Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Cell Res ; 423(1): 113468, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36621669

RESUMEN

Management of relapses and refractory rheumatoid arthritis (RA) patients is complex and difficult. Even after the administration of new biological disease-modifying anti-rheumatic drugs (DMARDs), only a few patients achieve the complete remission phase. DMARDs help only in modifying the disease activity, which sooner or later fails. They do not manage the disease at the patho-etiological level. There are some serious side effects as well as drug interaction with DMARDs. There are few subsets of RA patients who do not respond to DMARDs, reasons unknown. Mesenchymal stem cells (MSCs) provide a promising alternative, especially in such cases. This review elaborates on the studies pertaining to the application of MSCs in rheumatoid arthritis over the last two decades. A total of 14 studies (one review article) including 447 patients were included in the study. Most of the studies administered MSCs in refractory RA patients through the intravenous route with varied dosages and frequency of administration. MSCs help in RA treatment via various mechanisms including paracrine effects. All the studies depicted a better clinical outcome with minimal adverse events. The functional scores including the VAS scores improved significantly in all studies irrespective of dosage and source of MSCs. The majority of the studies depicted no complications. Although the use of MSCs in RA is still in the early stages requiring further refinement in the source of MSCs, dosage, and frequency. The role of MSCs in the management of RA has a promising prospect. MSCs target the RA at the molecular level and has the potential to manage refractory RA cases not responding to conventional treatment. Multicentric, large sample populations, and long-term studies are required to ascertain efficacy and safety.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Artritis Reumatoide/terapia , Antirreumáticos/uso terapéutico , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Trasplante de Células Madre Mesenquimatosas/métodos
2.
Biochem Biophys Res Commun ; 673: 87-95, 2023 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-37364390

RESUMEN

Mesenchymal stem cell (MSC)-based therapy has emerged as a promising regenerative therapeutic approach for wound healing. To determine the effects of cultured MSCs as a 2D monolayer (2D-MSCs) and 3D spheroids (3D-MSCs) on their secretomes, and to examine the effect of 3D-MSC secretomes on endothelial cells (ECs) and MSCs in a burn injury mouse model. MSCs were cultured as 2D monolayers (2D-MSCs) and 3D spheroids (3D-MSCs) and their cellular characteristics were evaluated by western blotting. 2D-MSC and 3D-MSC secretomes (condition medium: CM) were analyzed using an angiogenic array. The activation of ECs by 2D-MSC and 3D-MSC CMs was examined in cellular proliferation, migration, and tube formation assays. The wound healing effects of 2D-MSCs and 3D-MSCs were determined in vivo using a burn injury mouse model. 3D culture conditions altered the markers of components that regulate cell survival, cytoskeletal, adhesion, and proliferation. Interleukin-6 (IL-6), vascular endothelial growth factor A (VEGFA), IL-8, and chemokine (CXC motif) ligand 1 (CXCL1) were present at high levels in the CM of 3D-MSCs compared with 2D-MCs. 3D-MSC-CMs promoted the proliferation, migration, and tube formation of ECs. Furthermore, 3D-MSC treatment enhanced wound healing in a burn injury mouse model. 3D culture improves proangiogenic factors in the MSC secretome and 3D-MSCs represent a new cell-based treatment strategy for wound healing.


Asunto(s)
Quemaduras , Células Madre Mesenquimatosas , Animales , Ratones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Secretoma , Células Endoteliales/metabolismo , Médula Ósea/metabolismo , Cicatrización de Heridas , Quemaduras/terapia , Quemaduras/metabolismo , Medios de Cultivo Condicionados/farmacología
3.
Exp Cell Res ; 418(2): 113274, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35810774

RESUMEN

Mesenchymal stem cell-derived exosomes (MSC-Exos) have been utilized as medicinal agents or as delivery vehicles in cartilage injuries and cartilage-based diseases. Given the ongoing emergence of evidence on the effector mechanisms and methods of the utility of the MSC-Exos in knee osteoarthritis, a comprehensive review of the current evidence is the need of the hour. Hence, in this article, we review the current understanding of the role of MSC-Exos in the management of knee osteoarthritis in view of their classification, characterization, biogenesis, mechanism of action, pathways involved in their therapeutic action, in-vitro evidence on cartilage regeneration, in-vivo evidence in OA knee models and recent advances in using MSC-Exos to better streamline future research from bench to bedside for OA knee.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Osteoartritis de la Rodilla , Cartílago , Condrocitos/metabolismo , Exosomas/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/terapia
4.
Stem Cells ; 39(3): 266-279, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33289943

RESUMEN

Extracellular vesicles (EVs) have been exhibited as promising candidates for delivering endogenous therapeutic cargos for regenerative therapies. Fibroblasts could be candidate source cells for EVs, to investigate their therapeutic effects in wound healing. Here we demonstrated the isolation and characterization of fibroblast-derived (L929 cell line) EVs (L929-EVs). Furthermore, L929-EVs treatment showed pro-wound healing effects in vitro by enhancing proliferation, migration, and scarless wound healing related genes in fibroblast cells. L929-EVs treatment also enhanced the migration and tube formation of endothelial cells. The combination of L929-EVs with fibrin glue accelerated wound healing in the mouse skin wound model by enhancing collagen formation, collagen maturation, and blood vessels in the wounded skin. The role of fibroblast-derived EVs in wound healing could be an important phenomenon, and fibroblast-derived EVs could be harnessed for wound healing therapies.


Asunto(s)
Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Cicatrización de Heridas/fisiología , Animales , Proliferación Celular/fisiología , Colágeno/metabolismo , Ratones , Piel/metabolismo
5.
Exp Cell Res ; 409(1): 112887, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678305

RESUMEN

Recent studies clearly show that cell-derived extracellular vesicles (EVs, including exosomes) can promote hair growth. However, large-scale production of EVs remains a big hurdle. Recently, extracellular vesicle mimetics (EMs) engineered by extrusion through various membranes are emerging as a complementary approach for large-scale production. In this study, to investigate their ability to induce hair growth, we generated macrophage-engineered EMs (MAC-EMs) that activated the human dermal papilla (DP) cells in vitro. MAC-EMs intradermally injected into the skin of C57BL/6 mice were retained for up to 72 h. Microscopy imaging revealed that MAC-EMs were predominately internalized into hair follicles. The MAC-EMs treatment induced hair regrowth in mice and hair shaft elongation in a human hair follicle, suggesting the potential of MAC-EMs as an alternative to EVs to overcome clinical limitation.


Asunto(s)
Vesículas Extracelulares/metabolismo , Folículo Piloso/crecimiento & desarrollo , Folículo Piloso/metabolismo , Cabello/metabolismo , Macrófagos/metabolismo , Animales , Proliferación Celular/fisiología , Células Cultivadas , Dermis/crecimiento & desarrollo , Dermis/metabolismo , Dermis/fisiología , Exosomas/metabolismo , Cabello/crecimiento & desarrollo , Humanos , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Piel/metabolismo , Vía de Señalización Wnt/fisiología
6.
Environ Res ; 204(Pt D): 112365, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34767820

RESUMEN

Growing global biowaste and its environmental issues challenge the need for converting biowastes into a beneficial product. Among the biowaste, here kiwi fruit (Actinidia Deliciosa) peels are considered for the preparation of carbon dots (CDs). Using a green one-pot hydrothermal-carbonization method, kiwi fruit peels were effectively converted into valuable kiwi fruit peel carbon dots (KFP-CDs). The morphology, physio-chemical and optical properties of as-synthesized KFP-CDs were analyzed using various analytical techniques such as X-ray powder diffraction, Raman spectroscopy, attenuated total reflection-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Ultraviolet-visible, and fluorescence spectroscopy. The KFP-CDs revealed a homogeneous spherical shape, monodispersed with an average size of 5 nm. The characterization confirms that KFP-CDs have functional groups such as -CN, -COOH, and -OH which are responsible for the easy dispersion of KFP-CDs in aqueous media. Without any preprocessing, KFP-CDs exhibit strong fluorescence upon exposure to UV light. Further, KFP-CDs displayed excitation-dependent fluorescence emission with a good quantum yield of about 18%. Thus by considering the excellent properties of KFP-CDs, KFP-CDs were used as fluorescent ink for drawing and writing without any capping/passivation agent. The pictures and words were instantaneously viewed when exposed to UV light. In addition, KFP-CDs tested for cell imaging in four human cell lines (normal and cancer cells) bestowed excellent biocompatibility and low cytotoxicity, which is important for the safe and long-term development of cellular imaging. The findings imply that KFP-CDs can be utilized as a cell labeling agent for mesenchymal stem cells, breast cancer, and thyroid cancer cells in vitro imaging. Thus, these observations revealed that investigating sustainable resource-based CDs can open up new avenues for tackling environmental issues.


Asunto(s)
Neoplasias , Puntos Cuánticos , Carbono/química , Humanos , Tinta , Espectroscopía de Fotoelectrones , Puntos Cuánticos/química , Puntos Cuánticos/toxicidad , Espectrometría de Fluorescencia
7.
Exp Cell Res ; 395(2): 112211, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32755554

RESUMEN

In this study, we noninvasively assessed whether M2-like macrophages accelerate the progression of ovarian cancer by performing molecular imaging of ovarian cancer cells expressing enhanced firefly luciferase (Effluc) in living mice. First, murine ovarian cancer ID8 cells expressing Effluc (ID8/Effluc cells) were established by retroviral infection. Subsequently, macrophages were isolated from the peritoneal exudate of mice injected with thioglycollate medium and differentiated into M2-like macrophages by adding interleukin 4. To characterize these M2-like macrophages, F4/80 and cluster of differentiation 206 expression levels were determined. Then, the M2-like macrophages were co-cultured with the ID8/Effluc cells and bioluminescence imaging (BLI) of signals from the ID8/Effluc cells was completed. Additionally, migration and wound healing were assessed to evaluate the effects of conditioned medium (CM) from M2-like macrophages on ID8/Effluc cell motility. In the in vivo study, mice were first given either liposome-phosphate-buffered saline or liposome-clodronate (lipo-clodronate). After 24 h, ID8/Effluc cells were intraperitoneally injected into the mice and BLI was completed at the designed time points. Next, histological analysis was conducted to characterize the infiltrated tumor. Flow cytometric analysis revealed high levels of CD206 expression in the differentiated M2-like macrophages. Meanwhile, ID8/Effluc cells co-cultured with these M2-like macrophages proliferated rapidly in an M2-like macrophage, number-dependent manner. The migration of the ID8/Effluc cells was also increased by the application of CM from M2-like macrophages. In vivo BLI revealed that the growth rate of intraperitoneally injected ovarian cancer cells was inhibited following macrophage depletion by treatment with lipo-clodronate. M2-like macrophages accelerated the progression of ovarian cancer, suggesting they are a new therapeutic target for ovarian cancer and that ovarian cancer could be managed by altering the nature of communication between ovarian cancer and macrophages.


Asunto(s)
Carcinoma Epitelial de Ovario/metabolismo , Diferenciación Celular/fisiología , Macrófagos/metabolismo , Neoplasias Ováricas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Medios de Cultivo Condicionados/metabolismo , Femenino , Genes Reporteros/genética , Genes Reporteros/fisiología , Humanos , Ratones , Imagen Molecular/métodos , Neoplasias Ováricas/patología
8.
Exp Cell Res ; 394(2): 112146, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32561287

RESUMEN

BACKGROUND: Ischemia is the partial or complete blockage of blood supply to tissues. Extracellular vesicles (EVs) are emerging as a therapeutic tool for ischemic diseases. Most EV-based ischemia therapies are based on various stem cells. Here, we propose an alternative cell source for the isolation of pro-angiogenic EVs. METHODS: EVs were isolated from a mouse macrophage cell line (Raw 264.7). The characteristic features of the macrophage-derived EVs (MAC-EVs) were assessed using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting (WB) analysis. WB and qRT-PCR were performed to identify the pro-angiogenic VEGF and Wnt3a proteins and microRNAs (miR-210, miR-126, and miR-130a) in the MAC-EVs. In vitro and in vivo Matrigel plug assays were performed to investigate the capacity of the MAC-EVs for tube (blood vessel-like) formation and new blood vessel formation and assessed by histology. RESULTS: The MAC-EVs was positive for ALIX and negative for calnexin, with a round shape and an average size of 189 ± 65.1 nm. WB and qRT-PCR results revealed that VEGF, Wnt3a and miR-130a were more abundant in the MAC-EVs than cells. MAC-EVs treatment resulted in increased endothelial cellular proliferation, migration, and tube formation in vitro. In vivo assay results revealed that MAC-EVs increased the formation of new and larger blood vessels in the Matrigel plug of mice compared to the formation in the control group. CONCLUSION: Our results suggest that MAC-EVs have the potential to induce angiogenesis in vitro and in vivo, could serve as a pro-angiogenic alternative for ischemic diseases.


Asunto(s)
Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Neovascularización Fisiológica , Inductores de la Angiogénesis/metabolismo , Animales , Movimiento Celular , Proliferación Celular , Colágeno , Modelos Animales de Enfermedad , Combinación de Medicamentos , Células Endoteliales/metabolismo , Vesículas Extracelulares/ultraestructura , Femenino , Fluorescencia , Laminina , Macrófagos/ultraestructura , Ratones , Ratones Desnudos , Proteoglicanos , Células RAW 264.7
9.
Blood Cells Mol Dis ; 80: 102375, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31655394

RESUMEN

BACKGROUND: Extracellular vesicles, have gained increasing attention for their application in drug delivery. Here, we developed a novel method for radiolabeling WBCs with 99mTc using RBC-derived extracellular vesicles -mimetics (EVMs), and monitored in vivo inflammation tracking of 99mTc-WBC using gamma camera in acute inflammation mouse model. METHODS: Engineered EVMs from RBCs were produced by a one-step extrusion method. RBC-EVMs were analyzed by NTA and TEM. Cells were labeled with 99mTc by using 99mTc-RBC-EVMs. Inflammation mice model was prepared and confirmed by 18F-FDG PET/CT. 99mTc-WBCs were injected in mice, and their biodistribution was analyzed by gamma camera. FINDING: The radiochemical purity of 99mTc-RBC-EVMs was 100%. The 99mTc-labeling did't affect the size and morphology. The 99mTc in the cytoplasm of RBC-EVMs was successfully confirmed by high angle annular dark field STEM (scanning transmission electron microscope). Cells were successfully labeled with 99mTc using 99mTc-RBC-EVMs, and the counts per minute was increased in dose- and time-dependent manners. The 18F-FDG PET/CT images confirmed establishment of acute inflammation (left mouse foot). 99mTc-WBCs showed higher uptake in the inflamed foot than non-inflamed foot. INTERPRETATION: This novel method for radiolabeling WBCs using RBC-EVMs. 99mTc labeling may be a feasible method to monitor the in vivo biodistribution of cells.


Asunto(s)
Eritrocitos/metabolismo , Vesículas Extracelulares/metabolismo , Leucocitos/metabolismo , Radiofármacos/metabolismo , Tecnecio/metabolismo , Animales , Rastreo Celular , Modelos Animales de Enfermedad , Vesículas Extracelulares/ultraestructura , Femenino , Inflamación/diagnóstico por imagen , Inflamación/etiología , Inflamación/metabolismo , Ratones , Imagen Molecular/métodos , Ratas , Coloración y Etiquetado , Fracciones Subcelulares , Distribución Tisular
10.
Int J Med Sci ; 15(10): 1051-1061, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013447

RESUMEN

Mesenchymal stem cells (MSCs) show therapeutic effects in various types of diseases. MSCs have been shown to migrate towards inflamed or cancerous tissues, and visualized after sacrificing the animal. MSCs are able to deliver drugs to target cells, and are an ideal candidate for cancer therapy. The purpose of this study was to track the migration of MSCs in tumor-bearing mice; MSCs were also used as drug delivery vehicles. Human breast cancer cells (MDA-MB-231) and anaplastic thyroid cancer cells (CAL62) were transduced with lentiviral particles, to express the Renilla luciferase and mCherry (mCherry-Rluc) reporter genes. Human bone marrow-derived MSCs were transduced with lentiviral particles, to express the firefly luciferase and enhanced green fluorescence protein (Fluc2-eGFP) reporter genes (MSC/Fluc). Luciferase activity of the transduced cells was measured by bioluminescence imaging (BLI). Further in vitro migration assays were performed to confirm cancer cells conditioned medium dependent MSC and doxorubicin (DOX) treated MSC migration. MSCs were loaded with DOX, and their therapeutic effects against the cancer cells were studied in vitro. In vivo MSC/Fluc migration in mice having thyroid or breast cancer xenografts was evaluated after systemic injection. Rluc activity of CAL62/Rluc (R2=0.911), MDA-MB-231/Rluc (R2=0.934) cells and Fluc activity of MSC/Fluc (R2=0.91) cells increased with increasing cell numbers, as seen by BLI. eGFP expression of MSC/Fluc was confirmed by confocal microscopy. Similar migration potential was observed between MSC/Fluc and naïve MSCs in migration assay. DOX treated MSCs migration was not decreased compared than MSCs. Migration of the systemically injected MSC/Fluc cells into tumor xenografts (thyroid and breast cancer) was visualized in animal models (p<0.05) and confirmed by ex vivo (p<0.05) BLI. Additionally, MSCs delivered DOX to CAL62/Rluc and MDA-MB-231/Rluc cells, thereby decreasing their Rluc activities. In this study, we confirmed the migration of MSCs to tumor sites in cancer xenograft models using both in vivo and ex vivo BLI imaging. DOX-pretreated MSCs showed enhanced cytotoxic effects. Therefore, this noninvasive reporter gene (Fluc2)-based BLI may be useful for visualizing in vivo tracking of MSCs, which can be used as a drug delivery vehicle for cancer therapy.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Movimiento Celular , Doxorrubicina/administración & dosificación , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/fisiología , Animales , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Xenoinjertos , Humanos , Ratones , Trasplante Heterólogo
11.
Int J Mol Sci ; 19(4)2018 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-29584688

RESUMEN

Colorectal cancer is the most common cancer in both men and women and the second most common cause of cancer-related deaths. Suicide gene-based therapy with suicide gene-transduced mesenchymal stem cells (MSCs) is a promising therapeutic strategy. A tetracycline-controlled Tet-On inducible system used to regulate gene expression may be a useful tool for gene-based therapies. The aim of this study was to develop therapeutic MSCs with a suicide gene that is induced by an artificial stimulus, to validate therapeutic gene expression, and to monitor the MSC therapy for colon cancer using optical molecular imaging. For our study, we designed the Tet-On system using a retroviral vector and developed a response plasmid RetroX-TRE (tetracycline response element) expressing a mutant form of herpes simplex virus thymidine kinase (HSV1-sr39TK) with dual reporters (eGFP-Fluc2). Bone marrow-derived MSCs were transduced using a RetroX-Tet3G (Clontech, CA, USA) regulatory plasmid and RetroX-TRE-HSV1-sr39TK-eGFP-IRES-Fluc2, for a system with a Tet-On (MSC-Tet-TK/Fluc2 or MSC-Tet-TK) or without a Tet-On (MSC-TK/Fluc2 or MSC-TK) function. Suicide gene engineered MSCs were co-cultured with colon cancer cells (CT26/Rluc) in the presence of the prodrug ganciclovir (GCV) after stimulation with or without doxycycline (DOX). Treatment efficiency was monitored by assessing Rluc (CT26/Rluc) and Fluc (MSC-Tet-TK and MSC-TK) activity using optical imaging. The bystander effect of therapeutic MSCs was confirmed in CT26/Rluc cells after GCV treatment. Rluc activity in CT26/Rluc cells decreased significantly with GCV treatment of DOX(+) cells (p < 0.05 and 0.01) whereas no significant changes were observed in DOX(-) cells. In addition, Fluc activity in also decreased significantly with DOX(+) MSC-Tet-TK cells, but no signal was observed in DOX(-) cells. In addition, an MSC-TK bystander effect was also confirmed. We assessed therapy with this system in a colon cancer xenograft model (CT26/Rluc). We successfully transduced cells and developed a Tet-On system with the suicide gene HSV1-sr39TK. Our results confirmed the therapeutic efficiency of a suicide gene with the Tet-On system for colon cancer. In addition, our results provide an innovative therapeutic approach using the Tet-On system to eradicate tumors by administration of MSC-Tet-TK cells with DOX and GCV.


Asunto(s)
Neoplasias del Colon/terapia , Genes Transgénicos Suicidas , Células Madre Mesenquimatosas/citología , Imagen Molecular/métodos , Animales , Apoptosis , Efecto Espectador , Línea Celular Tumoral , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/genética , Doxiciclina/farmacología , Femenino , Ganciclovir/farmacología , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Imagen Óptica , Transducción Genética , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Cureus ; 16(3): e56923, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38665743

RESUMEN

Alcohol consumption is a widespread social activity with a complex and multifaceted impact on human health. Although moderate alcohol consumption has been associated with certain potential health benefits, excessive or chronic alcohol use can disrupt the body's immune balance, promote inflammation, and increase susceptibility to infections. The deleterious effects associated with alcohol toxicity include the loss of cell integrity. When cells lose their integrity, they also lose the capacity to communicate with other systems. One of the systems disturbed by alcohol toxicity is extracellular vesicle (EV)-mediated communication. EVs are critical mediators of cell-to-cell communication. They play a significant role in alcohol-induced pathogenesis, facilitating communication and molecular exchange between cells, thereby potentially contributing to alcohol-related health issues. Investigating their involvement in this context is fundamental to resolving the intricate mechanisms behind the health consequences of alcohol use and may pave the way for innovative approaches for mitigating the adverse effects of alcohol on immune health. Understanding the role of EVs in the context of alcohol-induced pathogenesis is essential for comprehending the mechanisms behind alcohol-related health issues.

13.
ACS Appl Mater Interfaces ; 16(6): 6709-6742, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38315446

RESUMEN

Information exchange is essential for the brain, where it communicates the physiological and pathological signals to the periphery and vice versa. Extracellular vesicles (EVs) are a heterogeneous group of membrane-bound cellular informants actively transferring informative calls to and from the brain via lipids, proteins, and nucleic acid cargos. In recent years, EVs have also been widely used to understand brain function, given their "cell-like" properties. On the one hand, the presence of neuron and astrocyte-derived EVs in biological fluids have been exploited as biomarkers to understand the mechanisms and progression of multiple neurological disorders; on the other, EVs have been used in designing targeted therapies due to their potential to cross the blood-brain-barrier (BBB). Despite the expanding literature on EVs in the context of central nervous system (CNS) physiology and related disorders, a comprehensive compilation of the existing knowledge still needs to be made available. In the current review, we provide a detailed insight into the multifaceted role of brain-derived extracellular vesicles (BDEVs) in the intricate regulation of brain physiology. Our focus extends to the significance of these EVs in a spectrum of disorders, including brain tumors, neurodegenerative conditions, neuropsychiatric diseases, autoimmune disorders, and others. Throughout the review, parallels are drawn for using EVs as biomarkers for various disorders, evaluating their utility in early detection and monitoring. Additionally, we discuss the promising prospects of utilizing EVs in targeted therapy while acknowledging the existing limitations and challenges associated with their applications in clinical scenarios. A foundational comprehension of the current state-of-the-art in EV research is essential for informing the design of future studies.


Asunto(s)
Encéfalo , Vesículas Extracelulares , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Barrera Hematoencefálica , Biomarcadores/metabolismo , Biología
14.
J Cancer ; 15(13): 4128-4142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947401

RESUMEN

Bone cancer among adolescents and children exhibits varying survival outcomes based on disease state. While localized bone cancer cases have a survival rate exceeding 70%, metastatic, refractory, and recurrent forms are associated with significantly poorer prognoses. Initially believed to be mere vehicles for cellular waste disposal, exosomes are now recognized as extracellular vesicles facilitating intercellular communication. These vesicles influence cellular behaviors by transporting various biomolecules, such as proteins, DNA, RNA, and lipids, among cells. The role of exosomes in regulating the progression of bone cancer is increasingly evident, impacting critical processes like tumorigenesis, proliferation, metastasis, angiogenesis, immune evasion, and drug resistance. Current research underscores the substantial potential of exosomes in promoting the progression and development of bone cancer. This review delves into the complex process of exosome biogenesis, the variety of cell-derived exosome sources, and their applications in drug delivery and therapeutics. It also examines ongoing clinical trials focused on exosome cargo levels and discusses the challenges and future directions in exosome research. Unlike costly and invasive traditional diagnostic methods, exosomal biomarkers offer a non-invasive, cost-effective, and readily accessible routine screening through simple fluid collection that aims to inspire researchers to investigate the potential of exosomes for cancer theragnostic. Through comprehensive exploration of these areas, the review seeks to enhance understanding and foster innovative solutions to cancer biology in the near future.

15.
Bioengineering (Basel) ; 10(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36671630

RESUMEN

Over the past few decades, various forms of platelet concentrates have evolved with significant clinical utility. The newer generation products, including leukocyte-platelet-rich fibrin (L-PRF) and advanced platelet-rich fibrin (A-PRF), have shown superior biological properties in musculoskeletal regeneration than the first-generation concentrates, such as platelet-rich plasma (PRP) and plasma rich in growth factors. These newer platelet concentrates have a complete matrix of physiological fibrin that acts as a scaffold with a three-dimensional (3D) architecture. Further, it facilitates intercellular signaling and migration, thereby promoting angiogenic, chondrogenic, and osteogenic activities. A-PRF with higher leukocyte inclusion possesses antimicrobial activity than the first generations. Due to the presence of enormous amounts of growth factors and anti-inflammatory cytokines that are released, A-PRF has the potential to replicate the various physiological and immunological factors of wound healing. In addition, there are more neutrophils, monocytes, and macrophages, all of which secrete essential chemotactic molecules. As a result, both L-PRF and A-PRF are used in the management of musculoskeletal conditions, such as chondral injuries, tendinopathies, tissue regeneration, and other sports-related injuries. In addition to this, its applications have been expanded to include the fields of reconstructive cosmetic surgery, wound healing in diabetic patients, and maxillofacial surgeries.

16.
World J Orthop ; 14(1): 23-41, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36686284

RESUMEN

BACKGROUND: Osteoarthritis (OA) is the most common joint disorder, is associated with an increasing socioeconomic impact owing to the ageing population. AIM: To analyze and compare the efficacy and safety of bone-marrow-derived mesenchymal stromal cells (BM-MSCs) and adipose tissue-derived MSCs (AD-MSCs) in knee OA management from published randomized controlled trials (RCTs). METHODS: Independent and duplicate electronic database searches were performed, including PubMed, EMBASE, Web of Science, and Cochrane Library, until August 2021 for RCTs that analyzed the efficacy and safety of AD-MSCs and BM-MSCs in the management of knee OA. The visual analog scale (VAS) score for pain, Western Ontario McMaster Universities Osteoarthritis Index (WOMAC), Lysholm score, Tegner score, magnetic resonance observation of cartilage repair tissue score, knee osteoarthritis outcome score (KOOS), and adverse events were analyzed. Analysis was performed on the R-platform using OpenMeta (Analyst) software. Twenty-one studies, involving 936 patients, were included. Only one study compared the two MSC sources without patient randomization; hence, the results of all included studies from both sources were pooled, and a comparative critical analysis was performed. RESULTS: At six months, both AD-MSCs and BM-MSCs showed significant VAS improvement (P = 0.015, P = 0.012); this was inconsistent at 1 year for BM-MSCs (P < 0.001, P = 0.539), and AD-MSCs outperformed BM-MSCs compared to controls in measures such as WOMAC (P < 0.001, P = 0.541), Lysholm scores (P = 0.006; P = 0.933), and KOOS (P = 0.002; P = 0.012). BM-MSC-related procedures caused significant adverse events (P = 0.003) compared to AD-MSCs (P = 0.673). CONCLUSION: Adipose tissue is superior to bone marrow because of its safety and consistent efficacy in improving pain and functional outcomes. Future trials are urgently warranted to validate our findings and reach a consensus on the ideal source of MSCs for managing knee OA.

17.
Heliyon ; 9(7): e17808, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37449130

RESUMEN

Globally, neurological diseases pose a major burden to healthcare professionals in terms of the management and prevention of the disorder. Among neurological diseases, Alzheimer's disease (AD) accounts for 50%-70% of dementia and is the fifth leading cause of mortality worldwide. AD is a progressive, degenerative neurological disease, with the loss of neurons and synapses in the cerebral cortex and subcortical regions. The management of AD remains a debate among physicians as no standard and specific "disease-modifying" modality is available. The concept of 'Regenerative Medicine' is aimed at regenerating the degenerated neural tissues to reverse the pathology in AD. Genetically modified engineered stem cells modify the course of AD after transplantation into the brain. Extracellular vesicles (EVs) are an emerging new approach in cell communication that involves the transfer of cellular materials from parental cells to recipient cells, resulting in changes at the molecular and signaling levels in the recipient cells. EVs are a type of vesicle that can be transported between cells. Many have proposed that EVs produced from mesenchymal stem cells (MSCs) may have therapeutic promise in the treatment of AD. The biology of AD, as well as the potential applications of stem cells and their derived EVs-based therapy, were explored in this paper.

18.
Exp Biol Med (Maywood) ; 248(5): 445-455, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37158062

RESUMEN

Chronic musculoskeletal (MSK) pain is one of the most prevalent causes, which lead patients to a physician's office. The most common disorders affecting MSK structures are osteoarthritis, rheumatoid arthritis, back pain, and myofascial pain syndrome, which are all responsible for major pain and physical disability. Although there are many known management strategies currently in practice, phytotherapeutic compounds have recently begun to rise in the medical community, especially cannabidiol (CBD). This natural, non-intoxicating molecule derived from the cannabis plant has shown interesting results in many preclinical studies and some clinical settings. CBD plays vital roles in human health that go well beyond the classic immunomodulatory, anti-inflammatory, and antinociceptive properties. Recent studies demonstrated that CBD also improves cell proliferation and migration, especially in mesenchymal stem cells (MSCs). The foremost objective of this review article is to discuss the therapeutic potential of CBD in the context of MSK regenerative medicine. Numerous studies listed in the literature indicate that CBD possesses a significant capacity to modulate mammalian tissue to attenuate and reverse the notorious hallmarks of chronic musculoskeletal disorders (MSDs). The most of the research included in this review report common findings like immunomodulation and stimulation of cell activity associated with tissue regeneration, especially in human MSCs. CBD is considered safe and well tolerated as no serious adverse effects were reported. CBD promotes many positive effects which can manage detrimental alterations brought on by chronic MSDs. Since the application of CBD for MSK health is still undergoing expansion, additional randomized clinical trials are warranted to further clarify its efficacy and to understand its cellular mechanisms.


Asunto(s)
Cannabidiol , Cannabis , Dolor Crónico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Animales , Humanos , Cannabidiol/uso terapéutico , Mamíferos , Medicina Regenerativa
19.
Methods Mol Biol ; 2525: 281-287, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35836076

RESUMEN

Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in multiple tissues, such as bone marrow, adipose tissue, umbilical cord, and amniotic fluid. MSCs can differentiate into multilineage cells under defined conditions in vitro and in vivo. MSCs have been shown to have therapeutic effects on various types of diseases. Noninvasive in vivo monitoring of MSCs is considered one of the important techniques for developing cell therapy. In this protocol, we introduce strategized MSCs derived from bone marrow (BM-MSCs) of knock-in mouse model expressing mCherry-Renilla luciferase (mCherry-RLuc) for noninvasive bioluminescence imaging (BLI) of injected BM-MSCs in vivo.


Asunto(s)
Células de la Médula Ósea , Células Madre Mesenquimatosas , Animales , Médula Ósea , Diferenciación Celular , Proliferación Celular , Ratones
20.
Front Immunol ; 13: 925985, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936003

RESUMEN

Chimeric antigen receptor (CAR)-T cell therapy is a progressive new pillar in immune cell therapy for cancer. It has yielded remarkable clinical responses in patients with B-cell leukemia or lymphoma. Unfortunately, many challenges remain to be addressed to overcome its ineffectiveness in the treatment of other hematological and solidtumor malignancies. The major hurdles of CAR T-cell therapy are the associated severe life-threatening toxicities such as cytokine release syndrome and limited anti-tumor efficacy. In this review, we briefly discuss cancer immunotherapy and the genetic engineering of T cells and, In detail, the current innovations in CAR T-cell strategies to improve efficacy in treating solid tumors and hematologic malignancies. Furthermore, we also discuss the current challenges in CAR T-cell therapy and new CAR T-cell-derived nanovesicle therapy. Finally, strategies to overcome the current clinical challenges associated with CAR T-cell therapy are included as well.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Terapia Genética/efectos adversos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Humanos , Inmunoterapia Adoptiva/efectos adversos , Neoplasias/genética , Neoplasias/terapia , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA