Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Med Chem ; 65(17): 11574-11606, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35482954

RESUMEN

Protein arginine methyltransferases (PRMTs) are important therapeutic targets, playing a crucial role in the regulation of many cellular processes and being linked to many diseases. Yet, there is still much to be understood regarding their functions and the biological pathways in which they are involved, as well as on the structural requirements that could drive the development of selective modulators of PRMT activity. Here we report a deconstruction-reconstruction approach that, starting from a series of type I PRMT inhibitors previously identified by us, allowed for the identification of potent and selective inhibitors of PRMT4, which regardless of the low cell permeability show an evident reduction of arginine methylation levels in MCF7 cells and a marked reduction of proliferation. We also report crystal structures with various PRMTs supporting the observed specificity and selectivity.


Asunto(s)
Arginina , Proteína-Arginina N-Metiltransferasas , Arginina/metabolismo , Inhibidores Enzimáticos/química , Metilación , Procesamiento Proteico-Postraduccional
2.
J Med Chem ; 62(5): 2666-2689, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30753076

RESUMEN

Since the discovery of compound BIX01294 over 10 years ago, only a very limited number of nonquinazoline inhibitors of H3K9-specific methyltransferases G9a and G9a-like protein (GLP) have been reported. Herein, we report the identification of a novel chemotype for G9a/GLP inhibitors, based on the underinvestigated 2-alkyl-5-amino- and 2-aryl-5-amino-substituted 3 H-benzo[ e][1,4]diazepine scaffold. Our research efforts resulted in the identification 12a (EML741), which not only maintained the high in vitro and cellular potency of its quinazoline counterpart, but also displayed improved inhibitory potency against DNA methyltransferase 1, improved selectivity against other methyltransferases, low cell toxicity, and improved apparent permeability values in both parallel artificial membrane permeability assay (PAMPA) and blood-brain barrier-specific PAMPA, and therefore might potentially be a better candidate for animal studies. Finally, the co-crystal structure of GLP in complex with 12a provides the basis for the further development of benzodiazepine-based G9a/GLP inhibitors.


Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Barrera Hematoencefálica , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Humanos , Estructura Molecular , Relación Estructura-Actividad
3.
ChemMedChem ; 11(16): 1680-5, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27411844

RESUMEN

SETD8/SET8/Pr-SET7/KMT5A is the only known lysine methyltransferase that monomethylates lysine 20 of histone H4 (H4K20) in vivo. The methyltransferase activity of SETD8 has been implicated in many essential cellular processes, including DNA replication, DNA damage response, transcription modulation, and cell cycle regulation. In addition to H4K20, SETD8 monomethylates non-histone substrates including proliferating cell nuclear antigen and p53. During the past decade, different structural classes of inhibitors targeting various lysine methyltransferases have been designed and developed. However, the development of SETD8 inhibitors is still in its infancy. This review covers the progress made to date in inhibiting the activity of SETD8 by small molecules, with an emphasis on their discovery, selectivity over other methyltransferases, and cellular activity.


Asunto(s)
Inhibidores Enzimáticos/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Inhibidores Enzimáticos/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
4.
Clin Epigenetics ; 8: 102, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27688818

RESUMEN

SETD8/SET8/Pr-SET7/KMT5A is the only known lysine methyltransferase (KMT) that monomethylates lysine 20 of histone H4 (H4K20) in vivo. Lysine residues of non-histone proteins including proliferating cell nuclear antigen (PCNA) and p53 are also monomethylated. As a consequence, the methyltransferase activity of the enzyme is implicated in many essential cellular processes including DNA replication, DNA damage response, transcription modulation, and cell cycle regulation. This review aims to provide an overview of the roles of SETD8 in physiological and pathological pathways and to discuss the progress made to date in inhibiting the activity of SETD8 by small molecules, with an emphasis on their discovery, selectivity over other methyltransferases and cellular activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA