Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(5): 773-789, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36130205

RESUMEN

Sequence variants or mutations in the GBA gene are numerically the most important risk factor for Parkinson disease (PD). The GBA gene encodes for the lysosomal hydrolase enzyme, glucocerebrosidase (GCase). GBA mutations often reduce GCase activity and lead to the impairment of the autophagy-lysosomal pathway, which is important in the turnover of alpha-synuclein, accumulation of which is a key pathological hallmark of PD. Although the E326K variant is one of the most common GBA variants associated with PD, there is limited understanding of its biochemical effects. We have characterized homozygous and heterozygous E326K variants in human fibroblasts. We found that E326K variants did not cause a significant loss of GCase protein or activity, endoplasmic reticulum (ER) retention or ER stress, in contrast to the L444P GBA mutation. This was confirmed in human dopaminergic SH-SY5Y neuroblastoma cell lines overexpressing GCase with either E326K or L444P protein. Despite no loss of the GCase activity, a significant increase in insoluble alpha-synuclein aggregates in E326K and L444P mutants was observed. Notably, SH-SY5Y overexpressing E326K demonstrated a significant increase in the lipid droplet number under basal conditions, which was exacerbated following treatment with the fatty acid oleic acid. Similarly, a significant increase in lipid droplet formation following lipid loading was observed in heterozygous and homozygous E326K fibroblasts. In conclusion, the work presented here demonstrates that the E326K mutation behaves differently to the common loss of function GBA mutations; however, lipid dyshomeostasis and alpha-synuclein pathology are still evident.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/genética , Gotas Lipídicas/metabolismo , Enfermedad de Parkinson/genética , Glucosilceramidasa/genética , Línea Celular , Lípidos , Mutación
2.
Ann Neurol ; 95(6): 1173-1177, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38546204

RESUMEN

Pathogenic variants in PRKN cause early-onset Parkinson's disease (PD), while the role of alpha-synuclein in PRKN-PD remains uncertain. One study performed a blood-based alpha-synuclein seed amplification assay (SAA) in PRKN-PD, not detecting seed amplification in 17 PRKN-PD patients. By applying a methodologically different SAA focusing on neuron-derived extracellular vesicles, we demonstrated alpha-synuclein seed amplification in 8 of 13 PRKN-PD patients, challenging the view of PRKN-PD as a non-synucleinopathy. Moreover, we performed blinded replication of the neuron-derived extracellular vesicles-dependent SAA in idiopathic PD patients and healthy controls. In conclusion, blood-based neuron-derived extracellular vesicles-dependent SAA represents a promising biomarker to elucidate the underpinnings of (monogenic) PD. ANN NEUROL 2024;95:1173-1177.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/metabolismo , Femenino , Masculino , Biomarcadores/sangre , Biomarcadores/metabolismo , Persona de Mediana Edad , Anciano , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Neuronas/metabolismo , Neuronas/patología
3.
Hum Mol Genet ; 31(14): 2396-2405, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35179198

RESUMEN

Cognitive impairment is a common non-motor complication of Parkinson's disease (PD). Glucocerebrosidase gene (GBA1) variants are found in 10-15% of PD cases and are numerically the most important risk factor for PD and dementia with Lewy bodies. Accumulation of α-synuclein and tau pathology is thought to underlie cognitive impairment in PD and likely involves cholinergic as well as dopaminergic neurons. Neural crest stem cells were isolated from both PD patients with the common heterozygous N370S GBA1 mutation and normal subjects without GBA1 mutations. The stem cells were used to generate a cholinergic neuronal cell model. The effects of the GBA1 variant on glucocerebrosidase (GCase) protein and activity, and cathepsin D, tau and α-synuclein protein levels in cholinergic neurons were examined. Ambroxol, a GCase chaperone, was used to investigate whether GCase enhancement was able to reverse the effects of the GBA1 variant on cholinergic neurons. Significant reductions in GCase protein and activity, as well as in cathepsin D levels, were found in GBA1 mutant (N370S/WT) cholinergic neurons. Both tau and α-synuclein levels were significantly increased in GBA1 mutant (N370S/WT) cholinergic neurons. Ambroxol significantly enhanced GCase activity and decreased both tau and α-synuclein levels in cholinergic neurons. GBA1 mutations interfere with the metabolism of α-synuclein and tau proteins and induce higher levels of α-synuclein and tau proteins in cholinergic neurons. The GCase pathway provides a potential therapeutic target for neurodegenerative disorders related to pathological α-synuclein or tau accumulation.


Asunto(s)
Ambroxol , Glucosilceramidasa , Enfermedad de Parkinson , Ambroxol/farmacología , Catepsina D/genética , Células Cultivadas , Colinérgicos/farmacología , Glucosilceramidasa/genética , Humanos , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
4.
Neurobiol Dis ; 188: 106343, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37926171

RESUMEN

BACKGROUND: Variants in the GBA1 gene cause the lysosomal storage disorder Gaucher disease (GD). They are also risk factors for Parkinson's disease (PD), and modify the expression of the PD phenotype. The penetrance of GBA1 variants in PD is incomplete, and the ability to determine who among GBA1 variant carriers are at higher risk of developing PD, would represent an advantage for prognostic and trial design purposes. OBJECTIVES: To compare the motor and non-motor phenotype of GBA1 carriers and non-carriers. METHODS: We present the cross-sectional results of the baseline assessment from the RAPSODI study, an online assessment tool for PD patients and GBA1 variant carriers. The assessment includes clinically validated questionnaires, a tap-test, the University of Pennsyllvania Smell Identification Test and cognitive tests. Additional, homogeneous data from the PREDICT-PD cohort were included. RESULTS: A total of 379 participants completed all parts of the RAPSODI assessment (89 GBA1-negative controls, 169 GBA1-negative PD, 47 GBA1-positive PD, 47 non-affected GBA1 carriers, 27 GD). Eighty-six participants were recruited through PREDICT-PD (43 non-affected GBA1 carriers and 43 GBA1-negative controls). GBA1-positive PD patients showed worse performance in visual cognitive tasks and olfaction compared to GBA1-negative PD patients. No differences were detected between non-affected GBA1 carriers carriers and GBA1-negative controls. No phenotypic differences were observed between any of the non-PD groups. CONCLUSIONS: Our results support previous evidence that GBA1-positive PD has a specific phenotype with more severe non-motor symptoms. However, we did not reproduce previous findings of more frequent prodromal PD signs in non-affected GBA1 carriers.


Asunto(s)
Enfermedad de Gaucher , Enfermedad de Parkinson , Humanos , Estudios Transversales , Enfermedad de Parkinson/genética , Fenotipo , Penetrancia , Enfermedad de Gaucher/genética , Síntomas Prodrómicos
5.
J Cell Sci ; 134(6)2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33602742

RESUMEN

Lysosomes are acidic Ca2+ stores often mobilised in conjunction with endoplasmic reticulum (ER) Ca2+ stores. Glycyl-L-phenylalanine 2-naphthylamide (GPN) is a widely used lysosomotropic agent that evokes cytosolic Ca2+ signals in many cells. However, whether these signals are the result of a primary action on lysosomes is unclear in light of recent evidence showing that GPN mediates direct ER Ca2+ release through changes in cytosolic pH. Here, we show that GPN evoked rapid increases in cytosolic pH but slower Ca2+ signals. NH4Cl evoked comparable changes in pH but failed to affect Ca2+ The V-type ATPase inhibitor, bafilomycin A1, increased lysosomal pH over a period of hours. Acute treatment modestly affected lysosomal pH and potentiated Ca2+ signals evoked by GPN. In contrast, chronic treatment led to more profound changes in luminal pH and selectively inhibited GPN action. GPN blocked Ca2+ responses evoked by the novel nicotinic acid adenine dinucleotide phosphate-like agonist, TPC2-A1-N. Therefore, GPN-evoked Ca2+ signals were better correlated with associated pH changes in the lysosome compared to the cytosol, and were coupled to lysosomal Ca2+ release. We conclude that Ca2+ signals evoked by GPN most likely derive from acidic organelles.


Asunto(s)
Calcio , Dipéptidos , Calcio/metabolismo , Señalización del Calcio , Retículo Endoplásmico/metabolismo , Lisosomas/metabolismo , NADP/metabolismo
6.
Mov Disord ; 38(5): 899-903, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36869417

RESUMEN

BACKGROUND: Biallelic pathogenic variants in GBA1 are the cause of Gaucher disease (GD) type 1 (GD1), a lysosomal storage disorder resulting from deficient glucocerebrosidase. Heterozygous GBA1 variants are also a common genetic risk factor for Parkinson's disease (PD). GD manifests with considerable clinical heterogeneity and is also associated with an increased risk for PD. OBJECTIVE: The objective of this study was to investigate the contribution of PD risk variants to risk for PD in patients with GD1. METHODS: We studied 225 patients with GD1, including 199 without PD and 26 with PD. All cases were genotyped, and the genetic data were imputed using common pipelines. RESULTS: On average, patients with GD1 with PD have a significantly higher PD genetic risk score than those without PD (P = 0.021). CONCLUSIONS: Our results indicate that variants included in the PD genetic risk score were more frequent in patients with GD1 who developed PD, suggesting that common risk variants may affect underlying biological pathways. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Enfermedad de Gaucher , Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Enfermedad de Gaucher/complicaciones , Enfermedad de Gaucher/genética , Trastornos Parkinsonianos/genética , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Factores de Riesgo , Mutación
7.
Bioorg Med Chem Lett ; 96: 129531, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37866711

RESUMEN

Compound 5 was identified from a high-throughput screening campaign as a small molecule pharmacological chaperone of glucocerebrocidase (GCase), a lysosomal hydrolase encoded by the GBA1 gene, variants of which are associated with Gaucher disease and Parkinson's disease. Further investigations revealed that compound 5 was slowly transformed into a regio-isomeric compound (6) in PBS buffer, plausibly via a ring-opening at hemiaminal moiety accompanied by subsequent intramolecular CC bond formation. Utilising this unexpected skeletal rearrangement reaction, a series of compound 6 analogues was synthesized which yielded multiple potent GCase pharmacological chaperones with sub-micromolar EC50 values as exemplified by compound 38 (EC50 = 0.14 µM).


Asunto(s)
Enfermedad de Gaucher , Enfermedad de Parkinson , Humanos , Glucosilceramidasa/genética , Mutación , Enfermedad de Gaucher/tratamiento farmacológico , Chaperonas Moleculares
8.
Bioorg Med Chem Lett ; 81: 129130, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36640928

RESUMEN

Glucocerebrosidase (GCase) is a lysosomal enzyme encoded by the GBA1 gene, loss of function variants of which cause an autosomal recessive lysosomal storage disorder, Gaucher disease (GD). Heterozygous variants of GBA1 are also known as the strongest common genetic risk factor for Parkinson's disease (PD). Restoration of GCase enzymatic function using a pharmacological chaperone strategy is considered a promising therapeutic approach for PD and GD. We identified compound 4 as a GCase pharmacological chaperone with sub-micromolar activity from a high-throughput screening (HTS) campaign. Compound 4 was further optimised to ER-001230194 (compound 25). ER-001230194 shows improved ADME and physicochemical properties and therefore represents a novel pharmacological chaperone with which to investigate GCase pharmacology further.


Asunto(s)
Enfermedad de Gaucher , Enfermedad de Parkinson , Humanos , Glucosilceramidasa/genética , Mutación , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Gaucher/tratamiento farmacológico , Lisosomas
9.
Curr Neurol Neurosci Rep ; 23(4): 121-130, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36881256

RESUMEN

PURPOSE OF REVIEW: Genetic variants in GBA1 and LRRK2 genes are the commonest genetic risk factor for Parkinson disease (PD); however, the preclinical profile of GBA1 and LRRK2 variant carriers who will develop PD is unclear. This review aims to highlight the more sensitive markers that can stratify PD risk in non-manifesting GBA1 and LRRK2 variant carriers. RECENT FINDINGS: Several case-control and a few longitudinal studies evaluated clinical, biochemical, and neuroimaging markers within cohorts of non-manifesting carriers of GBA1 and LRRK2 variants. Despite similar levels of penetrance of PD in GBA1 and LRRK2 variant carriers (10-30%), these individuals have distinct preclinical profiles. GBA1 variant carriers at higher risk of PD can present with prodromal symptoms suggestive of PD (hyposmia), display increased α-synuclein levels in peripheral blood mononuclear cells, and show dopamine transporter abnormalities. LRRK2 variant carriers at higher risk of PD might show subtle motor abnormalities, but no prodromal symptoms, higher exposure to some environmental factors (non-steroid anti-inflammatory drugs), and peripheral inflammatory profile. This information will help clinicians tailor appropriate screening tests and counseling and facilitate researchers in the development of predictive markers, disease-modifying treatments, and selection of healthy individuals who might benefit from preventive interventions.


Asunto(s)
Enfermedad de Parkinson , Humanos , Glucosilceramidasa/genética , Heterocigoto , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Leucocitos Mononucleares , Estudios Longitudinales , Mutación , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética , Síntomas Prodrómicos
10.
Brain ; 145(3): 1038-1051, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35362022

RESUMEN

Intraneuronal accumulation of aggregated α-synuclein is a pathological hallmark of Parkinson's disease. Therefore, mechanisms capable of promoting α-synuclein deposition bear important pathogenetic implications. Mutations of the glucocerebrosidase 1 (GBA) gene represent a prevalent Parkinson's disease risk factor. They are associated with loss of activity of a key enzyme involved in lipid metabolism, glucocerebrosidase, supporting a mechanistic relationship between abnormal α-synuclein-lipid interactions and the development of Parkinson pathology. In this study, the lipid membrane composition of fibroblasts isolated from control subjects, patients with idiopathic Parkinson's disease and Parkinson's disease patients carrying the L444P GBA mutation (PD-GBA) was assayed using shotgun lipidomics. The lipid profile of PD-GBA fibroblasts differed significantly from that of control and idiopathic Parkinson's disease cells. It was characterized by an overall increase in sphingolipid levels. It also featured a significant increase in the proportion of ceramide, sphingomyelin and hexosylceramide molecules with shorter chain length and a decrease in the percentage of longer-chain sphingolipids. The extent of this shift was correlated to the degree of reduction of fibroblast glucocerebrosidase activity. Lipid extracts from control and PD-GBA fibroblasts were added to recombinant α-synuclein solutions. The kinetics of α-synuclein aggregation were significantly accelerated after addition of PD-GBA extracts as compared to control samples. Amyloid fibrils collected at the end of these incubations contained lipids, indicating α-synuclein-lipid co-assembly. Lipids extracted from α-synuclein fibrils were also analysed by shotgun lipidomics. Data revealed that the lipid content of these fibrils was significantly enriched by shorter-chain sphingolipids. In a final set of experiments, control and PD-GBA fibroblasts were incubated in the presence of the small molecule chaperone ambroxol. This treatment restored glucocerebrosidase activity and sphingolipid levels and composition of PD-GBA cells. It also reversed the pro-aggregation effect that lipid extracts from PD-GBA fibroblasts had on α-synuclein. Taken together, the findings of this study indicate that the L444P GBA mutation and consequent enzymatic loss are associated with a distinctly altered membrane lipid profile that provides a biological fingerprint of this mutation in Parkinson fibroblasts. This altered lipid profile could also be an indicator of increased risk for α-synuclein aggregate pathology.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Fibroblastos/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Humanos , Mutación/genética , Enfermedad de Parkinson/metabolismo , Esfingolípidos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
11.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36769009

RESUMEN

Parkinson's disease (PD) is a common movement disorder, estimated to affect 4% of individuals by the age of 80. Mutations in the glucocerebrosidase 1 (GBA1) gene represent the most common genetic risk factor for PD, with at least 7-10% of non-Ashkenazi PD individuals carrying a GBA1 mutation (PD-GBA1). Although similar to idiopathic PD, the clinical presentation of PD-GBA1 includes a slightly younger age of onset, a higher incidence of neuropsychiatric symptoms, and a tendency to earlier, more prevalent and more significant cognitive impairment. The pathophysiological mechanisms underlying PD-GBA1 are incompletely understood, but, as in idiopathic PD, α-synuclein accumulation is thought to play a key role. It has been hypothesized that this overexpression of α-synuclein is caused by epigenetic modifications. In this paper, we analyze DNA methylation levels at 17 CpG sites located within intron 1 and the promoter of the α-synuclein (SNCA) gene in three different brain regions (frontal cortex, putamen and substantia nigra) in idiopathic PD, PD-GBA1 and elderly non-PD controls. In all three brain regions we find a tendency towards a decrease in DNA methylation within an eight CpG region of intron 1 in both idiopathic PD and PD-GBA1. The trend towards a reduction in DNA methylation was more pronounced in PD-GBA1, with a significant decrease in the frontal cortex. This suggests that PD-GBA1 and idiopathic PD have distinct epigenetic profiles, and highlights the importance of separating idiopathic PD and PD-GBA1 cases. This work also provides initial evidence that different genetic subtypes might exist within PD, each characterized by its own pathological mechanism. This may have important implications for how PD is diagnosed and treated.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Humanos , Anciano , Glucosilceramidasa/metabolismo , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/tratamiento farmacológico , Metilación de ADN , Intrones/genética , Mutación , Lóbulo Frontal/metabolismo
12.
Neurobiol Dis ; 166: 105663, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35183702

RESUMEN

Dysfunction of the endolysosomal system is implicated in the pathogenesis of both sporadic and familial Parkinson disease (PD). Variants in genes encoding lysosomal proteins have been estimated to be associated with more than half of PD cases. The most common genetic risk factor for PD are variants in the GBA gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), which is involved in sphingolipid metabolism. In this review we will describe the clinical symptoms and pathology of GBA-PD, and how this might be affected by the type of GBA variant. The putative mechanisms by which GCase deficiency in neurons and glia might contribute to PD pathogenesis will then be discussed, with particular emphasis on the accumulation of α-synuclein aggregates and the spread of pathogenic α-synuclein species between the cell types. The dysregulation of not only sphingolipids, but also phospholipids and cholesterol in the misfolding of α-synuclein is reviewed, as are neuroinflammation and the interaction of GCase with LRRK2 protein, another important contributor to PD pathogenesis. Study of both non-manifesting GBA carriers and GBA-PD cohorts provides an opportunity to identify robust biomarkers for PD progression as well as clinical trials for potential treatments. The final part of this review will describe preclinical studies and clinical trials for increasing GCase activity or reducing toxic substrate accumulation.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Heterocigoto , Humanos , Lisosomas/metabolismo , Mutación , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
13.
Hum Mol Genet ; 29(10): 1716-1728, 2020 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-32391886

RESUMEN

Mutations in the GBA gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), are the most important genetic risk factor for Parkinson disease (PD). GCase activity is also decreased in sporadic PD brains and with normal ageing. Loss of GCase activity impairs the autophagy lysosomal pathway resulting in increased α-synuclein (α-syn) levels. Furthermore, elevated α-syn results in decreased GCase activity. Although the role of α-syn in PD remains unclear, evidence indicates that aggregated α-syn fibrils are a pathogenic species in PD, passing between neurons and inducing endogenous native α-syn to aggregate; spreading pathology through the brain. We have investigated if preformed α-syn fibrils (PFFs) impair GCase activity in mouse cortical neurons and differentiated dopaminergic cells, and whether GCase deficiency in these models increased the transfer of α-syn pathology to naïve cells. Neurons treated with PFFs induced endogenous α-syn to become insoluble and phosphorylated at Ser129 to a greater extent than monomeric α-syn-treatment. PFFs, but not monomeric α-syn, inhibited lysosomal GCase activity in these cells and induced the unfolded protein response. Neurons in which GCase was inhibited by conduritol ß-epoxide did not increase the amount of insoluble monomeric α-syn or its phosphorylation status. Instead the release of α-syn fibrils from GCase deficient cells was significantly increased. Co-culture studies showed that the transfer of α-syn pathology to naïve cells was greater from GCase deficient cells. This study suggests that GCase deficiency increases the spread of α-syn pathology and likely contributes to the earlier age of onset and increased cognitive decline associated with GBA-PD.


Asunto(s)
Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Enfermedad de Parkinson/genética , Sinucleinopatías/genética , alfa-Sinucleína/genética , Envejecimiento/genética , Envejecimiento/patología , Animales , Autofagia/genética , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/patología , Humanos , Lisosomas/genética , Ratones , Mutación/genética , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fosforilación/genética , Sinucleinopatías/metabolismo , Sinucleinopatías/patología
14.
Nat Rev Neurosci ; 18(7): 435-450, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28592904

RESUMEN

Many of the motor symptoms of Parkinson disease (PD) can be preceded, sometimes for several years, by non-motor symptoms that include hyposmia, sleep disorders, depression and constipation. These non-motor features appear across the spectrum of patients with PD, including individuals with genetic causes of PD. The neuroanatomical and neuropharmacological bases of non-motor abnormalities in PD remain largely undefined. Here, we discuss recent advances that have helped to establish the presence, severity and effect on the quality of life of non-motor symptoms in PD, and the neuroanatomical and neuropharmacological mechanisms involved. We also discuss the potential for the non-motor features to define a prodrome that may enable the early diagnosis of PD.


Asunto(s)
Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/fisiopatología , Síntomas Prodrómicos , Encéfalo/patología , Estreñimiento/complicaciones , Depresión/complicaciones , Diagnóstico Precoz , Humanos , Neurotransmisores/fisiología , Trastornos del Olfato/complicaciones , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/patología , Calidad de Vida , Trastornos del Sueño-Vigilia/complicaciones
15.
Nat Rev Neurosci ; 18(8): 509, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28720825

RESUMEN

This corrects the article DOI: 10.1038/nrn.2017.62.

16.
J Neural Transm (Vienna) ; 129(9): 1105-1117, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35932311

RESUMEN

The discovery of glucocerebrosidase (GBA1) mutations as the greatest numerical genetic risk factor for the development of Parkinson disease (PD) resulted in a paradigm shift within the research landscape. Efforts to elucidate the mechanisms behind GBA1-associated PD have highlighted shared pathways in idiopathic PD including the loss and gain-of-function hypotheses, endoplasmic reticulum stress, lipid metabolism, neuroinflammation, mitochondrial dysfunction and altered autophagy-lysosomal pathway responsible for degradation of aggregated and misfolded a-synuclein. GBA1-associated PD exhibits subtle differences in phenotype and disease progression compared to idiopathic counterparts notably an earlier age of onset, faster motor decline and greater frequency of non-motor symptoms (which also constitute a significant aspect of the prodromal phase of the disease). GBA1-targeted therapies have been developed and are being investigated in clinical trials. The most notable are Ambroxol, a small molecule chaperone, and Venglustat, a blood-brain-barrier-penetrant substrate reduction therapy agent. It is imperative that further studies clarify the aetiology of GBA1-associated PD, enabling the development of a greater abundance of targeted therapies in this new era of precision medicine.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Glucosilceramidasa/genética , Humanos , Lisosomas/metabolismo , Mutación , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína/metabolismo
17.
J Neurochem ; 159(5): 826-839, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34618942

RESUMEN

The glucocerebrosidase 1 gene (GBA1), bi-allelic variants of which cause Gaucher disease (GD), encodes the lysosomal enzyme glucocerebrosidase (GCase) and is a risk factor for Parkinson Disease (PD). GBA1 variants are linked to a reduction in GCase activity in the brain. Variants in Leucine-Rich Repeat Kinase 2 (LRRK2), such as the gain-of-kinase-function variant G2019S, cause the most common familial form of PD. In patients without GBA1 and LRRK2 mutations, GCase and LRRK2 activity are also altered, suggesting that these two genes are implicated in all forms of PD and that they may play a broader role in PD pathogenesis. In this review, we review the proposed roles of GBA1 and LRRK2 in PD, focussing on the endolysosomal pathway. In particular, we highlight the discovery of Ras-related in brain (Rab) guanosine triphosphatases (GTPases) as LRRK2 kinase substrates and explore the links between increased LRRK2 activity and Rab protein function, lysosomal dysfunction, alpha-synuclein accumulation and GCase activity. We also discuss the discovery of RAB10 as a potential mediator of LRRK2 and GBA1 interaction in PD. Finally, we discuss the therapeutic implications of these findings, including current approaches and future perspectives related to novel drugs targeting LRRK2 and GBA1.


Asunto(s)
Epistasis Genética/genética , Glucosilceramidasa/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/genética , Animales , Glucosilceramidasa/antagonistas & inhibidores , Glucosilceramidasa/metabolismo , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Proteínas de Unión al GTP rab/antagonistas & inhibidores , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
18.
Mov Disord ; 36(3): 774-779, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33278043

RESUMEN

BACKGROUND: Glucocerebrosidase gene mutations are a common genetic risk factor for Parkinson's disease. They exhibit incomplete penetrance. The objective of the present study was to measure microglial activation and dopamine integrity in glucocerebrosidase gene mutation carriers without Parkinson's disease compared to controls. METHODS: We performed PET scans on 9 glucocerebrosidase gene mutation carriers without Parkinson's disease and 29 age-matched controls. We measured microglial activation as 11 C-(R)-PK11195 binding potentials, and dopamine terminal integrity with 18 F-dopa influx constants. RESULTS: The 11 C-(R)-PK11195 binding potential was increased in the substantia nigra of glucocerebrosidase gene carriers compared with controls (Student t test; right, t = -4.45, P = 0.0001). Statistical parametric mapping also localized significantly increased 11 C-(R)-PK11195 binding potential in the occipital and temporal lobes, cerebellum, hippocampus, and mesencephalon. The degree of hyposmia correlated with nigral 11 C-(R)-PK11195 regional binding potentials (Spearman's rank, P = 0.0066). Mean striatal 18 F-dopa uptake was similar to healthy controls. CONCLUSIONS: In vivo 11 C-(R)-PK11195 PET imaging detects neuroinflammation in brain regions susceptible to Lewy pathology in glucocerebrosidase gene mutation carriers without Parkinson's. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Humanos , Microglía/metabolismo , Mutación/genética , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética
19.
Mov Disord ; 36(6): 1456-1460, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34008887

RESUMEN

BACKGROUND: GBA mutations are a common risk factor for Parkinson's disease (PD). A recent study has suggested that GBA haplotypes, identified by intronic variants, can affect age at diagnosis of PD. OBJECTIVES: In this study, we assess this hypothesis using long reads across a large cohort and the publicly available Accelerating Medicines Partnership-Parkinson's Disease (AMP-PD) cohort. METHODS: We recruited a PD cohort through the Remote Assessment of Parkinsonism Supporting Ongoing Development of Interventions in Gaucher Disease study (RAPSODI) and sequenced GBA using Oxford Nanopore technology. Genetic and clinical data on the full AMP-PD cohort were obtained from the online portal of the consortium. RESULTS: A total of 1417 participants were analyzed. There was no significant difference in age at PD diagnosis between the two main haplotypes of the GBA gene. CONCLUSIONS: GBA haplotypes do not affect age at diagnosis of PD in the two independent cohorts studied. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Glucosilceramidasa/genética , Enfermedad de Parkinson , Haplotipos , Humanos , Intrones , Mutación/genética , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética
20.
J Neurochem ; 154(1): 11-24, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31965564

RESUMEN

The discovery of genes involved in familial as well as sporadic forms of Parkinson disease (PD) constitutes an important milestone in understanding this disorder's pathophysiology and potential treatment. Among these genes, GBA1 is one of the most common and well-studied, but it is still unclear how mutations in GBA1 translate into an increased risk for developing PD. In this review, we provide an overview of the biochemical and structural relationship between GBA1 and PD to help understand the recent advances in the development of PD therapies intended to target this pathway.


Asunto(s)
Glucosilceramidasa/metabolismo , Enfermedad de Parkinson/genética , alfa-Sinucleína/metabolismo , Predisposición Genética a la Enfermedad/genética , Glucosilceramidasa/química , Glucosilceramidasa/genética , Heterocigoto , Humanos , Mutación , Enfermedad de Parkinson/metabolismo , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA