, Bcl-XL, Mcl-1, PKB/Akt, and Ras, and tumor suppressors, such as p53, PTEN, PML, BRCA1, and Beclin 1, as direct and critical regulators of Ca(2+)-transport systems located at the ER membranes, including IP3 receptors and SERCA Ca(2+) pumps. In this way, these proteins execute part of their function by controlling the ER-mitochondrial Ca(2+) fluxes, favoring either survival (oncogenes) or cell death (tumor suppressors). Oncogenic mutations, gene deletions or amplifications alter the expression and/or function of these proteins, thereby changing the delicate balance between oncogenes and tumor suppressors, impacting oncogenesis and favoring malignant cell function and behavior. In this review, we provided an integrated overview of the impact of the major oncogenes and tumor suppressors, often altered in cancer cells, on Ca(2+) signaling from the ER Ca(2+) stores. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Supervivencia Celular , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patología
10.
Adv Exp Med Biol ; 981: 149-178, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29594861

RESUMEN

The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a ubiquitously expressed Ca2+-release channel localized in the endoplasmic reticulum (ER). The intracellular Ca2+ signals originating from the activation of the IP3R regulate multiple cellular processes including the control of cell death versus cell survival via their action on apoptosis and autophagy. The exact role of the IP3Rs in these two processes does not only depend on their activity, which is modulated by the cytosolic composition (Ca2+, ATP, redox status, …) and by various types of regulatory proteins, including kinases and phosphatases as well as by a number of oncogenes and tumor suppressors, but also on their intracellular localization, especially at the ER-mitochondrial and ER-lysosomal interfaces. At these interfaces, Ca2+ microdomains are formed, in which the Ca2+ concentration is finely regulated by the different ER, mitochondrial and lysosomal Ca2+-transport systems and also depends on the functional and structural interactions existing between them. In this review, we therefore discuss the most recent insights in the role of Ca2+ signaling in general, and of the IP3R in particular, in the control of basal mitochondrial bioenergetics, apoptosis, and autophagy at the level of inter-organellar contact sites.


Asunto(s)
Apoptosis/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Membrana Celular/metabolismo , Metabolismo Energético/fisiología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Membrana Celular/genética , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Mitocondrias/genética , Mitocondrias/metabolismo
11.
Adv Exp Med Biol ; 997: 225-254, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28815534

RESUMEN

Inter-organellar contact sites establish microdomains for localised Ca2+-signalling events. One of these microdomains is established between the ER and the mitochondria. Importantly, the so-called mitochondria-associated ER membranes (MAMs) contain, besides structural proteins and proteins involved in lipid exchange, several Ca2+-transport systems, mediating efficient Ca2+ transfer from the ER to the mitochondria. These Ca2+ signals critically control several mitochondrial functions, thereby impacting cell metabolism, cell death and survival, proliferation and migration. Hence, the MAMs have emerged as critical signalling hubs in physiology, while their dysregulation is an important factor that drives or at least contributes to oncogenesis and tumour progression. In this book chapter, we will provide an overview of the role of the MAMs in cell function and how alterations in the MAM composition contribute to oncogenic features and behaviours.


Asunto(s)
Señalización del Calcio , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Microdominios de Membrana/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Animales , Retículo Endoplásmico/patología , Humanos , Membranas Intracelulares/patología , Microdominios de Membrana/patología , Proteínas de la Membrana/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Neoplasias/patología , Microambiente Tumoral
12.
Adv Exp Med Biol ; 997: 49-67, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28815521

RESUMEN

The execution of proper Ca2+ signaling requires close apposition between the endoplasmic reticulum (ER) and mitochondria. Hence, Ca2+ released from the ER is "quasi-synaptically" transferred to mitochondrial matrix, where Ca2+ stimulates mitochondrial ATP synthesis by activating the tricarboxylic acid (TCA) cycle. However, when the Ca2+ transfer is excessive and sustained, mitochondrial Ca2+ overload induces apoptosis by opening the mitochondrial permeability transition pore. A large number of regulatory proteins reside at mitochondria-associated ER membranes (MAMs) to maintain the optimal distance between the organelles and to coordinate the functionality of both ER and mitochondrial Ca2+ transporters or channels. In this chapter, we discuss the different pathways involved in the regulation of ER-mitochondria Ca2+ flux and describe the activities of the various Ca2+ players based on their primary intra-organelle localization.


Asunto(s)
Señalización del Calcio , Retículo Endoplásmico/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Apoptosis , Retículo Endoplásmico/patología , Metabolismo Energético , Humanos , Microdominios de Membrana/patología , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/patología
13.
Proc Natl Acad Sci U S A ; 111(3): 1186-91, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24395794

RESUMEN

Bcl-2 interacts with the inositol 1,4,5-trisphosphate receptor (InsP3R) and thus prevents InsP3-induced Ca(2+) elevation that induces apoptosis. Here we report that Bcl-2 binds dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), a protein kinase A (PKA)-activated and calcineurin (CaN)-deactivated inhibitor of protein phosphatase 1 (PP1). Bcl-2 docks DARPP-32 and CaN in a complex on the InsP3R, creating a negative feedback loop that prevents exaggerated Ca(2+) release by decreasing PKA-mediated InsP3R phosphorylation. T-cell activation increases PKA activity, phosphorylating both the InsP3R and DARPP-32. Phosphorylated DARPP-32 inhibits PP1, enhancing InsP3R phosphorylation and Ca(2+) release. Elevated Ca(2+) activates CaN, which dephosphorylates DARPP-32 to dampen Ca(2+) release by eliminating PP1 inhibition to enable it to dephosphorylate the InsP3R. Knocking down either Bcl-2 or DARPP-32 abrogates this feedback mechanism, resulting in increased Ca(2+) elevation and apoptosis. This feedback mechanism appears to be exploited by high levels of Bcl-2 in chronic lymphocytic leukemia cells, repressing B-cell receptor-induced Ca(2+) elevation and apoptosis.


Asunto(s)
Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Regulación de la Expresión Génica , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Apoptosis , Encéfalo/metabolismo , Calcineurina/metabolismo , Calcio/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Células Jurkat , Leucemia Linfocítica Crónica de Células B/metabolismo , Ratones , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , Transducción de Señal
14.
J Biol Chem ; 290(14): 9150-61, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25681439

RESUMEN

Excessive Ca(2+) fluxes from the endoplasmic reticulum to the mitochondria result in apoptotic cell death. Bcl-2 and Bcl-XL proteins exert part of their anti-apoptotic function by directly targeting Ca(2+)-transport systems, like the endoplasmic reticulum-localized inositol 1,4,5-trisphosphate receptors (IP3Rs) and the voltage-dependent anion channel 1 (VDAC1) at the outer mitochondrial membranes. We previously demonstrated that the Bcl-2 homology 4 (BH4) domain of Bcl-2 protects against Ca(2+)-dependent apoptosis by binding and inhibiting IP3Rs, although the BH4 domain of Bcl-XL was protective independently of binding IP3Rs. Here, we report that in contrast to the BH4 domain of Bcl-2, the BH4 domain of Bcl-XL binds and inhibits VDAC1. In intact cells, delivery of the BH4-Bcl-XL peptide via electroporation limits agonist-induced mitochondrial Ca(2+) uptake and protects against staurosporine-induced apoptosis, in line with the results obtained with VDAC1(-/-) cells. Moreover, the delivery of the N-terminal domain of VDAC1 as a synthetic peptide (VDAC1-NP) abolishes the ability of BH4-Bcl-XL to suppress mitochondrial Ca(2+) uptake and to protect against apoptosis. Importantly, VDAC1-NP did not affect the ability of BH4-Bcl-2 to suppress agonist-induced Ca(2+) release in the cytosol or to prevent apoptosis, as done instead by an IP3R-derived peptide. In conclusion, our data indicate that the BH4 domain of Bcl-XL, but not that of Bcl-2, selectively targets VDAC1 and inhibits apoptosis by decreasing VDAC1-mediated Ca(2+) uptake into the mitochondria.


Asunto(s)
Apoptosis , Señalización del Calcio , Mitocondrias/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/fisiología , Proteína bcl-X/fisiología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Ratones , Datos de Secuencia Molecular
15.
Biochim Biophys Acta ; 1853(9): 1992-2005, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25499268

RESUMEN

The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) type 2 (IP3R2) is an intracellular Ca²âº-release channel located on the endoplasmic reticulum (ER). IP3R2 is characterized by a high sensitivity to both IP3 and ATP and is biphasically regulated by Ca²âº. Furthermore, IP3R2 is modulated by various protein kinases. In addition to its regulation by protein kinase A, IP3R2 forms a complex with adenylate cyclase 6 and is directly regulated by cAMP. Finally, in the ER, IP3R2 is less mobile than the other IP3R isoforms, while its functional properties appear dominant in heterotetramers. These properties make the IP3R2 a Ca²âº channel with exquisite properties for setting up intracellular Ca²âº signals with unique characteristics. IP3R2 plays a crucial role in the function of secretory cell types (e.g. pancreatic acinar cells, hepatocytes, salivary gland, eccrine sweat gland). In cardiac myocytes, the role of IP3R2 appears more complex, because, together with IP3R1, it is needed for normal cardiogenesis, while its aberrant activity is implicated in cardiac hypertrophy and arrhythmias. Most importantly, its high sensitivity to IP3 makes IP3R2 a target for anti-apoptotic proteins (e.g. Bcl-2) in B-cell cancers. Disrupting IP3R/Bcl-2 interaction therefore leads in those cells to increased Ca²âº release and apoptosis. Intriguingly, IP3R2 is not only implicated in apoptosis but also in the induction of senescence, another tumour-suppressive mechanism. These results were the first to unravel the physiological and pathophysiological role of IP3R2 and we anticipate that further progress will soon be made in understanding the function of IP3R2 in various tissues and organs.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Animales , Apoptosis , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Humanos , Ratones , Especificidad de Órganos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
16.
J Cell Sci ; 127(Pt 12): 2782-92, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24762814

RESUMEN

The anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein not only counteracts apoptosis at the mitochondria by scaffolding pro-apoptotic Bcl-2-family members, but also acts at the endoplasmic reticulum, thereby controlling intracellular Ca(2+) dynamics. Bcl-2 inhibits Ca(2+) release by targeting the inositol 1,4,5-trisphosphate receptor (IP3R). Sequence analysis has revealed that the Bcl-2-binding site on the IP3R displays strong similarity with a conserved sequence present in all three ryanodine receptor (RyR) isoforms. We now report that Bcl-2 co-immunoprecipitated with RyRs in ectopic expression systems and in native rat hippocampi, indicating that endogenous RyR-Bcl-2 complexes exist. Purified RyR domains containing the putative Bcl-2-binding site bound full-length Bcl-2 in pulldown experiments and interacted with the BH4 domain of Bcl-2 in surface plasmon resonance (SPR) experiments, suggesting a direct interaction. Exogenous expression of full-length Bcl-2 or electroporation loading of the BH4 domain of Bcl-2 dampened RyR-mediated Ca(2+) release in HEK293 cell models. Finally, introducing the BH4-domain peptide into hippocampal neurons through a patch pipette decreased RyR-mediated Ca(2+) release. In conclusion, this study identifies Bcl-2 as a new inhibitor of RyR-based intracellular Ca(2+)-release channels.


Asunto(s)
Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Secuencia de Aminoácidos , Animales , Canales de Calcio/metabolismo , Señalización del Calcio , Células HEK293 , Hipocampo/citología , Humanos , Ratones , Visón , Datos de Secuencia Molecular , Neuronas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Conejos , Ratas , Canal Liberador de Calcio Receptor de Rianodina/química
17.
Mol Cell ; 31(2): 255-65, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18657507

RESUMEN

The antiapoptotic protein Bcl-2 inhibits Ca2+ release from the endoplasmic reticulum (ER). One proposed mechanism involves an interaction of Bcl-2 with the inositol 1,4,5-trisphosphate receptor (IP3R) Ca2+ channel localized with Bcl-2 on the ER. Here we document Bcl-2-IP3R interaction within cells by FRET and identify a Bcl-2 interacting region in the regulatory and coupling domain of the IP3R. A peptide based on this IP3R sequence displaced Bcl-2 from the IP3R and reversed Bcl-2-mediated inhibition of IP3R channel activity in vitro, IP3-induced ER Ca2+ release in permeabilized cells, and cell-permeable IP3 ester-induced Ca2+ elevation in intact cells. This peptide also reversed Bcl-2's inhibition of T cell receptor-induced Ca2+ elevation and apoptosis. Thus, the interaction of Bcl-2 with IP3Rs contributes to the regulation of proapoptotic Ca2+ signals by Bcl-2, suggesting the Bcl-2-IP3R interaction as a potential therapeutic target in diseases associated with Bcl-2's inhibition of cell death.


Asunto(s)
Apoptosis , Señalización del Calcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Complejo CD3/metabolismo , Células COS , Señalización del Calcio/efectos de los fármacos , Chlorocebus aethiops , Transferencia Resonante de Energía de Fluorescencia , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Activación del Canal Iónico/efectos de los fármacos , Células Jurkat , Datos de Secuencia Molecular , Péptidos/química , Péptidos/farmacología , Unión Proteica/efectos de los fármacos , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Receptores de Antígenos de Linfocitos T/metabolismo
18.
Biochim Biophys Acta ; 1843(10): 2240-52, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24768714

RESUMEN

Anti-apoptotic Bcl-2 contributes to cancer formation and progression by promoting the survival of altered cells. Hence, it is a prime target for novel specific anti-cancer therapeutics. In addition to its canonical anti-apoptotic role, Bcl-2 has an inhibitory effect on cell-cycle progression. Bcl-2 acts at two different intracellular compartments, the mitochondria and the endoplasmic reticulum (ER). At the mitochondria, Bcl-2 via its hydrophobic cleft scaffolds the Bcl-2-homology (BH) domain 3 (BH3) of pro-apoptotic Bcl-2-family members. Small molecules (like BH3 mimetics) can disrupt this interaction, resulting in apoptotic cell death in cancer cells. At the ER, Bcl-2 modulates Ca(2+) signaling, thereby promoting proliferation while increasing resistance to apoptosis. Bcl-2 at the ER acts via its N-terminal BH4 domain, which directly binds and inhibits the inositol 1,4,5-trisphosphate receptor (IP3R), the main intracellular Ca(2+)-release channel. Tools targeting the BH4 domain of Bcl-2 reverse Bcl-2's inhibitory action on IP3Rs and trigger pro-apoptotic Ca(2+) signaling in cancer B-cells, including chronic lymphocytic leukemia (CLL) cells and diffuse large B-cell lymphoma (DLBCL) cells. The sensitivity of DLBCL cells to BH4-domain targeting tools strongly correlated with the expression levels of the IP3R2 channel, the IP3R isoform with the highest affinity for IP3. Interestingly, bio-informatic analysis of a database of primary CLL patient cells also revealed a transcriptional upregulation of IP3R2. Finally, this review proposes a model, in which cancer cell survival depends on Bcl-2 at the mitochondria and/or the ER. This dependence likely will have an impact on their responses to BH3-mimetic drugs and BH4-domain targeting tools. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.


Asunto(s)
Linfocitos B/metabolismo , Retículo Endoplásmico/metabolismo , Regulación Neoplásica de la Expresión Génica , Leucemia Linfocítica Crónica de Células B/metabolismo , Linfoma de Células B Grandes Difuso/metabolismo , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Apoptosis , Linfocitos B/patología , Calcio/metabolismo , Señalización del Calcio , Supervivencia Celular , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/genética
19.
Biochim Biophys Acta ; 1843(10): 2164-83, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24642269

RESUMEN

Cell-death and -survival decisions are critically controlled by intracellular Ca(2+) homeostasis and dynamics at the level of the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a pivotal role in these processes by mediating Ca(2+) flux from the ER into the cytosol and mitochondria. Hence, it is clear that many pro-survival and pro-death signaling pathways and proteins affect Ca(2+) signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. In this review, we will focus on how the different IP3R isoforms (IP3R1, IP3R2 and IP3R3) control cell death and survival. First, we will present an overview of the isoform-specific regulation of IP3Rs by cellular factors like IP3, Ca(2+), Ca(2+)-binding proteins, adenosine triphosphate (ATP), thiol modification, phosphorylation and interacting proteins, and of IP3R-isoform specific expression patterns. Second, we will discuss the role of the ER as a Ca(2+) store in cell death and survival and how IP3Rs and pro-survival/pro-death proteins can modulate the basal ER Ca(2+) leak. Third, we will review the regulation of the Ca(2+)-flux properties of the IP3R isoforms by the ER-resident and by the cytoplasmic proteins involved in cell death and survival as well as by redox regulation. Hence, we aim to highlight the specific roles of the various IP3R isoforms in cell-death and -survival signaling. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Estrés del Retículo Endoplásmico/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Inositol 1,4,5-Trifosfato/metabolismo , Animales , Muerte Celular , Supervivencia Celular , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Variación Genética , Homeostasis , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
20.
Biochem Biophys Res Commun ; 463(3): 174-9, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25957473

RESUMEN

The regulation of intracellular Ca(2+) signaling is an important aspect of how anti-apoptotic B-cell lymphoma 2 (Bcl-2) proteins regulate cell death and cell survival. At the endoplasmic reticulum (ER) the Bcl-2 homology (BH) 4 domain of Bcl-2 is known to bind to and inhibit both inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs). Besides this, drugs that target the hydrophobic cleft of Bcl-2 have been reported to deplete ER Ca(2+) stores in an IP3R- and RyR-dependent way. This suggests that the hydrophobic cleft of Bcl-2 may also be involved in regulating these ER-located Ca(2+)-release channels. However, the contribution of the hydrophobic cleft on the binding and regulatory properties of Bcl-2 to either IP3Rs or RyRs has until now not been studied. Here, the importance of the hydrophobic cleft of Bcl-2 in binding to and inhibiting the RyR was assessed by using a genetic approach based on site-directed mutagenesis of Bcl-2's hydrophobic cleft and a pharmacological approach based on the selective Bcl-2 hydrophobic cleft inhibitor, ABT-199. Both binding assays and single-cell Ca(2+) measurements indicated that RyR binding and the inhibition of RyR-mediated Ca(2+) release by Bcl-2 is independent of its hydrophobic cleft.


Asunto(s)
Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Señalización del Calcio , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica , Mapas de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/química , Sulfonamidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA