Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nature ; 615(7954): 802-803, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949122
2.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753488

RESUMEN

Chloride ion-pumping rhodopsin (ClR) in some marine bacteria utilizes light energy to actively transport Cl- into cells. How the ClR initiates the transport is elusive. Here, we show the dynamics of ion transport observed with time-resolved serial femtosecond (fs) crystallography using the Linac Coherent Light Source. X-ray pulses captured structural changes in ClR upon flash illumination with a 550 nm fs-pumping laser. High-resolution structures for five time points (dark to 100 ps after flashing) reveal complex and coordinated dynamics comprising retinal isomerization, water molecule rearrangement, and conformational changes of various residues. Combining data from time-resolved spectroscopy experiments and molecular dynamics simulations, this study reveals that the chloride ion close to the Schiff base undergoes a dissociation-diffusion process upon light-triggered retinal isomerization.


Asunto(s)
Canales de Cloruro/metabolismo , Cloruros/metabolismo , Rodopsinas Microbianas/metabolismo , Cationes Monovalentes/metabolismo , Canales de Cloruro/aislamiento & purificación , Canales de Cloruro/efectos de la radiación , Canales de Cloruro/ultraestructura , Cristalografía/métodos , Radiación Electromagnética , Rayos Láser , Simulación de Dinámica Molecular , Nocardioides , Conformación Proteica en Hélice alfa/efectos de la radiación , Estructura Terciaria de Proteína/efectos de la radiación , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/efectos de la radiación , Proteínas Recombinantes/ultraestructura , Retinaldehído/metabolismo , Retinaldehído/efectos de la radiación , Rodopsinas Microbianas/aislamiento & purificación , Rodopsinas Microbianas/efectos de la radiación , Rodopsinas Microbianas/ultraestructura , Agua/metabolismo
3.
Nat Methods ; 17(1): 73-78, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31740816

RESUMEN

The European XFEL (EuXFEL) is a 3.4-km long X-ray source, which produces femtosecond, ultrabrilliant and spatially coherent X-ray pulses at megahertz (MHz) repetition rates. This X-ray source has been designed to enable the observation of ultrafast processes with near-atomic spatial resolution. Time-resolved crystallographic investigations on biological macromolecules belong to an important class of experiments that explore fundamental and functional structural displacements in these molecules. Due to the unusual MHz X-ray pulse structure at the EuXFEL, these experiments are challenging. Here, we demonstrate how a biological reaction can be followed on ultrafast timescales at the EuXFEL. We investigate the picosecond time range in the photocycle of photoactive yellow protein (PYP) with MHz X-ray pulse rates. We show that difference electron density maps of excellent quality can be obtained. The results connect the previously explored femtosecond PYP dynamics to timescales accessible at synchrotrons. This opens the door to a wide range of time-resolved studies at the EuXFEL.


Asunto(s)
Proteínas Bacterianas/química , Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Fotorreceptores Microbianos/química , Conformación Proteica , Luz , Modelos Moleculares , Factores de Tiempo
4.
Nature ; 530(7589): 202-6, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26863980

RESUMEN

The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed--and are of interest as a source of information about the dynamics of proteins--they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.


Asunto(s)
Cristalografía por Rayos X/métodos , Complejo de Proteína del Fotosistema II/química , Cristalización , Modelos Moleculares
5.
Biol Reprod ; 105(2): 449-463, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33955453

RESUMEN

In humans, intrauterine growth restriction (IUGR) and preeclampsia (PE) are associated with induction of the unfolded protein response (UPR) and increased placental endoplasmic reticulum (ER) stress. Especially in PE, oxidative stress occurs relative to the severity of maternal vascular underperfusion (MVU) of the placental bed. On the premise that understanding the mechanisms of placental dysfunction could lead to targeted therapeutic options for human IUGR and PE, we investigated the roles of the placental UPR and oxidative stress in two rodent models of these human gestational pathologies. We employed a rat IUGR model of gestational maternal protein restriction, as well as an endothelial nitric oxide synthase knockout mouse model (eNOS-/-) of PE/IUGR. Placental expression of UPR members was analyzed via qRT-PCR (Grp78, Calnexin, Perk, Chop, Atf6, and Ern1), immunohistochemistry, and Western blotting (Calnexin, ATF6, GRP78, CHOP, phospho-eIF2α, and phospho-IRE1). Oxidative stress was determined via Western blotting (3-nitrotyrosine and 4-hydroxy-2-nonenal). Both animal models showed a significant reduction of fetal and placental weight. These effects did not induce placental UPR. In contrast to human data, results from our rodent models suggest retention of placental plasticity in the setting of ER stress under an adverse gestational environment. Oxidative stress was significantly increased only in female IUGR rat placentas, suggesting a sexually dimorphic response to maternal malnutrition. Our study advances understanding of the involvement of the placental UPR in IUGR and PE. Moreover, it emphasizes the appropriate choice of animal models researching various aspects of these pregnancy complications.


Asunto(s)
Estrés del Retículo Endoplásmico , Retardo del Crecimiento Fetal/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Respuesta de Proteína Desplegada , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Noqueados , Embarazo , Ratas , Ratas Wistar
6.
Nat Methods ; 14(9): 877-881, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28805793

RESUMEN

Using a manifold-based analysis of experimental diffraction snapshots from an X-ray free electron laser, we determine the three-dimensional structure and conformational landscape of the PR772 virus to a detector-limited resolution of 9 nm. Our results indicate that a single conformational coordinate controls reorganization of the genome, growth of a tubular structure from a portal vertex and release of the genome. These results demonstrate that single-particle X-ray scattering has the potential to shed light on key biological processes.


Asunto(s)
Algoritmos , Bacteriófagos/ultraestructura , Cristalografía por Rayos X/métodos , ADN Viral/ultraestructura , Imagenología Tridimensional/métodos , Dispersión del Ángulo Pequeño , Conformación Molecular , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
J Am Chem Soc ; 141(34): 13358-13371, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31381304

RESUMEN

Cytochrome c nitrite reductase (ccNiR) is a periplasmic, decaheme homodimeric enzyme that catalyzes the six-electron reduction of nitrite to ammonia. Under standard assay conditions catalysis proceeds without detected intermediates, and it has been assumed that this is also true in vivo. However, this report demonstrates that it is possible to trap a putative intermediate by controlling the electrochemical potential at which reduction takes place. UV/vis spectropotentiometry showed that nitrite-loaded Shewanella oneidensis ccNiR is reduced in a concerted two-electron step to generate an {FeNO}7 moiety at the active site, with an associated midpoint potential of +246 mV vs SHE at pH 7. By contrast, cyanide-bound active site reduction is a one-electron process with a midpoint potential of +20 mV, and without a strong-field ligand the active site midpoint potential shifts 70 mV lower still. EPR analysis subsequently revealed that the {FeNO}7 moiety possesses an unusual spectral signature, different from those normally observed for {FeNO}7 hemes, that may indicate magnetic interaction of the active site with nearby hemes. Protein film voltammetry experiments previously showed that catalytic nitrite reduction to ammonia by S. oneidensis ccNiR requires an applied potential of at least -120 mV, well below the midpoint potential for {FeNO}7 formation. Thus, it appears that an {FeNO}7 active site is a catalytic intermediate in the ccNiR-mediated reduction of nitrite to ammonia, whose degree of accumulation depends exclusively on the applied potential. At low potentials the species is rapidly reduced and does not accumulate, while at higher potentials it is trapped, thus preventing catalytic ammonia formation.


Asunto(s)
Citocromos a1/metabolismo , Citocromos c1/metabolismo , Nitrato Reductasas/metabolismo , Nitritos/metabolismo , Shewanella/enzimología , Amoníaco/metabolismo , Catálisis , Dominio Catalítico , Citocromos a1/química , Citocromos c1/química , Modelos Moleculares , Nitrato Reductasas/química , Oxidación-Reducción , Conformación Proteica , Shewanella/química , Shewanella/metabolismo , Espectrofotometría Ultravioleta , Especificidad por Sustrato
8.
BMC Biol ; 16(1): 59, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29848358

RESUMEN

BACKGROUND: Ever since the first atomic structure of an enzyme was solved, the discovery of the mechanism and dynamics of reactions catalyzed by biomolecules has been the key goal for the understanding of the molecular processes that drive life on earth. Despite a large number of successful methods for trapping reaction intermediates, the direct observation of an ongoing reaction has been possible only in rare and exceptional cases. RESULTS: Here, we demonstrate a general method for capturing enzyme catalysis "in action" by mix-and-inject serial crystallography (MISC). Specifically, we follow the catalytic reaction of the Mycobacterium tuberculosis ß-lactamase with the third-generation antibiotic ceftriaxone by time-resolved serial femtosecond crystallography. The results reveal, in near atomic detail, antibiotic cleavage and inactivation from 30 ms to 2 s. CONCLUSIONS: MISC is a versatile and generally applicable method to investigate reactions of biological macromolecules, some of which are of immense biological significance and might be, in addition, important targets for structure-based drug design. With megahertz X-ray pulse rates expected at the Linac Coherent Light Source II and the European X-ray free-electron laser, multiple, finely spaced time delays can be collected rapidly, allowing a comprehensive description of biomolecular reactions in terms of structure and kinetics from the same set of X-ray data.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/química , Ceftriaxona/química , Cristalografía por Rayos X/métodos , Mycobacterium tuberculosis/enzimología , beta-Lactamasas/química , Proteínas Bacterianas/genética , Biocatálisis , Resistencia a las Cefalosporinas/genética , Cinética , Rayos Láser , Modelos Moleculares , Factores de Tiempo , beta-Lactamasas/genética
9.
Int J Mol Sci ; 20(6)2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30897736

RESUMEN

The focus of structural biology is shifting from the determination of static structures to the investigation of dynamical aspects of macromolecular function. With time-resolved macromolecular crystallography (TRX), intermediates that form and decay during the macromolecular reaction can be investigated, as well as their reaction dynamics. Time-resolved crystallographic methods were initially developed at synchrotrons. However, about a decade ago, extremely brilliant, femtosecond-pulsed X-ray sources, the free electron lasers for hard X-rays, became available to a wider community. TRX is now possible with femtosecond temporal resolution. This review provides an overview of methodological aspects of TRX, and at the same time, aims to outline the frontiers of this method at modern pulsed X-ray sources.


Asunto(s)
Cristalografía por Rayos X/métodos , Método de Montecarlo , Sincrotrones , beta-Lactamasas/metabolismo
10.
Int J Mol Sci ; 21(1)2019 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-31905805

RESUMEN

In humans, retinoic acid receptor responders (RARRES) have been shown to be altered in third trimester placentas complicated by the pathologies preeclampsia (PE) and PE with intrauterine growth restriction (IUGR). Currently, little is known about the role of placental Rarres in rodents. Therefore, we examined the localization and expression of Rarres1 and 2 in placentas obtained from a Wistar rat model of isocaloric maternal protein restriction (E18.5, IUGR-like features) and from an eNOS-knockout mouse model (E15 and E18.5, PE-like features). In both rodent models, Rarres1 and 2 were mainly localized in the placental spongiotrophoblast and giant cells. Their placental expression, as well as the expression of the Rarres2 receptor chemokine-like receptor 1 (CmklR1), was largely unaltered at the examined gestational ages in both animal models. Our results have shown that RARRES1 and 2 may have different expression and roles in human and rodent placentas, thereby underlining immanent limitations of comparative interspecies placentology. Further functional studies are required to elucidate the potential involvement of these proteins in early placentogenesis.


Asunto(s)
Quimiocinas/metabolismo , Retardo del Crecimiento Fetal/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Placenta/metabolismo , Animales , Quimiocinas/genética , Femenino , Interleucina-11/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Placenta/citología , Preeclampsia/metabolismo , Embarazo , Ratas , Ratas Wistar , Receptores de Quimiocina/metabolismo , Receptores de Ácido Retinoico/metabolismo , Trofoblastos/metabolismo
11.
J Phys D Appl Phys ; 50(37)2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-29353938

RESUMEN

Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron X-ray sources. An expansive database of more than 100,000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al., 2005a; Schmidt 2008; Neutze and Moffat, 2012; Srajer 2014). In this approach, short and intense X-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron X-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard X-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond X-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al., 2014; Barends et al., 2015; Pande et al., 2016). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline challenges and further developments necessary to broaden the application of these methods to many important proteins and enzymes of biomedical relevance.

12.
Struct Dyn ; 11(1): 014701, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38304445

RESUMEN

Time-resolved crystallography (TRX) is a method designed to investigate functional motions of biological macromolecules on all time scales. Originally a synchrotron-based method, TRX is enabled by the development of TR Laue crystallography (TRLX). TR serial crystallography (TR-SX) is an extension of TRLX. As the foundations of TRLX were evolving from the late 1980s to the turn of the millennium, TR-SX has been inspired by the development of Free Electron Lasers for hard X-rays. Extremely intense, ultrashort x-ray pulses could probe micro and nanocrystals, but at the same time, they inflicted radiation damage that necessitated the replacement by a new crystal. Consequently, a large number of microcrystals are exposed to X-rays one by one in a serial fashion. With TR-SX methods, one of the largest obstacles of previous approaches, namely, the unsurmountable challenges associated with the investigation of non-cyclic (irreversible) reactions, can be overcome. This article describes successes and transformative contributions to the TRX field by Keith Moffat and his collaborators, highlighting two major projects on protein photoreceptors initiated in the Moffat lab at the turn of the millennium.

13.
IUCrJ ; 11(Pt 3): 405-422, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38662478

RESUMEN

Here, a machine-learning method based on a kinetically informed neural network (NN) is introduced. The proposed method is designed to analyze a time series of difference electron-density maps from a time-resolved X-ray crystallographic experiment. The method is named KINNTREX (kinetics-informed NN for time-resolved X-ray crystallography). To validate KINNTREX, multiple realistic scenarios were simulated with increasing levels of complexity. For the simulations, time-resolved X-ray data were generated that mimic data collected from the photocycle of the photoactive yellow protein. KINNTREX only requires the number of intermediates and approximate relaxation times (both obtained from a singular valued decomposition) and does not require an assumption of a candidate mechanism. It successfully predicts a consistent chemical kinetic mechanism, together with difference electron-density maps of the intermediates that appear during the reaction. These features make KINNTREX attractive for tackling a wide range of biomolecular questions. In addition, the versatility of KINNTREX can inspire more NN-based applications to time-resolved data from biological macromolecules obtained by other methods.


Asunto(s)
Redes Neurales de la Computación , Cristalografía por Rayos X/métodos , Cinética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Aprendizaje Automático
14.
Nat Chem ; 16(4): 624-632, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38225270

RESUMEN

Charge-transfer reactions in proteins are important for life, such as in photolyases which repair DNA, but the role of structural dynamics remains unclear. Here, using femtosecond X-ray crystallography, we report the structural changes that take place while electrons transfer along a chain of four conserved tryptophans in the Drosophila melanogaster (6-4) photolyase. At femto- and picosecond delays, photoreduction of the flavin by the first tryptophan causes directed structural responses at a key asparagine, at a conserved salt bridge, and by rearrangements of nearby water molecules. We detect charge-induced structural changes close to the second tryptophan from 1 ps to 20 ps, identifying a nearby methionine as an active participant in the redox chain, and from 20 ps around the fourth tryptophan. The photolyase undergoes highly directed and carefully timed adaptations of its structure. This questions the validity of the linear solvent response approximation in Marcus theory and indicates that evolution has optimized fast protein fluctuations for optimal charge transfer.


Asunto(s)
Desoxirribodipirimidina Fotoliasa , Humanos , Animales , Desoxirribodipirimidina Fotoliasa/química , Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/metabolismo , Triptófano/química , Electrones , Drosophila melanogaster/metabolismo , Escherichia coli/genética , Transporte de Electrón , Cristalografía por Rayos X
15.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 12): 2534-42, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24311594

RESUMEN

Free-energy landscapes decisively determine the progress of enzymatically catalyzed reactions [Cornish-Bowden (2012), Fundamentals of Enzyme Kinetics, 4th ed.]. Time-resolved macromolecular crystallography unifies transient-state kinetics with structure determination [Moffat (2001), Chem. Rev. 101, 1569-1581; Schmidt et al. (2005), Methods Mol. Biol. 305, 115-154; Schmidt (2008), Ultrashort Laser Pulses in Medicine and Biology] because both can be determined from the same set of X-ray data. Here, it is demonstrated how barriers of activation can be determined solely from five-dimensional crystallography, where in addition to space and time, temperature is a variable as well [Schmidt et al. (2010), Acta Cryst. A66, 198-206]. Directly linking molecular structures with barriers of activation between them allows insight into the structural nature of the barrier to be gained. Comprehensive time series of crystallographic data at 14 different temperature settings were analyzed and the entropy and enthalpy contributions to the barriers of activation were determined. One hundred years after the discovery of X-ray scattering, these results advance X-ray structure determination to a new frontier: the determination of energy landscapes.


Asunto(s)
Proteínas Bacterianas/química , Fotorreceptores Microbianos/química , Termodinámica , Bacterias/química , Cristalografía por Rayos X/métodos , Cinética , Conformación Proteica
16.
Int J Mol Sci ; 14(9): 18881-98, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-24065094

RESUMEN

Time-resolved spectroscopic experiments have been performed with protein in solution and in crystalline form using a newly designed microspectrophotometer. The time-resolution of these experiments can be as good as two nanoseconds (ns), which is the minimal response time of the image intensifier used. With the current setup, the effective time-resolution is about seven ns, determined mainly by the pulse duration of the nanosecond laser. The amount of protein required is small, on the order of 100 nanograms. Bleaching, which is an undesirable effect common to photoreceptor proteins, is minimized by using a millisecond shutter to avoid extensive exposure to the probing light. We investigate two model photoreceptors, photoactive yellow protein (PYP), and α-phycoerythrocyanin (α-PEC), on different time scales and at different temperatures. Relaxation times obtained from kinetic time-series of difference absorption spectra collected from PYP are consistent with previous results. The comparison with these results validates the capability of this spectrophotometer to deliver high quality time-resolved absorption spectra.


Asunto(s)
Proteínas Bacterianas/química , Fotorreceptores Microbianos/química , Ficobilinas/química , Ficocianina/química , Espectrofotometría , Proteínas Bacterianas/metabolismo , Cinética , Luz , Modelos Moleculares , Fotorreceptores Microbianos/metabolismo , Ficobilinas/metabolismo , Ficocianina/metabolismo , Temperatura , Factores de Tiempo
17.
Struct Dyn ; 10(1): 010901, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36846099

RESUMEN

Inspired by recent progress in time-resolved x-ray crystallography and the adoption of time-resolution by cryo-electronmicroscopy, this article enumerates several approaches developed to become bigger/smaller, faster, and better to gain new insight into the molecular mechanisms of life. This is illustrated by examples where chemical and physical stimuli spawn biological responses on various length and time-scales, from fractions of Ångströms to micro-meters and from femtoseconds to hours.

18.
Struct Dyn ; 10(4): 044303, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37600452

RESUMEN

The field of time-resolved macromolecular crystallography has been expanding rapidly after free electron lasers for hard x rays (XFELs) became available. Techniques to collect and process data from XFELs spread to synchrotron light sources. Although time-scales and data collection modalities can differ substantially between these types of light sources, the analysis of the resulting x-ray data proceeds essentially along the same pathway. At the base of a successful time-resolved experiment is a difference electron density (DED) map that contains chemically meaningful signal. If such a difference map cannot be obtained, the experiment has failed. Here, a practical approach is presented to calculate DED maps and use them to determine structural models.

19.
bioRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37986774

RESUMEN

Phytochromes are essential photoreceptor proteins in plants with homologs in bacteria and fungi that regulate a variety of important environmental responses. They display a reversible photocycle between two distinct states, the red-light absorbing Pr and the far-red light absorbing Pfr, each with its own structure. The reversible Pr to Pfr photoconversion requires covalently bound bilin chromophore and regulates the activity of a C-terminal enzymatic domain, which is usually a histidine kinase (HK). In plants, phytochromes translocate to nucleus where the C-terminal effector domain interacts with protein interaction factors (PIFs) to induce gene expression. In bacteria, the HK phosphorylates a response-regulator (RR) protein triggering downstream gene expression through a two-component signaling pathway. Although plant and bacterial phytochromes share similar structural composition, they have contrasting activity in the presence of light with most BphPs being active in the dark. The molecular mechanism that explains bacterial and plant phytochrome signaling has not been well understood due to limited structures of full-length phytochromes with enzymatic domain resolved at or near atomic resolution in both Pr and Pfr states. Here, we report the first Cryo-EM structures of a wild-type bacterial phytochrome with a HK enzymatic domain, determined in both Pr and Pfr states, between 3.75 and 4.13 Å resolution, respectively. Furthermore, we capture a distinct Pr/Pfr heterodimer of the same protein as potential signal transduction intermediate at 3.75 Å resolution. Our three Cryo-EM structures of the distinct signaling states of BphPs are further reinforced by Cryo-EM structures of the truncated PCM of the same protein determined for the Pr/Pfr heterodimer as well as Pfr state. These structures provide insight into the different light-signaling mechanisms that could explain how bacteria and plants see the light.

20.
Children (Basel) ; 10(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38136038

RESUMEN

BACKGROUND: An infection with SARS-CoV-2 can trigger a systemic disorder by pathological autoimmune processes. A certain type of this dysregulation is known as Multisystemic inflammatory syndrome in children (MIS-C). However, similar symptoms may occur and have been described as Multisystemic inflammatory syndrome after SARS-CoV-2 Vaccination (MIS-V) following vaccination against SARS-CoV-2. We report the case of a 12-year-old boy who was identified with MIS-C symptoms without previous SARS-CoV-2 infection after receiving two doses of the Pfizer-BioNTech COVID-19 vaccine approximately one month prior to the onset of symptoms. He showed polyserositis, severe gastrointestinal symptoms and, consequently, a manifestation of a multiorgan failure. IgG antibodies against spike proteins of SARS-CoV-2 were detected, indicating a successful vaccination, while SARS-CoV-2 Nucleocapsid protein antibodies and SARS-CoV-2 PCR were not detected. Several functional, active autoantibodies against G-protein-coupled receptors (GPCR-fAAb), previously associated with Long COVID disease, were detected in a cardiomyocyte bioassay. Immunosuppression with steroids was initiated. Due to side effects, treatment with steroids and later interleukin 1 receptor antagonists had to be terminated. Instead, immunoadsorption was performed and continued with tacrolimus and mycophenolic acid therapy, leading to improvement and discharge after 79 days. GPCR-fAAb decreased during therapy and remained negative after clinical curing and under continued immunosuppressive therapy with tacrolimus and mycophenolic acid. Follow-up of the patient showed him in good condition after one year. CONCLUSIONS: Infection with SARS-CoV-2 shows a broad and severe variety of symptoms, partly due to autoimmune dysregulation, which, in some instances, can lead to multiorgan failure. Despite its rarity, post-vaccine MIS-C-like disease may develop into a serious condition triggered by autoimmune dysregulation. The evidence of circulating GPCR-fAAb and their disappearance after therapy suggests a link of GPCR-fAAb to the clinical manifestations. Thus, we hypothesize a potential role of GPCR-fAAb in pathophysiology and their potential importance for the therapy of MIS-C or MIS-V. However, this observation needs further investigation to prove a causative correlation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA