Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell ; 138(6): 1096-108, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19766564

RESUMEN

A key step in cut-and-paste DNA transposition is the pairing of transposon ends before the element is excised and inserted at a new site in its host genome. Crystallographic analyses of the paired-end complex (PEC) formed from precleaved transposon ends and the transposase of the eukaryotic element Mos1 reveals two parallel ends bound to a dimeric enzyme. The complex has a trans arrangement, with each transposon end recognized by the DNA binding region of one transposase monomer and by the active site of the other monomer. Two additional DNA duplexes in the crystal indicate likely binding sites for flanking DNA. Biochemical data provide support for a model of the target capture complex and identify Arg186 to be critical for target binding. Mixing experiments indicate that a transposase dimer initiates first-strand cleavage and suggest a pathway for PEC formation.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Transposasas/metabolismo , Animales , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Modelos Moleculares , Estructura Terciaria de Proteína , Transposasas/química , Difracción de Rayos X
2.
Nucleic Acids Res ; 45(10): e89, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28204586

RESUMEN

Delivery of DNA to cells and its subsequent integration into the host genome is a fundamental task in molecular biology, biotechnology and gene therapy. Here we describe an IP-free one-step method that enables stable genome integration into either prokaryotic or eukaryotic cells. A synthetic mariner transposon is generated by flanking a DNA sequence with short inverted repeats. When purified recombinant Mos1 or Mboumar-9 transposase is co-transfected with transposon-containing plasmid DNA, it penetrates prokaryotic or eukaryotic cells and integrates the target DNA into the genome. In vivo integrations by purified transposase can be achieved by electroporation, chemical transfection or Lipofection of the transposase:DNA mixture, in contrast to other published transposon-based protocols which require electroporation or microinjection. As in other transposome systems, no helper plasmids are required since transposases are not expressed inside the host cells, thus leading to generation of stable cell lines. Since it does not require electroporation or microinjection, this tool has the potential to be applied for automated high-throughput creation of libraries of random integrants for purposes including gene knock-out libraries, screening for optimal integration positions or safe genome locations in different organisms, selection of the highest production of valuable compounds for biotechnology, and sequencing.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Unión al ADN/genética , Mutagénesis Insercional , Plásmidos/metabolismo , Transposasas/genética , Secuencia de Bases , Clonación Molecular , Proteínas de Unión al ADN/metabolismo , Electroporación , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Sintéticos , Células HEK293 , Células HeLa , Humanos , Secuencias Invertidas Repetidas , Lípidos/química , Plásmidos/química , Análisis de Secuencia de ADN , Transfección , Transposasas/metabolismo
3.
Nucleic Acids Res ; 43(4): 2424-32, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25662605

RESUMEN

During cut-and-paste mariner/Tc1 transposition, transposon DNA is cut precisely at its junction with flanking DNA, ensuring the transposon is neither shortened nor lengthened with each transposition event. Each transposon end is flanked by a TpA dinucleotide: the signature target site duplication of mariner/Tc1 transposition. To establish the role of this sequence in accurate DNA cleavage, we have determined the crystal structure of a pre-second strand cleavage mariner Mos1 transpososome. The structure reveals the route of an intact DNA strand through the transposase active site before second strand cleavage. The crossed architecture of this pre-second strand cleavage paired-end complex supports our proposal that second strand cleavage occurs in trans. The conserved mariner transposase WVPHEL and YSPDL motifs position the strand for accurate DNA cleavage. Base-specific recognition of the flanking DNA by conserved amino acids is revealed, defining a new role for the WVPHEL motif in mariner transposition and providing a molecular explanation for in vitro mutagenesis data. Comparison of the pre-TS cleavage and post-cleavage Mos1 transpososomes with structures of Prototype Foamy Virus intasomes suggests a binding mode for target DNA prior to Mos1 transposon integration.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Unión al ADN/química , Transposasas/química , Secuencias de Aminoácidos , Biocatálisis , ADN/química , ADN/metabolismo , División del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Transposasas/genética , Transposasas/metabolismo
4.
J Biol Chem ; 290(21): 13531-40, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25869132

RESUMEN

The inverted repeat (IR) sequences delimiting the left and right ends of many naturally active mariner DNA transposons are non-identical and have different affinities for their transposase. We have compared the preferences of two active mariner transposases, Mos1 and Mboumar-9, for their imperfect transposon IRs in each step of transposition: DNA binding, DNA cleavage, and DNA strand transfer. A 3.1 Å resolution crystal structure of the Mos1 paired-end complex containing the pre-cleaved left IR sequences reveals the molecular basis for the reduced affinity of the Mos1 transposase DNA-binding domain for the left IR as compared with the right IR. For both Mos1 and Mboumar-9, in vitro DNA transposition is most efficient when the preferred IR sequence is present at both transposon ends. We find that this is due to the higher efficiency of cleavage and strand transfer of the preferred transposon end. We show that the efficiency of Mboumar-9 transposition is improved almost 4-fold by changing the 3' base of the preferred Mboumar-9 IR from guanine to adenine. This preference for adenine at the reactive 3' end for both Mos1 and Mboumar-9 may be a general feature of mariner transposition.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Drosophila/enzimología , Secuencias Invertidas Repetidas/genética , Plásmidos/genética , Transposasas/química , Transposasas/metabolismo , Adenina/química , Animales , Secuencia de Bases , Cristalografía por Rayos X , ADN/genética , Proteínas de Unión al ADN/genética , Regulación Enzimológica de la Expresión Génica , Guanina/química , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Transposasas/genética
5.
Nucleic Acids Res ; 41(3): 2020-33, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23262225

RESUMEN

DNA transposases facilitate genome rearrangements by moving DNA transposons around and between genomes by a cut-and-paste mechanism. DNA transposition proceeds in an ordered series of nucleoprotein complexes that coordinate pairing and cleavage of the transposon ends and integration of the cleaved ends at a new genomic site. Transposition is initiated by transposase recognition of the inverted repeat sequences marking each transposon end. Using a combination of solution scattering and biochemical techniques, we have determined the solution conformations and stoichiometries of DNA-free Mos1 transposase and of the transposase bound to a single transposon end. We show that Mos1 transposase is an elongated homodimer in the absence of DNA and that the N-terminal 55 residues, containing the first helix-turn-helix motif, are required for dimerization. This arrangement is remarkably different from the compact, crossed architecture of the dimer in the Mos1 paired-end complex (PEC). The transposase remains elongated when bound to a single-transposon end in a pre-cleavage complex, and the DNA is bound predominantly to one transposase monomer. We propose that a conformational change in the single-end complex, involving rotation of one half of the transposase along with binding of a second transposon end, could facilitate PEC assembly.


Asunto(s)
Proteínas de Unión al ADN/química , Transposasas/química , ADN/química , ADN/metabolismo , Elementos Transponibles de ADN , Proteínas de Unión al ADN/metabolismo , Dimerización , Modelos Moleculares , Difracción de Neutrones , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Transposasas/metabolismo , Difracción de Rayos X
6.
Biochemistry ; 53(4): 682-9, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24404958

RESUMEN

Most DNA transposons move from one genomic location to another by a cut-and-paste mechanism and are useful tools for genomic manipulations. Short inverted repeat (IR) DNA sequences marking each end of the transposon are recognized by a DNA transposase (encoded by the transposon itself). This enzyme cleaves the transposon ends and integrates them at a new genomic location. We report here a comparison of the biophysical and biochemical properties of two closely related and active mariner/Tc1 family DNA transposases: Mboumar-9 and Mos1. We compared the in vitro cleavage activities of the enzymes on their own IR sequences, as well as cross-recognition of their inverted repeat sequences. We found that, like Mos1, untagged recombinant Mboumar-9 transposase is a dimer and forms a stable complex with inverted repeat DNA in the presence of Mg(2+) ions. Mboumar-9 transposase cleaves its inverted repeat DNA in the manner observed for Mos1 transposase. There was minimal cross-recognition of IR sequences between Mos1 and Mboumar-9 transposases, despite these enzymes having 68% identical amino acid sequences. Transposases sharing common biophysical and biochemical properties, but retaining recognition specificity toward their own IR, are a promising platform for the design of chimeric transposases with predicted and improved sequence recognition.


Asunto(s)
Proteínas de Unión al ADN/química , Transposasas/química , Cationes Bivalentes , ADN/química , División del ADN , Secuencias Invertidas Repetidas , Magnesio/química , Plásmidos , Multimerización de Proteína , Estabilidad Proteica , Proteínas Recombinantes/química , Soluciones , Temperatura
7.
J Biol Chem ; 288(16): 11093-105, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23436655

RESUMEN

The parasitic protozoan organism Trypanosoma cruzi is the causative agent of Chagas disease. The insect vector-dwelling epimastigote form of the organism expresses a low abundance glycoprotein associated with the flagellum adhesion zone, called gp72. The gp72 glycoprotein was first identified with an anti-carbohydrate IgG3 monoclonal antibody called WIC29.26 and has been shown to have an unusual sugar composition. Here, we describe a new way to isolate the WIC29.26 carbohydrate epitope of gp72. Using (1)H NMR and mass spectrometry before and after derivatization, we provide an almost complete primary chemical structure for the epitope, which is that of a complex phosphosaccharide: Galfß1-4Rhapα1-2Fucpα1-4(Galpß1-3)(Galpα1-2)Xylpß1-4Xylpß1-3(Xylpß1-2Galpα1-4(Galpß1-3)(Rhapα1-2)Fucpα1-4)GlcNAcp, with phosphate attached to one or other of the two Galp terminal residues and in which all residues are of the d-absolute configuration, except for fucose and rhamnose which are l. Combined with previous data (Haynes, P. A., Ferguson, M. A., and Cross, G. A. (1996) Glycobiology 6, 869-878), we postulate that this complex structure and its variants lacking one or more residues are linked to Thr and Ser residues in gp72 via a phosphodiester linkage (GlcNAcpα1-P-Thr/Ser) and that these units may form phosphosaccharide repeats through GlcNAcpα1-P-Galp linkages. The gp72 glycoprotein is associated with the flagellum adhesion zone on the parasite surface, and its ligation has been implicated in inhibiting parasite differentiation from the epimastigote to the metacyclic trypomastigote stage. The detailed structure of the unique phosphosaccharide component of gp72 reported here provides a template for future biosynthetic and functional studies.


Asunto(s)
Epítopos/química , Oligosacáridos/química , Fosfoproteínas/química , Proteínas Protozoarias/química , Trypanosoma cruzi/química , Animales , Anticuerpos Monoclonales de Origen Murino/química , Anticuerpos Monoclonales de Origen Murino/inmunología , Conformación de Carbohidratos , Epítopos/inmunología , Humanos , Ratones , Oligosacáridos/inmunología , Fosfoproteínas/inmunología , Proteínas Protozoarias/inmunología , Trypanosoma cruzi/inmunología
8.
J Biol Chem ; 288(18): 12733-41, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23443656

RESUMEN

Macrophage migration inhibitory factor (MIF) is a proinflammatory molecule in mammals that, unusually for a cytokine, exhibits tautomerase and oxidoreductase enzymatic activities. Homologues of this well conserved protein are found within diverse phyla including a number of parasitic organisms. Herein, we produced recombinant histidine-tagged Toxoplasma gondii MIF (TgMIF), a 12-kDa protein that lacks oxidoreductase activity but exhibits tautomerase activity with a specific activity of 19.3 µmol/min/mg that cannot be inhibited by the human MIF inhibitor ISO-1. The crystal structure of the TgMIF homotrimer has been determined to 1.82 Å, and although it has close structural homology with mammalian MIFs, it has critical differences in the tautomerase active site that account for the different inhibitor sensitivity. We also demonstrate that TgMIF can elicit IL-8 production from human peripheral blood mononuclear cells while also activating ERK MAPK pathways in murine bone marrow-derived macrophages. TgMIF may therefore play an immunomodulatory role during T. gondii infection in mammals.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos , Macrófagos , Proteínas Protozoarias , Toxoplasma , Toxoplasmosis , Animales , Cristalografía por Rayos X , Humanos , Interleucina-8/química , Interleucina-8/genética , Interleucina-8/inmunología , Interleucina-8/metabolismo , Factores Inhibidores de la Migración de Macrófagos/química , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/inmunología , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/parasitología , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Toxoplasma/química , Toxoplasma/genética , Toxoplasma/inmunología , Toxoplasma/metabolismo , Toxoplasmosis/genética , Toxoplasmosis/inmunología , Toxoplasmosis/metabolismo
9.
STAR Protoc ; 4(2): 102218, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37058403

RESUMEN

Tyrosyl DNA phosphodiesterase (TDP1) is a DNA repair enzyme that hydrolyzes the phosphotyrosyl linkage between 3'-DNA-protein crosslinks such as stalled topoisomerase 1 cleavage complexes (Top1cc). Here, we present a fluorescence-resonance-energy-transfer-(FRET) based assay to estimate modulation of TDP1 activity through arginine methylation. We describe steps for TDP1 expression and purification and estimating TDP1 activity using fluorescence-quenched probes mimicking Top1cc. We then detail data analysis of real-time TDP1 activity and screening of TDP1-selective inhibitors. For complete details on the use and execution of this protocol, please refer to Bhattacharjee et al. (2022).1.

10.
J Biol Chem ; 286(47): 40494-508, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21900246

RESUMEN

The extracellular parasite Trichomonas vaginalis contains a surface glycoconjugate that appears to mediate parasite-host cell interaction via binding to human galectin-1. This glycoconjugate also elicits cytokine production from human vaginal epithelial cells, implicating its role in modulation of host immune responses. We have analyzed the structure of this glycoconjugate, previously described to contain the sugars rhamnose (Rha), N-acetylglucosamine (GlcNAc), galactose (Gal), xylose (Xyl), N-acetylgalactosamine (GalNAc), and glucose (Glc), using gas chromatograph mass spectrometry (GC-MS), matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF), electrospray MS/MS, and nuclear magnetic resonance (NMR), combined with chemical and enzymatic digestions. Our data reveal a complex structure, named T. vaginalis lipoglycan (TvLG), that differs markedly from Leishmania lipophosphoglycan and Entamoeba lipopeptidophosphoglycan and is devoid of phosphosaccharide repeats. TvLG is composed of an α1-3 linked polyrhamnose core, where Rha residues are substituted at the 2-position with either ß-Xyl or chains of, on average, five N-acetyllactosamine (-3Galß1-4GlcNAcß1-) (LacNAc) units and occasionally lacto-N-biose (-3Galß1-3GlcNAcß1-) (LNB). These chains are themselves periodically substituted at the Gal residues with Xyl-Rha. These structural analyses led us to test the role of the poly-LacNAc/LNB chains in parasite binding to host cells. We found that reduction of poly-LacNAc/LNB chains decreased the ability of TvLG to compete parasite binding to host cells. In summary, our data provide a new model for the structure of TvLG, composed of a polyrhamnose backbone with branches of Xyl and poly-LacNAc/LNB. Furthermore, the poly-LacNAc side chains are shown to be involved in parasite-host cell interaction.


Asunto(s)
Acetilglucosamina/análogos & derivados , Comunicación Celular , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Trichomonas vaginalis/metabolismo , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Secuencia de Carbohidratos , Adhesión Celular , Línea Celular , Células Epiteliales/citología , Femenino , Glicósido Hidrolasas/metabolismo , Humanos , Hidrólisis , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Metilación , Datos de Secuencia Molecular , Fosforilación , Ramnosa/química , Ramnosa/metabolismo , Vagina/citología
11.
Cell Rep ; 39(11): 110940, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35705029

RESUMEN

Tyrosyl-DNA phosphodiesterase (TDP1) hydrolyzes the phosphodiester bond between a DNA 3' end and a tyrosyl moiety and is implicated in the repair of trapped topoisomerase I (Top1)-DNA covalent complexes (Top1cc). Protein arginine methyltransferase 5 (PRMT5) catalyzes arginine methylation of TDP1 at the residues R361 and R586. Here, we establish mechanistic crosstalk between TDP1 arginine methylation and ubiquitylation, which is critical for TDP1 homeostasis and cellular responses to Top1 poisons. We show that R586 methylation promotes TDP1 ubiquitylation, which facilitates ubiquitin/proteasome-dependent TDP1 turnover by impeding the binding of UCHL3 (deubiquitylase enzyme) with TDP1. TDP1-R586 also promotes TDP1-XRCC1 binding and XRCC1 foci formation at Top1cc-damage sites. Intriguingly, R361 methylation enhances the 3'-phosphodiesterase activity of TDP1 in real-time fluorescence-based cleavage assays, and this was rationalized using structural modeling. Together, our findings establish arginine methylation as a co-regulator of TDP1 proteostasis and activity, which modulates the repair of trapped Top1cc.


Asunto(s)
Aductos de ADN , ADN-Topoisomerasas de Tipo I , Arginina/metabolismo , Reparación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Proteostasis , Ubiquitinación
12.
FEBS Lett ; 595(1): 14-25, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33107035

RESUMEN

The self-renewal efficiency of mouse embryonic stem cells (ESCs) is determined by the concentration of the transcription factor NANOG. While NANOG binds thousands of sites in chromatin, the regulatory systems that control DNA binding are poorly characterised. Here, we show that NANOG is phosphorylated by casein kinase I, and identify target residues. Phosphomimetic substitutions at phosphorylation sites within the homeodomain (S130 and S131) have site-specific functional effects. Phosphomimetic substitution of S130 abolishes DNA binding by NANOG and eliminates LIF-independent self-renewal. In contrast, phosphomimetic substitution of S131 enhances LIF-independent self-renewal, without influencing DNA binding. Modelling the DNA-homeodomain complex explains the disparate effects of these phosphomimetic substitutions. These results indicate how phosphorylation may influence NANOG homeodomain interactions that underpin ESC self-renewal.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Autorrenovación de las Células , Células Madre Embrionarias de Ratones/citología , Proteína Homeótica Nanog/metabolismo , Secuencia de Aminoácidos , Animales , Electroforesis en Gel de Poliacrilamida , Ratones , Proteína Homeótica Nanog/química , Proteína Homeótica Nanog/genética , Fosforilación
13.
Biochem Biophys Res Commun ; 380(3): 442-8, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19187777

RESUMEN

Leishmania major, an intracellular parasitic protozoon that infects, differentiates and replicates within macrophages, expresses two closely related MIF-like proteins. To ascertain the roles and potential differences of these two Leishmania proteins, recombinant L. major MIF1 and MIF2 have been produced and the structures resolved by X-ray crystallography. Each has a trimeric ring architecture similar to mammalian MIF, but with some structurally distinct features. LmjMIF1, but not LmjMIF2, has tautomerase activity. LmjMIF2 is found in all life cycle stages whereas LmjMIF1 is found exclusively in amastigotes, the intracellular stage responsible for mammalian disease. The findings are consistent with parasite MIFs modulating or circumventing the host macrophage response, thereby promoting parasite survival, but suggest the LmjMIFs have potentially different biological roles. Analysis of the Leishmania braziliensis genome showed that this species lacks both MIF genes. Thus MIF is not a virulence factor in all species of Leishmania.


Asunto(s)
Oxidorreductasas Intramoleculares/química , Leishmania major/enzimología , Factores Inhibidores de la Migración de Macrófagos/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Oxidorreductasas Intramoleculares/clasificación , Oxidorreductasas Intramoleculares/genética , Factores Inhibidores de la Migración de Macrófagos/clasificación , Factores Inhibidores de la Migración de Macrófagos/genética , Datos de Secuencia Molecular , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/clasificación , Proteínas Recombinantes/genética , Alineación de Secuencia
14.
Nat Commun ; 9(1): 24, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29295983

RESUMEN

Tyrosyl-DNA phosphodiesterase (Tdp1) is a DNA 3'-end processing enzyme that repairs topoisomerase 1B-induced DNA damage. We use a new tool combining site-specific DNA-protein cross-linking with mass spectrometry to identify Tdp1 interactions with DNA. A conserved phenylalanine (F259) of Tdp1, required for efficient DNA processing in biochemical assays, cross-links to defined positions in DNA substrates. Crystal structures of Tdp1-DNA complexes capture the DNA repair machinery after 3'-end cleavage; these reveal how Tdp1 coordinates the 3'-phosphorylated product of nucleosidase activity and accommodates duplex DNA. A hydrophobic wedge splits the DNA ends, directing the scissile strand through a channel towards the active site. The F259 side-chain stacks against the -3 base pair, delimiting the junction of duplexed and melted DNA, and fixes the scissile strand in the channel. Our results explain why Tdp1 cleavage is non-processive and provide a molecular basis for DNA 3'-end processing by Tdp1.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Secuencia de Bases , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , ADN/genética , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Hidrolasas Diéster Fosfóricas/química , Unión Proteica , Dominios Proteicos
15.
Artículo en Inglés | MEDLINE | ID: mdl-17565190

RESUMEN

A complex formed between Mos1 transposase and its inverted-repeat DNA has been crystallized. The crystals diffract to 3.25 A resolution and exhibit monoclinic (P2(1)) symmetry, with unit-cell parameters a = 120.8, b = 85.1, c = 131.6 A, beta = 99.3 degrees . The X-ray diffraction data display noncrystallographic twofold symmetry and characteristic dsDNA diffraction at approximately 3.3 A. Biochemical analyses confirmed the presence of DNA and full-length protein in the crystals. The relationship between the axis of noncrystallographic symmetry, the unit-cell axes and the DNA diffraction pattern are discussed. The data are consistent with the previously proposed model of the paired-ends complex containing a dimer of the transposase.


Asunto(s)
Proteínas de Unión al ADN/química , Conformación de Ácido Nucleico , Transposasas/química , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Cristalización , Cristalografía por Rayos X , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida
16.
Elife ; 52016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27223327

RESUMEN

Cut-and-paste DNA transposons of the mariner/Tc1 family are useful tools for genome engineering and are inserted specifically at TA target sites. A crystal structure of the mariner transposase Mos1 (derived from Drosophila mauritiana), in complex with transposon ends covalently joined to target DNA, portrays the transposition machinery after DNA integration. It reveals severe distortion of target DNA and flipping of the target adenines into extra-helical positions. Fluorescence experiments confirm dynamic base flipping in solution. Transposase residues W159, R186, F187 and K190 stabilise the target DNA distortions and are required for efficient transposon integration and transposition in vitro. Transposase recognises the flipped target adenines via base-specific interactions with backbone atoms, offering a molecular basis for TA target sequence selection. Our results will provide a template for re-designing mariner/Tc1 transposases with modified target specificities.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Recombinación Genética , Transposasas/química , Transposasas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica
17.
ACS Chem Biol ; 9(3): 743-51, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24397848

RESUMEN

DNA transposases catalyze the movement of transposons around genomes by a cut-and-paste mechanism related to retroviral integration. Transposases and retroviral integrases share a common RNaseH-like domain with a catalytic DDE/D triad that coordinates the divalent cations required for DNA cleavage and integration. The anti-retroviral drugs Raltegravir and Elvitegravir inhibit integrases by displacing viral DNA ends from the catalytic metal ions. We demonstrate that Raltegravir, but not Elvitegravir, binds to Mos1 transposase in the presence of Mg(2+) or Mn(2+), without the requirement for transposon DNA, and inhibits transposon cleavage and DNA integration in biochemical assays. Crystal structures at 1.7 Å resolution show Raltegravir, in common with integrases, coordinating two Mg(2+) or Mn(2+) ions in the Mos1 active site. However, in the absence of transposon ends, the drug adopts an unusual, compact binding mode distinct from that observed in the active site of the prototype foamy virus integrase.


Asunto(s)
Antirretrovirales/farmacología , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/química , Pirrolidinonas/farmacología , Transposasas/antagonistas & inhibidores , Transposasas/química , Antirretrovirales/química , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Integrasa de VIH/química , Integrasa de VIH/metabolismo , VIH-1/enzimología , Modelos Moleculares , Unión Proteica , Pirrolidinonas/química , Raltegravir Potásico , Virus Espumoso de los Simios/enzimología
18.
Biochem Biophys Res Commun ; 360(3): 566-72, 2007 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-17610845

RESUMEN

We have cloned, expressed, purified and characterised ceFKB-6, the only large tetratricopeptide repeat motif-containing immunophilin in Caenorhabditis elegans which is similar to the human orthologues FKBP51 and FKBP52. It shows increased peptidyl prolyl isomerase activity, the measured k(cat)/K(m) of 1.3 x 10(6) M(-1) s(-1)is twofold greater than that of hFKBP12 and hFKBP51. NMR studies of the interaction between FKB-6 and the C-terminal DAF-21 pentapeptide MEEVD show interactions consistent with those found between the large human immunophilin TPR domains and human Hsp90. In vivo localisation studies show that the fkb-6 gene is expressed in all stages from embryo to adult with predominant expression being noted in the adult dorsal and ventral nerve cords.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Inmunofilinas/genética , Animales , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Bovinos , Clonación Molecular , Ciclofilinas/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Inmunofilinas/biosíntesis , Inmunofilinas/química , Inmunofilinas/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína
19.
EMBO J ; 25(6): 1324-34, 2006 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-16511570

RESUMEN

We present the crystal structure of the catalytic domain of Mos1 transposase, a member of the Tc1/mariner family of transposases. The structure comprises an RNase H-like core, bringing together an aspartic acid triad to form the active site, capped by N- and C-terminal alpha-helices. We have solved structures with either one Mg2+ or two Mn2+ ions in the active site, consistent with a two-metal mechanism for catalysis. The lack of hairpin-stabilizing structural motifs is consistent with the absence of a hairpin intermediate in Mos1 excision. We have built a model for the DNA-binding domain of Mos1 transposase, based on the structure of the bipartite DNA-binding domain of Tc3 transposase. Combining this with the crystal structure of the catalytic domain provides a model for the paired-end complex formed between a dimer of Mos1 transposase and inverted repeat DNA. The implications for the mechanisms of first and second strand cleavage are discussed.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Unión al ADN/química , Modelos Moleculares , Conformación Proteica , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Unión al ADN/metabolismo , Dimerización , Drosophila/enzimología , Manganeso , Datos de Secuencia Molecular , Plásmidos , Pliegue de Proteína , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray , Transposasas
20.
J Biol Chem ; 280(2): 865-71, 2005 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-15509560

RESUMEN

The flagellar pocket of the bloodstream form of the African sleeping sickness parasite Trypanosoma brucei contains material that binds the beta-d-galactose-specific lectin ricin (Brickman, M. J., and Balber, A. E. (1990) J. Protozool. 37, 219-224). Glycoproteins were solubilized from bloodstream form T. brucei cells in 8 M urea and 3% SDS and purified by ricin affinity chromatography. Essentially all binding of ricin to these glycoproteins was abrogated by treatment with peptide N-glycosidase, showing that the ricin ligands are attached to glycoproteins via N-glycosidic linkages to asparagine residues. Glycans released by peptide N-glycosidase were resolved by Bio-Gel P-4 gel filtration into two fractions: a low molecular mass mannose-rich fraction and a high molecular mass galactose and N-acetylglucosamine-rich fraction. The latter fraction was further separated by high pH anion exchange chromatography and analyzed by gas chromatography mass spectrometry, one- and two-dimensional NMR, electrospray mass spectrometry, and methylation linkage analysis. The high molecular mass ricin-binding N-glycans are based on a conventional Manalpha1-3(Manalpha1-6)Manbeta1-4-GlcNAcbeta1-4GlcNAc core structure and contain poly-N-acetyllactosamine chains. A significant proportion of these structures are extremely large and of unusual structure. They contain an average of 54 N-acetyllactosamine (Galbeta1-4GlcNAc) repeats per glycan, linked mostly by -4GlcNAcbeta1-6Galbeta1-interrepeat linkages, with an average of one -4GlcNAcbeta1-3(-4GlcNAcbeta1-6)Galbeta1- branch point in every six repeats. These structures, which also bind tomato lectin, are twice the size reported for the largest mammalian poly-N-acetyllactosamine N-linked glycans and also differ in their preponderance of -4GlcNAcbeta1-6Galbeta1- over -4GlcNacbeta1-3Galbeta1- interrepeat linkages. Molecular modeling suggests that -4GlcNAcbeta1-6Galbeta1- interrepeat linkages produce relatively compact structures that may give these giant N-linked glycans unique physicochemical properties. Fluorescence microscopy using fluorescein isothiocyanatericin indicates that ricin ligands are located mainly in the flagellar pocket and in the endosomal/lysosomal system of the trypanosome.


Asunto(s)
Glicoproteínas/química , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Trypanosoma brucei brucei/química , Animales , Conformación de Carbohidratos , Cromatografía de Afinidad , Glicoproteínas/aislamiento & purificación , Glicoproteínas/metabolismo , Solanum lycopersicum , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Peso Molecular , Lectinas de Plantas/metabolismo , Polisacáridos/análisis , Unión Proteica , Ricina/química , Ricina/metabolismo , Fracciones Subcelulares/química , Trypanosoma brucei brucei/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA