Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(3): e1011188, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36917600

RESUMEN

Sea louse ectoparasitosis is a major threat to fish aquaculture. Avermectins such as ivermectin and emamectin have been effectively used against sea louse infestation, but the emergence of resistance has limited their use. A better understanding of the molecular targets of avermectins is essential to the development of novel treatment strategies or new, more effective drugs. Avermectins are known to act by inhibiting neurotransmission through allosteric activation of glutamate-gated chloride channels (GluCls). We have investigated the GluCl subunit present in Caligus rogercresseyi, a sea louse affecting aquaculture in the Southern hemisphere. We identify four new subunits, CrGluCl-B to CrGluCl-E, and characterise them functionally. CrGluCl-A (previously reported as CrGluClα), CrGluCl-B and CrGluCl-C all function as glutamate channel receptors with different sensitivities to the agonist, but in contrast to subunit -A and -C, CrGluCl-B is not activated by ivermectin but is rather antagonised by the drug. CrGluCl-D channel appears active in the absence of any stimulation by glutamate or ivermectin and CrGluCl-E does not exhibit any activity. Notably, the expression of CrGluCl-B with either -A or -C subunits gives rise to receptors unresponsive to ivermectin and showing altered response to glutamate, suggesting that coexpression has led to the preferential formation of heteromers to which the presence of CrGluCl-B confers the property of ivermectin-activation refractoriness. Furthermore, there was evidence for heteromer formation with novel properties only when coexpressing pairs E/C and D/B CrGluCl subtypes. Site-directed mutagenesis shows that three transmembrane domain residues contribute to the lack of activation by ivermectin, most crucially Gln 15' in M2, with mutation Q15'T (the residue present in ivermectin-activated subunits A and C) conferring ivermectin activation to CrGluCl-B. The differential response to avermectin of these Caligus rogercresseyi GluClsubunits, which are highly conserved in the Northern hemisphere sea louse Lepeophtheirus salmonis, could have an influence on the response of these parasites to treatment with macrocyclic lactones. They could serve as molecular markers to assess susceptibility to existing treatments and might be useful molecular targets in the search for novel antiparasitic drugs.


Asunto(s)
Copépodos , Parásitos , Phthiraptera , Animales , Ivermectina/farmacología , Ivermectina/metabolismo , Phthiraptera/metabolismo , Parásitos/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Ácido Glutámico/farmacología
2.
Am J Physiol Cell Physiol ; 326(4): C1178-C1192, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38406825

RESUMEN

K+ channel Kir7.1 expressed at the apical membrane of the retinal pigment epithelium (RPE) plays an essential role in retinal function. An isoleucine-to-threonine mutation at position 120 of the protein is responsible for blindness-causing vitreo-retinal dystrophy. We have studied the molecular mechanism of action of Kir7.1-I120T in vitro by heterologous expression and in vivo in CRISPR-generated knockin mice. Full-size Kir7.1-I120T reaches the plasma membrane but lacks any activity. Analysis of Kir7.1 and the I120T mutant in mixed transfection experiments, and that of tandem tetrameric constructs made by combining wild type (WT) and mutant protomers, leads us to conclude that they do not form heterotetramers in vitro. Homozygous I120T/I120T mice show cleft palate and tracheomalacia and do not survive beyond P0, whereas heterozygous WT/I120T develop normally. Membrane conductance of RPE cells isolated from WT/WT and heterozygous WT/I120T mice is dominated by Kir7.1 current. Using Rb+ as a charge carrier, we demonstrate that the Kir7.1 current of WT/I120T RPE cells corresponds to approximately 50% of that in cells from WT/WT animals, in direct proportion to WT gene dosage. This suggests a lack of compensatory effects or interference from the mutated allele product, an interpretation consistent with results obtained using WT/- hemizygous mouse. Electroretinography and behavioral tests also show normal vision in WT/I120T animals. The hypomorphic ion channel phenotype of heterozygous Kir7.1-I120T mutants is therefore compatible with normal development and retinal function. The lack of detrimental effect of this degree of functional deficit might explain the recessive nature of Kir7.1 mutations causing human eye disease.NEW & NOTEWORTHY Human retinal pigment epithelium K+ channel Kir7.1 is affected by generally recessive mutations leading to blindness. We investigate one such mutation, isoleucine-to-threonine at position 120, both in vitro and in vivo in knockin mice. The mutated channel is inactive and in heterozygosis gives a hypomorphic phenotype with normal retinal function. Mutant channels do not interfere with wild-type Kir7.1 channels which are expressed concomitantly without hindrance, providing an explanation for the recessive nature of the disease.


Asunto(s)
Isoleucina , Retina , Ratones , Humanos , Animales , Isoleucina/metabolismo , Retina/metabolismo , Ceguera/metabolismo , Mutación/genética , Treonina/metabolismo
3.
Physiol Rev ; 95(1): 179-217, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25540142

RESUMEN

K(+) channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K(+) channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K(+) homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K(+)-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge.


Asunto(s)
Activación del Canal Iónico/fisiología , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Regulación de la Expresión Génica/fisiología , Humanos , Concentración de Iones de Hidrógeno , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Dominio Poro en Tándem/genética
4.
J Physiol ; 599(2): 593-608, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33219695

RESUMEN

KEY POINTS: Kir7.1 K+ channel expressed in retinal pigment epithelium is mutated in inherited retinal degeneration diseases. We study Kir7.1 in heterologous expression to test the hypothesis that pathological R162 mutation to neutral amino acids results in loss of a crucial site that binds PI(4,5)P2 . Although R162W mutation inactivates Kir7.1, changes to smaller volume (e.g. Gln) amino acids are tolerated or even enhance function (Ala or Cys). Chemical modification of Kir7.1-R162C confirms that large residues of the size of Trp are incompatible with normal channel function even if positively charged. In addition to R162, K164 (and possibly K159) forms a binding site for the phosphoinositide and is essential for channel activity. R162 substitution with a large, neutral side chain like Trp exerts a dominant negative effect on Kir7.1 activity such that less than one fifth of the full activity is expected in a cell expressing the same amount of mutant and wild-type channels. ABSTRACT: Mutations in the Kir7.1 K+ channel, highly expressed in retinal pigment epithelium, have been linked to inherited retinal degeneration diseases. Examples are mutations changing Arg 162 to Trp in snowflake vitreoretinal degeneration (SVD) and Gln in retinitis pigmentosa. R162 is believed to be part of a site that binds PI(4,5)P2 and stabilises the open state. We have tested the hypothesis that R162 mutation to neutral amino acids will result in the loss of this crucial interaction to the detriment of channel function. Our findings indicate that although R612W mutation inactivates Kir7.1, changes to smaller volume (e.g. Gln) amino acids are tolerated or even enhance function (Ala or Cys). Cys chemical modification of Kir7.1-R162C confirms that large residues of the size of Trp are incompatible with normal channel function even if positively charged. Experiments titrating the levels of plasma membrane PI(4,5)P2 with voltage-dependent phosphatase DrVSP reveal that, in addition to R162, K164 (and possibly K159) forms a binding site for the phosphoinositide and ensures channel activity. Finally, the use of a concatemeric approach shows that substitution of R162 with a large, neutral side chain mimicking a Trp residue exerts a dominant negative effect on Kir7.1 activity such that less than one fifth of the full activity is expected in heterozygous cells carrying the SVD mutation. Our results suggest that if mutations in the human KCNJ13 gene resulting in the neutralisation of R162 and Kir7.1 malfunction led to retinal degeneration diseases, their severity might depend on the nature of the side chain of the replacing amino acid.


Asunto(s)
Degeneración Retiniana , Membrana Celular , Humanos , Mutación , Fosfatidilinositoles , Degeneración Retiniana/genética , Epitelio Pigmentado de la Retina
5.
Int J Mol Sci ; 21(2)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947679

RESUMEN

Two-pore domain potassium (K2P) channels maintain the cell's background conductance by stabilizing the resting membrane potential. They assemble as dimers possessing four transmembrane helices in each subunit. K2P channels were crystallized in "up" and "down" states. The movements of the pore-lining transmembrane TM4 helix produce the aperture or closure of side fenestrations that connect the lipid membrane with the central cavity. When the TM4 helix is in the up-state, the fenestrations are closed, while they are open in the down-state. It is thought that the fenestration states are related to the activity of K2P channels and the opening of the channels preferentially occurs from the up-state. TASK-2, a member of the TALK subfamily of K2P channels, is opened by intracellular alkalization leading the deprotonation of the K245 residue at the end of the TM4 helix. This charge neutralization of K245 could be sensitive or coupled to the fenestration state. Here, we describe the relationship between the states of the intramembrane fenestrations and K245 residue in TASK-2 channel. By using molecular modeling and simulations, we show that the protonated state of K245 (K245+) favors the open fenestration state and, symmetrically, that the open fenestration state favors the protonated state of the lysine residue. We show that the channel can be completely blocked by Prozac, which is known to induce fenestration opening in TREK-2. K245 protonation and fenestration aperture have an additive effect on the conductance of the channel. The opening of the fenestrations with K245+ increases the entrance of lipids into the selectivity filter, blocking the channel. At the same time, the protonation of K245 introduces electrostatic potential energy barriers to ion entrance. We computed the free energy profiles of ion penetration into the channel in different fenestration and K245 protonation states, to show that the effects of the two transformations are summed up, leading to maximum channel blocking. Estimated rates of ion transport are in qualitative agreement with experimental results and support the hypothesis that the most important barrier for ion transport under K245+ and open fenestration conditions is the entrance of the ions into the channel.


Asunto(s)
Concentración de Iones de Hidrógeno , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Células HEK293 , Humanos , Activación del Canal Iónico , Iones/química , Iones/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
6.
Biochem Biophys Res Commun ; 514(3): 574-579, 2019 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-31056263

RESUMEN

Kir7.1 is an inwardly rectifying K+ channel present in epithelia where it shares membrane localization with the Na+/K+-pump. In the present communication we report the presence of a novel splice variant of Kir7.1 in mouse tissues including kidney, lung, choroid plexus and retinal pigment epithelium (RPE). The variant named mKir7.1-SV2 lacks most of the C-terminus domain but is predicted to have the two transmembrane domains and permeation pathway unaffected. Similarly truncated predicted proteins, Kir7.1-R166X and Kir7.1-Q219X, would arise from mutations associated with Leber Congenital Amaurosis, a rare recessive hereditary retinal disease that results in vision loss at early age. We found that mKir7.1-SV2 and the pathological variants do not produce any channel activity when expressed alone in HEK-293 cells due to their scarce presence in the plasma membrane. Simultaneous expression with the full length Kir7.1 however leads to a reduction in activity of the wild-type channel that might be due to partial proteasome degradation of WT-mutant channel heteromers.


Asunto(s)
Amaurosis Congénita de Leber/genética , Mutación/genética , Especificidad de Órganos , Canales de Potasio de Rectificación Interna/genética , Empalme del ARN/genética , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Proteínas Mutantes/metabolismo , Especificidad de Órganos/efectos de los fármacos , Péptidos/genética , Potasio/metabolismo , Inhibidores de Proteasoma/farmacología , Empalme del ARN/efectos de los fármacos
7.
Exp Eye Res ; 186: 107723, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31319081

RESUMEN

Inwardly rectifying K+ channel Kir7.1 is expressed in epithelia where it shares membrane localisation with the Na+/K+-pump. The ciliary body epithelium (CBE) of the eye is a determinant of intraocular pressure (IOP) through NaCl-driven fluid secretion of aqueous humour. In the present study we explored the presence Kir7.1 in this epithelium in the mouse and its possible functional role in the generation of IOP. Use heterozygous animals for total Kir7.1 knockout expressing ß-galactosidase under the control of Kir7.1 promoter, identified the expression of Kir7.1 in non-pigmented epithelial cells of CBE. Using conditional, floxed knockout Kir7.1 mice as negative controls, we found Kir7.1 at the basolateral membrane of the same CBE cell layer. This was confirmed using a knockin mouse expressing the Kir7.1 protein tagged with a haemagglutinin epitope. Measurements using the conditional knockout mouse show only a minor effect of Kir7.1 inactivation on steady-state IOP. Transient increases in IOP in response to general anaesthetics, or to water injection, are absent or markedly curtailed in Kir7.1-deficient mice. These results suggest a role for Kir7.1 in IOP regulation through a possible modulation of aqueous humour production by the CBE non-pigmented epithelial cells. The location of Kir7.1 in the CBE, together with the effect of its removal on dynamic changes in IOP, point to a possible role of the channel as a leak pathway preventing cellular overload of K+ during the secretion process. Kir7.1 could be used as a potential therapeutic target in pathological conditions leading to elevated intraocular pressure.


Asunto(s)
Cuerpo Ciliar/metabolismo , Células Epiteliales/metabolismo , Presión Intraocular/fisiología , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
8.
Int J Mol Sci ; 20(9)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067753

RESUMEN

TASK-3 potassium (K+) channels are highly expressed in the central nervous system, regulating the membrane potential of excitable cells. TASK-3 is involved in neurotransmitter action and has been identified as an oncogenic K+ channel. For this reason, the understanding of the action mechanism of pharmacological modulators of these channels is essential to obtain new therapeutic strategies. In this study we describe the binding mode of the potent antagonist PK-THPP into the TASK-3 channel. PK-THPP blocks TASK-1, the closest relative channel of TASK-3, with almost nine-times less potency. Our results confirm that the binding is influenced by the fenestrations state of TASK-3 channels and occurs when they are open. The binding is mainly governed by hydrophobic contacts between the blocker and the residues of the binding site. These interactions occur not only for PK-THPP, but also for the antagonist series based on 5,6,7,8 tetrahydropyrido[4,3-d]pyrimidine scaffold (THPP series). However, the marked difference in the potency of THPP series compounds such as 20b, 21, 22 and 23 (PK-THPP) respect to compounds such as 17b, inhibiting TASK-3 channels in the micromolar range is due to the presence of a hydrogen bond acceptor group that can establish interactions with the threonines of the selectivity filter.


Asunto(s)
Simulación del Acoplamiento Molecular , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/química , Piridinas/farmacología , Pirimidinas/farmacología , Animales , Sitios de Unión , Humanos , Bloqueadores de los Canales de Potasio/química , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Unión Proteica , Piridinas/química , Pirimidinas/química , Xenopus
9.
J Physiol ; 596(3): 393-407, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29143340

RESUMEN

KEY POINTS: K+ channels are important in intestinal epithelium as they ensure the ionic homeostasis and electrical potential of epithelial cells during anion and fluid secretion. Intestinal epithelium cAMP-activated anion secretion depends on the activity of the (also cAMP dependent) KCNQ1-KCNE3 K+ channel, but the secretory process survives after genetic inactivation of the K+ channel in the mouse. Here we use double mutant mice to investigate which alternative K+ channels come into action to compensate for the absence of KCNQ1-KCNE3 K+ channels. Our data establish that whilst Ca2+ -activated KCa 3.1 channels are not involved, K2P two-pore domain TASK-2 K+ channels are major players providing an alternative conductance to sustain the intestinal secretory process. Work with double mutant mice lacking both TASK-2 and KCNQ1-KCNE3 channels nevertheless points to yet-unidentified K+ channels that contribute to the robustness of the cAMP-activated anion secretion process. ABSTRACT: Anion and fluid secretion across the intestinal epithelium, a process altered in cystic fibrosis and secretory diarrhoea, is mediated by cAMP-activated CFTR Cl- channels and requires the simultaneous activity of basolateral K+ channels to maintain cellular ionic homeostasis and membrane potential. This function is fulfilled by the cAMP-activated K+ channel formed by the association of pore-forming KCNQ1 with its obligatory KCNE3 ß-subunit. Studies using mice show sizeable cAMP-activated intestinal anion secretion in the absence of either KCNQ1 or KCNE3 suggesting that an alternative K+ conductance must compensate for the loss of KCNQ1-KCNE3 activity. We used double mutant mouse and pharmacological approaches to identify such a conductance. Ca2+ -dependent anion secretion can also be supported by Ca2+ -dependent KCa 3.1 channels after independent CFTR activation, but cAMP-dependent anion secretion is not further decreased in the combined absence of KCa 3.1 and KCNQ1-KCNE3 K+ channel activity. We show that the K2P K+ channel TASK-2 is expressed in the epithelium of the small and large intestine. Tetrapentylammonium, a TASK-2 inhibitor, abolishes anion secretory current remaining in the absence of KCNQ1-KCNE3 activity. A double mutant mouse lacking both KCNQ1-KCNE3 and TASK-2 showed a much reduced cAMP-mediated anion secretion compared to that observed in the single KCNQ1-KCNE3 deficient mouse. We conclude that KCNQ1-KCNE3 and TASK-2 play major roles in the intestinal anion and fluid secretory phenotype. The persistence of an, admittedly reduced, secretory activity in the absence of these two conductances suggests that further additional K+ channel(s) as yet unidentified contribute to the robustness of the intestinal anion secretory process.


Asunto(s)
Cloruros/metabolismo , Intestinos/fisiología , Canal de Potasio KCNQ1/fisiología , Mutación , Canales de Potasio de Dominio Poro en Tándem/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Animales , Calcio/metabolismo , AMP Cíclico/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
10.
Mol Pharm ; 14(7): 2197-2208, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28494157

RESUMEN

A1899 is a potent and selective inhibitor of the two-pore domain potassium (K2P) channel TASK-1. It was previously reported that A1899 acts as an open-channel blocker and binds to residues of the P1 and P2 regions, the M2 and M4 segments, and the halothane response element. The recently described crystal structures of K2P channels together with the newly identified side fenestrations indicate that residues relevant for TASK-1 inhibition are not purely facing the central cavity as initially proposed. Accordingly, the TASK-1 binding site and the mechanism of inhibition might need a re-evaluation. We have used TASK-1 homology models based on recently crystallized K2P channels and molecular dynamics simulation to demonstrate that the highly potent TASK-1 blocker A1899 requires binding to residues located in the side fenestrations. Unexpectedly, most of the previously described residues that interfere with TASK-1 blockade by A1899 project their side chains toward the fenestration lumina, underlining the relevance of these structures for drug binding in K2P channels. Despite its hydrophobicity, A1899 does not seem to use the fenestrations to gain access to the central cavity from the lipid bilayer. In contrast, binding of A1899 to residues of the side fenestrations might provide a physical "anchor", reflecting an energetically favorable binding mode that after pore occlusion stabilizes the closed state of the channels.


Asunto(s)
Benzamidas/farmacología , Bencenoacetamidas/farmacología , Simulación de Dinámica Molecular , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Animales , Benzamidas/química , Bencenoacetamidas/química , Sitios de Unión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/metabolismo
11.
J Neurosci ; 35(10): 4168-78, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25762664

RESUMEN

Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K(+) or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.


Asunto(s)
Astrocitos/efectos de los fármacos , Canales Iónicos/fisiología , Ácido Láctico/metabolismo , Potasio/farmacología , Animales , Animales Recién Nacidos , Bario/farmacología , Cadmio/farmacología , Células Cultivadas , Corteza Cerebral/citología , Femenino , Fluoresceínas/metabolismo , Glucógeno/metabolismo , Humanos , Técnicas In Vitro , Canales Iónicos/efectos de los fármacos , Iones/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ácido Pirúvico/farmacología , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Transfección
12.
Mol Pharmacol ; 90(3): 309-17, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27268784

RESUMEN

K2P K(+) channels with two pore domains in tandem associate as dimers to produce so-called background conductances that are regulated by a variety of stimuli. Whereas gating in K2P channels has been poorly understood, recent developments have provided important clues regarding the gating mechanism for this family of proteins. Two modes of gating present in other K(+) channels have been considered. The first is the so-called activation gating that occurs by bundle crossing and the splaying apart of pore-lining helices commanding ion passage. The second mode involves a change in conformation at the selectivity filter (SF), which impedes ion flow at this narrow portion of the conduction pathway and accounts for extracellular pH modulation of several K2P channels. Although some evidence supports the existence of an activation gate in K2P channels, recent results suggest that perhaps all stimuli, even those sensed at a distant location in the protein, are also mediated by SF gating. Recently resolved crystal structures of K2P channels in conductive and nonconductive conformations revealed that the nonconductive state is reached by blockade by a lipid acyl chain that gains access to the channel cavity through intramembrane fenestrations. Here we discuss whether this novel type of gating, proposed so far only for membrane tension gating, might mediate gating in response to other stimuli or whether SF gating is the only type of opening/closing mechanism present in K2P channels.


Asunto(s)
Activación del Canal Iónico , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Humanos , Mecanotransducción Celular , Modelos Biológicos , Modelos Moleculares
13.
PLoS Pathog ; 10(9): e1004402, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25255455

RESUMEN

Parasitic sea lice represent a major sanitary threat to marine salmonid aquaculture, an industry accounting for 7% of world fish production. Caligus rogercresseyi is the principal sea louse species infesting farmed salmon and trout in the southern hemisphere. Most effective control of Caligus has been obtained with macrocyclic lactones (MLs) ivermectin and emamectin. These drugs target glutamate-gated chloride channels (GluCl) and act as irreversible non-competitive agonists causing neuronal inhibition, paralysis and death of the parasite. Here we report the cloning of a full-length CrGluClα receptor from Caligus rogercresseyi. Expression in Xenopus oocytes and electrophysiological assays show that CrGluClα is activated by glutamate and mediates chloride currents blocked by the ligand-gated anion channel inhibitor picrotoxin. Both ivermectin and emamectin activate CrGluClα in the absence of glutamate. The effects are irreversible and occur with an EC(50) value of around 200 nM, being cooperative (n(H) = 2) for ivermectin but not for emamectin. Using the three-dimensional structure of a GluClα from Caenorabditis elegans, the only available for any eukaryotic ligand-gated anion channel, we have constructed a homology model for CrGluClα. Docking and molecular dynamics calculations reveal the way in which ivermectin and emamectin interact with CrGluClα. Both drugs intercalate between transmembrane domains M1 and M3 of neighbouring subunits of a pentameric structure. The structure displays three H-bonds involved in this interaction, but despite similarity in structure only of two these are conserved from the C. elegans crystal binding site. Our data strongly suggest that CrGluClα is an important target for avermectins used in the treatment of sea louse infestation in farmed salmonids and open the way for ascertaining a possible mechanism of increasing resistance to MLs in aquaculture industry. Molecular modeling could help in the design of new, more efficient drugs whilst functional expression of the receptor allows a first stage of testing of their efficacy.


Asunto(s)
Canales de Cloruro/metabolismo , Copépodos/fisiología , Enfermedades de los Peces/metabolismo , Peces/parasitología , Ácido Glutámico/farmacología , Ivermectina/análogos & derivados , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Canales de Cloruro/química , Canales de Cloruro/genética , Clonación Molecular , Copépodos/efectos de los fármacos , Electrofisiología , Femenino , Enfermedades de los Peces/genética , Enfermedades de los Peces/parasitología , Peces/crecimiento & desarrollo , Peces/metabolismo , Insecticidas/farmacología , Ivermectina/farmacología , Modelos Moleculares , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Oocitos/citología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Homología de Secuencia de Aminoácido , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo
14.
Pflugers Arch ; 467(5): 1043-53, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25315981

RESUMEN

TASK-2 (K2P5) was one of the earliest members of the K2P two-pore, four transmembrane domain K(+) channels to be identified. TASK-2 gating is controlled by changes in both extra- and intracellular pH through separate sensors: arginine 224 and lysine 245, located at the extra- and intracellular ends of transmembrane domain 4. TASK-2 is inhibited by a direct effect of CO2 and is regulated by and interacts with G protein subunits. TASK-2 takes part in regulatory adjustments and is a mediator in the chemoreception process in neurons of the retrotrapezoid nucleus where its pHi sensitivity could be important in regulating excitability and therefore signalling of the O2/CO2 status. Extracellular pH increases brought about by HCO3 (-) efflux from proximal tubule epithelial cells have been proposed to couple to TASK-2 activation to maintain electrochemical gradients favourable to HCO3 (-) reabsorption. We demonstrate that, as suspected previously, TASK-2 is expressed at the basolateral membrane of the same proximal tubule cells that express apical membrane Na(+)-H(+)-exchanger NHE-3 and basolateral membrane Na(+)-HCO3 (-) cotransporter NBCe1-A, the main components of the HCO3 (-) transport machinery. We also discuss critically the mechanism by which TASK-2 is modulated and impacts the process of HCO3 (-) reclaim by the proximal tubule epithelium, concluding that more than a mere shift in extracellular pH is probably involved.


Asunto(s)
Membrana Celular/metabolismo , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/fisiología , Túbulos Renales Proximales/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Bicarbonatos/metabolismo , Humanos , Túbulos Renales Proximales/patología
15.
Pflugers Arch ; 467(5): 1091-104, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25369776

RESUMEN

Two-pore domain potassium (K2P) channels are membrane proteins widely identified in mammals, plants, and other organisms. A functional channel is a dimer with each subunit comprising two pore-forming loops and four transmembrane domains. The genome of the model plant Arabidopsis thaliana harbors five genes coding for K2P channels. Homologs of Arabidopsis K2P channels have been found in all higher plants sequenced so far. As with the K2P channels in mammals, plant K2P channels are targets of external and internal stimuli, which fine-tune the electrical properties of the membrane for specialized transport and/or signaling tasks. Plant K2P channels are modulated by signaling molecules such as intracellular H(+) and calcium and physical factors like temperature and pressure. In this review, we ask the following: What are the similarities and differences between K2P channels in plants and animals in terms of their physiology? What is the nature of the last common ancestor (LCA) of these two groups of proteins? To answer these questions, we present physiological, structural, and phylogenetic evidence that discards the hypothesis proposing that the duplication and fusion that gave rise to the K2P channels occurred in a prokaryote LCA. Conversely, we argue that the K2P LCA was most likely a eukaryote organism. Consideration of plant and animal K2P channels in the same study is novel and likely to stimulate further exchange of ideas between students of these fields.


Asunto(s)
Concentración de Iones de Hidrógeno , Filogenia , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Potasio/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Plantas
16.
J Biol Chem ; 288(8): 5984-91, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23319597

RESUMEN

Proton-gated TASK-3 K(+) channel belongs to the K(2P) family of proteins that underlie the K(+) leak setting the membrane potential in all cells. TASK-3 is under cooperative gating control by extracellular [H(+)]. Use of recently solved K(2P) structures allows us to explore the molecular mechanism of TASK-3 cooperative pH gating. Tunnel-like side portals define an extracellular ion pathway to the selectivity filter. We use a combination of molecular modeling and functional assays to show that pH-sensing histidine residues and K(+) ions mutually interact electrostatically in the confines of the extracellular ion pathway. K(+) ions modulate the pK(a) of sensing histidine side chains whose charge states in turn determine the open/closed transition of the channel pore. Cooperativity, and therefore steep dependence of TASK-3 K(+) channel activity on extracellular pH, is dependent on an effect of the permeant ion on the channel pH(o) sensors.


Asunto(s)
Activación del Canal Iónico , Canales de Potasio de Dominio Poro en Tándem/química , Animales , Sitios de Unión , Relación Dosis-Respuesta a Droga , Electrofisiología/métodos , Cobayas , Humanos , Concentración de Iones de Hidrógeno , Iones , Potenciales de la Membrana , Ratones , Modelos Moleculares , Conformación Molecular , Técnicas de Placa-Clamp , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Probabilidad , Protones , Electricidad Estática
17.
Pflugers Arch ; 466(7): 1317-27, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24081451

RESUMEN

TASK-2 is a K2P K(+) channel considered as a candidate to mediate CO2 sensing in central chemosensory neurons in mouse. Neuroepithelial cells in zebrafish gills sense CO2 levels through an unidentified K2P K(+) channel. We have now obtained zfTASK-2 from zebrafish gill tissue that is 49 % identical to mTASK-2. Like its mouse equivalent, it is gated both by extra- and intracellular pH being activated by alkalinization and inhibited by acidification. The pHi dependence of zfTASK-2 is similar to that of mTASK-2, with pK 1/2 values of 7.9 and 8.0, respectively, but pHo dependence occurs with a pK 1/2 of 8.8 (8.0 for mTASK-2) in line with the relatively alkaline plasma pH found in fish. Increasing CO2 led to a rapid, concentration-dependent (IC50 ~1.5 % CO2) inhibition of mouse and zfTASK-2 that could be resolved into an inhibition by intracellular acidification and a CO2 effect independent of pHi change. Indeed a CO2 effect persisted despite using strongly buffered intracellular solutions abolishing any change in pHi, was present in TASK-2-K245A mutant insensitive to pHi, and also under carbonic anhydrase inhibition. The mechanism by which TASK-2 senses CO2 is unknown but requires the presence of the 245-273 stretch of amino acids in the C terminus that comprises numerous basic amino acids and is important in TASK-2 G protein subunit binding and regulation of the channel. The described CO2 effect might be of importance in the eventual roles played by TASK-2 in chemoreception in mouse and zebrafish.


Asunto(s)
Dióxido de Carbono/metabolismo , Neuronas/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Proteínas de Pez Cebra/metabolismo , Potenciales de Acción , Secuencia de Aminoácidos , Animales , Dióxido de Carbono/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Branquias/citología , Branquias/metabolismo , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Ratones , Datos de Secuencia Molecular , Mutación , Neuronas/efectos de los fármacos , Neuronas/fisiología , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/genética , Estructura Terciaria de Proteína , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
18.
Pflugers Arch ; 466(9): 1713-23, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24271511

RESUMEN

ClC-Kb, a member of the ClC family of Cl(-) channels/transporters, plays a major role in the absorption of NaCl in the distal nephron. CLCNKB mutations cause Bartter syndrome type 3, a hereditary renal salt-wasting tubulopathy. Here, we investigate the functional consequences of a Val to Met substitution at position 170 (V170M, α helix F), which was detected in eight patients displaying a mild phenotype. Conductance and surface expression were reduced by ~40-50 %. The regulation of channel activity by external H(+) and Ca(2+) is a characteristic property of ClC-Kb. Inhibition by external H(+) was dramatically altered, with pKH shifting from 7.6 to 6.0. Stimulation by external Ca(2+) on the other hand was no longer detectable at pH 7.4, but was still present at acidic pH values. Functionally, these regulatory modifications partly counterbalance the reduced surface expression by rendering V170M hyperactive. Pathogenic Met170 seems to interact with another methionine on α helix H (Met227) since diverse mutations at this site partly removed pH sensitivity alterations of V170M ClC-Kb. Exploring other disease-associated mutations, we found that a Pro to Leu substitution at position 124 (α helix D, Simon et al., Nat Genet 1997, 17:171-178) had functional consequences similar to those of V170M. In conclusion, we report here for the first time that ClC-Kb disease-causing mutations located around the selectivity filter can result in both reduced surface expression and hyperactivity in heterologous expression systems. This interplay must be considered when analyzing the mild phenotype of patients with type 3 Bartter syndrome.


Asunto(s)
Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Mutación Puntual , Adulto , Calcio/metabolismo , Femenino , Humanos , Concentración de Iones de Hidrógeno , Persona de Mediana Edad , Técnicas de Placa-Clamp , Fenotipo , Adulto Joven
20.
Hum Mutat ; 34(9): 1269-78, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23703872

RESUMEN

Mutations in the CLCNKB gene encoding the ClC-Kb Cl(-) channel cause Bartter syndrome, which is a salt-losing renal tubulopathy. Here, we investigate the functional consequences of seven mutations. When expressed in Xenopus laevis oocytes, four mutants carried no current (c.736G>C, p.Gly246Arg; c.1271G>A, p.Gly424Glu; c.1313G>A, p.Arg438His; c.1316T>C, p.Leu439Pro), whereas others displayed a 30%-60% reduction in conductance as compared with wild-type ClC-Kb (c.242T>C, p.Leu81Pro; c.274C>T, p.Arg92Trp; c.1052G>C, p.Arg351Pro). Anion selectivity and sensitivity to external Ca(2+) and H(+), typical of the ClC-Kb channel, were not modified in the partially active mutants. In oocytes, we found that all the mutations reduced surface expression with a profile similar to that observed for currents. In HEK293 cells, the currents in the mutants had similar profiles to those obtained in oocytes, except for p.Leu81Pro, which produced no current. Furthermore, p.Arg92Trp and p.Arg351Pro mutations did not modify the unit-conductance of closely related ClC-K1. Western blot analysis in HEK293 cells showed that ClC-Kb protein abundance was lower for the nonconducting mutants but similar to wild-type for other mutants. Overall, two classes of mutants can be distinguished: nonconducting mutants associated with low total protein expression, and partially conducting mutants with unaltered channel properties and ClC-Kb protein abundance.


Asunto(s)
Proteínas de Transporte de Anión/fisiología , Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Adolescente , Adulto , Animales , Proteínas de Transporte de Anión/metabolismo , Femenino , Células HEK293 , Humanos , Lactante , Masculino , Oocitos/metabolismo , Mutación Puntual , Xenopus laevis/genética , Xenopus laevis/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA