Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 50(6): 1401-1411.e4, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31076358

RESUMEN

Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis.


Asunto(s)
Coagulación Sanguínea , Inflamasomas/metabolismo , Piroptosis , Trombosis/etiología , Trombosis/metabolismo , Animales , Infecciones Bacterianas/complicaciones , Infecciones Bacterianas/microbiología , Biomarcadores , Caspasas/metabolismo , Micropartículas Derivadas de Células/inmunología , Micropartículas Derivadas de Células/metabolismo , Modelos Animales de Enfermedad , Humanos , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Monocitos/inmunología , Monocitos/metabolismo , Transducción de Señal , Tromboplastina/metabolismo , Trombosis/sangre , Trombosis/mortalidad
2.
Haematologica ; 109(4): 1206-1219, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37767568

RESUMEN

Multiple myeloma (MM) remains incurable due to drug resistance. Ribosomal protein S3 (RPS3) has been identified as a non-Rel subunit of NF-κB. However, the detailed biological roles of RPS3 remain unclear. Here, we report for the first time that RPS3 is necessary for MM survival and drug resistance. RPS3 was highly expressed in MM, and knockout of RPS3 in MM inhibited cell growth and induced cell apoptosis both in vitro and in vivo. Overexpression of RPS3 mediated the proteasome inhibitor resistance of MM and shortened the survival of MM tumor-bearing animals. Moreover, our present study found an interaction between RPS3 and the thyroid hormone receptor interactor 13 (TRIP13), an oncogene related to MM tumorigenesis and drug resistance. We demonstrated that the phosphorylation of RPS3 was mediated by TRIP13 via PKCδ, which played an important role in activating the canonical NF-κB signaling and inducing cell survival and drug resistance in MM. Notably, the inhibition of NF-κB signaling by the small-molecule inhibitor targeting TRIP13, DCZ0415, was capable of triggering synergistic cytotoxicity when combined with bortezomib in drug-resistant MM. This study identifies RPS3 as a novel biomarker and therapeutic target in MM.


Asunto(s)
Mieloma Múltiple , FN-kappa B , Animales , FN-kappa B/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Proteínas Ribosómicas/genética , Bortezomib/farmacología , Bortezomib/uso terapéutico , Resistencia a Medicamentos , Línea Celular Tumoral
3.
Arch Biochem Biophys ; 754: 109929, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367794

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Although treatment options have improved, a large proportion of patients show low survival rates, highlighting an urgent need for novel therapeutic strategies. The aim of this study was to investigate the efficacy of the new small-molecule compound dihydrocelastrol (DHCE), acquired through the structural modification of celastrol (CE), in the treatment of DLBCL. DHCE showed potent anti-lymphoma efficacy and synergistic effects with doxorubicin. DHCE triggered DLBCL cell apoptosis and G0/G1-phase blockade, thereby hindering angiogenesis. DHCE inhibited B-cell receptor cascade signalling and Jun B and p65 nuclear translocation, thereby suppressing pro-tumourigenic signalling. Finally, DHCE exerted lower toxicity than CE, which showed severe hepatic, renal, and reproductive toxicity in vivo. Our findings support further investigation of the clinical efficacy of DHCE against DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , Triterpenos Pentacíclicos , Factor de Transcripción AP-1 , Humanos , Factor de Transcripción AP-1/metabolismo , Angiogénesis , Transducción de Señal , Apoptosis , Linfoma de Células B Grandes Difuso/metabolismo , Línea Celular Tumoral , Proliferación Celular
4.
Bioorg Med Chem Lett ; 98: 129590, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38092072

RESUMEN

Natural product cantharidin can inhibit multiple myeloma cell growth in vitro, while serious adverse effects limited its clinical application. Therefore, the structural modification of cantharidin is needed. Herein, inspired by the structural similarity of the aliphatic endocyclic moiety in cantharidin and TRIP13 inhibitor DCZ0415, we designed and synthesized DCZ5418 and its nineteen derivatives. The molecular docking study indicated that DCZ5418 had a similar binding mode to TRIP13 protein as DCZ0415 while with a stronger docking score. Moreover, the bioassay studies of the MM-cells viability inhibition, TRIP13 protein binding affinity and enzyme inhibiting activity showed that DCZ5418 had good anti-MM activity in vitro and definite interaction with TRIP13 protein. The acute toxicity test of DCZ5418 showed less toxicity in vivo than cantharidin. Furthermore, DCZ5418 showed good anti-MM effects in vivo with a lower dose administration than DCZ0415 (15 mg/kg vs 25 mg/kg) on the tumor xenograft models. Thus, we obtained a new TRIP13 inhibitor DCZ5418 with improved safety and good activity in vivo, which provides a new example of lead optimization by using the structural fragments of natural products.


Asunto(s)
Cantaridina , Mieloma Múltiple , Humanos , ATPasas Asociadas con Actividades Celulares Diversas/antagonistas & inhibidores , Cantaridina/farmacología , Cantaridina/uso terapéutico , Cantaridina/química , Proteínas de Ciclo Celular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología
5.
Artículo en Inglés | MEDLINE | ID: mdl-38804044

RESUMEN

Epigenetic modifications play an important role in cellular senescence, and enhancer of zeste homolog 2 (EZH2) is a key methyltransferase involved in epigenetic remodeling in multiple myeloma (MM) cells. We have previously demonstrated that GSK126, a specific EZH2 inhibitor, exhibits anti-MM therapeutic efficacy and safety in vivo and in vitro; however, its specific mechanism remains unclear. This study shows that GSK126 induces cellular senescence in MM, which is characterized by the accumulation of senescence-associated heterochromatin foci (SAHF) and p21, and increased senescence-associated ß galactosidase activity. Furthermore, EZH2 is inhibited in ribonucleotide reductase regulatory subunit M2 (RRM2) overexpression OCI-MY5 and RPMI-8226 cells. RRM2 overexpression inhibits the methyltransferase function of EZH2 and promotes its degradation through the ubiquitin-proteasome pathway, thereby inducing cellular senescence. In this senescence model, Lamin B1, a key component of the nuclear envelope and a marker of senescence, does not decrease but instead undergoes aberrant accumulation. Meanwhile, phosphorylation of extracellular signal-regulated protein kinase (ERK1/2) is significantly increased. The inhibition of ERK1/2 phosphorylation in turn partially restores Lamin B1 level and alleviates senescence. These findings suggest that EZH2 inhibition increases Lamin B1 level and induces senescence by promoting ERK1/2 phosphorylation. These data indicate that EZH2 plays an important role in MM cellular senescence and provide insights into the relationships among Lamin B1, p-ERK1/2, and cellular senescence.

6.
J Transl Med ; 21(1): 858, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012658

RESUMEN

BACKGROUND: Multiple myeloma (MM), an incurable disease owing to drug resistance, requires safe and effective therapies. Norcantharidin (NCTD), an active ingredient in traditional Chinese medicines, possesses activity against different cancers. However, its toxicity and narrow treatment window limit its clinical application. In this study, we synthesized a series of derivatives of NCTD to address this. Among these compounds, DCZ5417 demonstrated the greatest anti-MM effect and fewest side effects. Its anti-myeloma effects and  the mechanism were further tested. METHODS: Molecular docking, pull-down, surface plasmon resonance-binding, cellular thermal shift, and ATPase assays were used to study the targets of DCZ5417. Bioinformatic, genetic, and pharmacological approaches were used to elucidate the mechanisms associated with DCZ5417 activity. RESULTS: We confirmed a highly potent interaction between DCZ5417 and TRIP13. DCZ5417 inhibited the ATPase activity of TRIP13, and its anti-MM activity was found to depend on TRIP13. A mechanistic study verified that DCZ5417 suppressed cell proliferation by targeting TRIP13, disturbing the TRIP13/YWHAE complex and inhibiting the ERK/MAPK signaling axis. DCZ5417 also showed a combined lethal effect with traditional anti-MM drugs. Furthermore, the tumor growth-inhibitory effect of DCZ5417 was demonstrated using in vivo tumor xenograft models. CONCLUSIONS: DCZ5417 suppresses MM progression in vitro, in vivo, and in primary cells from drug-resistant patients, affecting cell proliferation by targeting TRIP13, destroying the TRIP13/YWHAE complex, and inhibiting ERK/MAPK signaling. These results imply a new and effective therapeutic strategy for MM treatment.


Asunto(s)
Mieloma Múltiple , Humanos , Proteínas 14-3-3/metabolismo , Apoptosis , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Simulación del Acoplamiento Molecular , Mieloma Múltiple/metabolismo , Transducción de Señal , Animales
7.
Arch Biochem Biophys ; 747: 109771, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37776936

RESUMEN

Despite significant improvement in the prognosis of multiple myeloma (MM), the disease remains incurable; thus, more effective therapies are required. Ribonucleoside-diphosphate reductase subunit M2 (RRM2) is significantly associated with drug resistance, rapid relapse, and poor prognosis. Previously, we found that 4-hydroxysalicylanilide (osalmid), a specific inhibitor of RRM2, exhibits anti-MM activity in vitro, in vivo, and in human patients; however, the mechanism remains unclear. Osalmid inhibits the translocation of RRM2 to the nucleus and stimulates autophagosome synthesis but inhibits subsequent autophagosome-lysosome fusion. We confirm that RRM2 binds to receptor-interacting protein kinase 3 (RIPK3) and reduces RIPK3, inhibiting autophagosome-lysosome fusion. Interestingly, the combination of osalmid and bafilomycin A1 (an autophagy inhibitor) depletes RIPK3 and aggravates p62 and autophagosome accumulation, leading to autophagic cell death. Combination therapy demonstrates synergistic cytotoxicity both in vitro and in vivo. Therefore, we propose that combining osalmid and bafilomycin A1(BafA1) may have clinical benefits against MM.

8.
Acta Biochim Biophys Sin (Shanghai) ; 55(2): 215-224, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36815376

RESUMEN

Multiple myeloma (MM), the second most common haematological malignancy, is currently incurable because patients often develop multiple drug resistance and experience subsequent relapse of the disease. This study aims to identify a potential therapeutic agent that can counter bortezomib (BTZ) resistance in MM. DCZ0358, a novel alkaloid compound, is found to exert potent cytotoxic effects against BTZ-resistant MM cells in vivo and in vitro. The anti-myeloma activity of DCZ0358 is associated with inhibition of cell proliferation, promotion of cell apoptosis via caspase-mediated apoptotic pathways, and induction of G0/G1 phase arrest via downregulation of cyclin D1, CDK4, and CDK6. Further investigation of the molecular mechanism shows that DCZ0358 suppresses the JAK2/STAT3 signaling pathway. In conclusion, DCZ0358 can successfully counter BTZ resistance in MM cells. This study provides evidence that warrants future preclinical assessments of DCZ0358 as a therapeutic agent against BTZ resistance in MM.


Asunto(s)
Alcaloides , Antineoplásicos , Mieloma Múltiple , Humanos , Bortezomib/farmacología , Bortezomib/metabolismo , Bortezomib/uso terapéutico , Mieloma Múltiple/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Alcaloides/farmacología , Línea Celular Tumoral , Apoptosis , Proliferación Celular , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo
9.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1884-1891, 2023 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-38009004

RESUMEN

Multiple myeloma (MM) is characterized by excessive aggregation of B-cell-derived malignant plasma cells in the hematopoietic system of bone marrow. Previously, we synthesized an innovative molecule named dihydrocelastrol (DHCE) from celastrol, a triterpene purified from medicinal plant Tripterygium wilfordii. Herein, we explore the therapeutic properties and latent signal transduction mechanism of DHCE action in bortezomib (BTZ)-resistant (BTZ-R) MM cells. In this study, we first report that DHCE shows antitumor activities in vitro and in vivo and exerts stronger inhibitory effects than celastrol on BTZ-R cells. We find that DHCE inhibits BTZ-R cell viability by promoting apoptosis via extrinsic and intrinsic pathways and suppresses BTZ-R MM cell proliferation by inducing G0/G1 phase cell cycle arrest. In addition, inactivation of JAK2/STAT3 and PI3K/Akt pathways are involved in the DHCE-mediated antitumor effect. Simultaneously, DHCE acts synergistically with BTZ on BTZ-R cells. PSMB5, a molecular target of BTZ, is overexpressed in BTZ-R MM cells compared with BTZ-S MM cells and is demonstrated to be a target of STAT3. Moreover, DHCE downregulates PSMB5 overexpression in BTZ-R MM cells, which illustrates that DHCE overcomes BTZ resistance through increasing the sensitivity of BTZ in resistant MM via inhibiting STAT3-dependent PSMB5 regulation. Overall, our findings imply that DHCE may become a potential therapeutic option that warrants clinical evaluation for BTZ-R MM.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Bortezomib/farmacología , Bortezomib/metabolismo , Bortezomib/uso terapéutico , Mieloma Múltiple/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Resistencia a Antineoplásicos , Línea Celular Tumoral , Apoptosis , Proliferación Celular , Complejo de la Endopetidasa Proteasomal/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
10.
J Biomed Sci ; 29(1): 32, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35546402

RESUMEN

BACKGROUND: Aberrant DNA repair pathways contribute to malignant transformation or disease progression and the acquisition of drug resistance in multiple myeloma (MM); therefore, these pathways could be therapeutically exploited. Ribonucleotide reductase (RNR) is the rate-limiting enzyme for the biosynthesis of deoxyribonucleotides (dNTPs), which are essential for DNA replication and DNA damage repair. In this study, we explored the efficacy of the novel RNR inhibitor, 4-hydroxysalicylanilide (HDS), in myeloma cells and xenograft model. In addition, we assessed the clinical activity and safety of HDS in patients with MM. METHODS: We applied bioinformatic, genetic, and pharmacological approaches to demonstrate that HDS was an RNR inhibitor that directly bound to RNR subunit M2 (RRM2). The activity of HDS alone or in synergy with standard treatments was evaluated in vitro and in vivo. We also initiated a phase I clinical trial of single-agent HDS in MM patients (ClinicalTrials.gov: NCT03670173) to assess safety and efficacy. RESULTS: HDS inhibited the activity of RNR by directly targeting RRM2. HDS decreased the RNR-mediated dNTP synthesis and concomitantly inhibited DNA damage repair, resulting in the accumulation of endogenous unrepaired DNA double-strand breaks (DSBs), thus inhibiting MM cell proliferation and inducing apoptosis. Moreover, HDS overcame the protective effects of IL-6, IGF-1 and bone marrow stromal cells (BMSCs) on MM cells. HDS prolonged survival in a MM xenograft model and induced synergistic anti-myeloma activity in combination with melphalan and bortezomib. HDS also showed a favorable safety profile and demonstrated clinical activity against MM. CONCLUSIONS: Our study provides a rationale for the clinical evaluation of HDS as an anti-myeloma agent, either alone or in combination with standard treatments for MM. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03670173, Registered 12 September 2018.


Asunto(s)
Mieloma Múltiple , Ribonucleótido Reductasas , Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN , Replicación del ADN , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo
11.
Cancer Cell Int ; 21(1): 285, 2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34053438

RESUMEN

BACKGROUND: Multiple myeloma (MM) is a highly aggressive and incurable clonal plasma cell disease with a high rate of recurrence. Thus, the development of new therapies is urgently needed. DCZ0805, a novel compound synthesized from osalmide and pterostilbene, has few observed side effects. In the current study, we intend to investigate the therapeutic effects of DCZ0805 in MM cells and elucidate the molecular mechanism underlying its anti-myeloma activity. METHODS: We used the Cell Counting Kit-8 assay, immunofluorescence staining, cell cycle assessment, apoptosis assay, western blot analysis, dual-luciferase reporter assay and a tumor xenograft mouse model to investigate the effect of DCZ0805 treatment both in vivo and in vitro. RESULTS: The results showed that DCZ0805 treatment arrested the cell at the G0/G1 phase and suppressed MM cells survival by inducing apoptosis via extrinsic and intrinsic pathways. DCZ0805 suppressed the NF-κB signaling pathway activation, which may have contributed to the inhibition of cell proliferation. DCZ0805 treatment remarkably reduced the tumor burden in the immunocompromised xenograft mouse model, with no obvious toxicity observed. CONCLUSION: The findings of this study indicate that DCZ0805 can serve as a novel therapeutic agent for the treatment of MM.

12.
Acta Biochim Biophys Sin (Shanghai) ; 53(5): 575-583, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33821934

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma, characterized by high heterogeneity. The poor outcome of a portion of patients who suffer relapsing or resistant to conventional treatment impels the development of novel agents for DLBCL. DCZ0825 is a novel compound derived from pterostilbene and osalmide, whose antitumor activities have drawn our attention. In this study, we found that DCZ0825 exhibited high cytotoxicity toward DLBCL cell lines in a dose- and time-dependent manner, as revealed by cell counting kit-8 assay. Flow cytometry and western blot analysis results showed that DCZ0825 also promoted cell apoptosis via both extrinsic and intrinsic apoptosis pathways mediated by caspase. In addition, DCZ0825 induced cell cycle arrest in the G2/M phase by downregulating Cdc25C, CDK1, and Cyclin B1, thus interfering with cell proliferation. Further investigation showed the involvement of the phosphatidylinositol 3-kinase (PI3K)‒AKT‒mTOR/JNK pathway in the efficacy of DCZ0825 against DLBCL. Remarkably, DCZ0825 also exerted notable cytotoxic effects in vivo as well, with low toxicity to important internal organs such as the liver and kidney. Our results suggest that DCZ0825 may have the potential to become a novel anti-DLBCL agent or to replenish the conventional therapeutic scheme of DLBCL.


Asunto(s)
Antineoplásicos/farmacología , Linfoma de Células B Grandes Difuso , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología
13.
Acta Biochim Biophys Sin (Shanghai) ; 53(11): 1505-1515, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34558606

RESUMEN

Multiple myeloma (MM) is an incurable disease characterized by malignant plasma cell clonal expansion in the bone marrow; therefore, inhibiting the proliferation of plasma cells is an important approach to overcome the progression of MM. Quercetin (Que) is a promising flavonoid with broad-spectrum anti-tumor activity against various cancers, including MM; however, the underlying mechanism is not yet understood. The present study aimed to reveal the gene expression profile of Que-treated MM cells and clarify its potential mechanism. The 30% inhibitory concentration (IC30) of Que against MM cells was calculated, and the proliferation rate was significantly reduced after Que treatment. Next, 495 dysregulated genes were identified via RNA sequencing in Que-treated MM cells. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses indicated that the dysregulated genes were enriched in various apoptosis-related GO terms and amino acid metabolism-related pathways. qPCR validation showed that protein tyrosine phosphatase receptor-type R (PTPRR) had the highest verified log2 FC (abs) among the top 15 dysregulated genes. Overexpression of PTPRR increased the sensitivity of MM cells against Que, significantly inhibiting their proliferation and colony formation ability; silencing of PTPRR showed the opposite results. Furthermore, bioinformatics analyses and PPI network construction of PTPRR indicated that dephosphorylation of ERK might be the potential pathway for the PTPRR-induced inhibition of MM cell proliferation. In summary, our study identified the gene expression profile in Que-treated MM cells and demonstrated that the upregulation of PTPRR was one of the important mechanisms for the Que-induced inhibition of MM cell proliferation.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Proliferación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/genética , Células Plasmáticas/efectos de los fármacos , Quercetina/farmacología , Proteínas Tirosina Fosfatasas Clase 7 Similares a Receptores/genética , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Células Plasmáticas/metabolismo , Células Plasmáticas/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Tirosina Fosfatasas Clase 7 Similares a Receptores/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas Clase 7 Similares a Receptores/metabolismo , Transducción de Señal
14.
Acta Biochim Biophys Sin (Shanghai) ; 53(6): 775-783, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33891090

RESUMEN

Resveratrol, a natural compound extracted from the skins of grapes, berries, or other fruits, has been shown to have anti-tumor effects against multiple myeloma (MM) via promoting apoptosis and inhibiting cell viability. In addition to apoptosis, autophagy also plays a significant role in anti-tumor effects. However, whether autophagy is involved in anti-MM activity of resveratrol remains unclear. In this study, human MM cell lines U266, RPMI-8226, and NCI-H929 were treated with resveratrol. Cell Counting Kit-8 assay and colony formation assay were used to measure cell viability. Western blot analysis was used to detect apoptosis- and autophagy-associated proteins. 3-Methyladenine (3-MA) was applied to inhibit autophagy. Results showed that resveratrol inhibited cell viability and colony formation via promoting apoptosis and autophagy in MM cell lines U266, RPMI-8226, and NCI-H929. Resveratrol promoted apoptosis-related proteins, Caspase-3 activating poly-ADP-ribose polymerase and Caspase-3 cleavage, and decreased the protein level of Survivin in a dose-dependent manner. Additionally, resveratrol upregulated the levels of LC3 and Beclin1 in a dose-dependent way, indicating that autophagy might be implicated in anti-MM effect of resveratrol. Furthermore, 3-MA relieved the cytotoxicity of resveratrol by blocking the autophagic flux. Resveratrol increased the phosphorylation of adenosine monophosphate (AMP)-activated protein kinase and decreased the phosphorylation of mammalian target of rapamycin (mTOR) and its downstream substrates p70S6K and 4EBP1 in a dose-dependent manner, leading to autophagy. Therefore, our results suggest that resveratrol exerts anti-MM effects through apoptosis and autophagy, which can be used as a new therapeutic strategy for MM in clinic.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Mieloma Múltiple/metabolismo , Resveratrol/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Adenosina Monofosfato/metabolismo , Beclina-1/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Mieloma Múltiple/patología , Fosforilación/efectos de los fármacos
15.
Acta Biochim Biophys Sin (Shanghai) ; 52(4): 401-410, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32259210

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is the most common category and disease entity of non-Hodgkin lymphoma. Osalmide and pterostilbene are natural products with anticancer activities via different mechanism. In this study, using a new synthetic strategy for the two natural products, we obtained the compound DCZ0801, which was previously found to have anti-multiple myeloma activity. We performed both in vitro and in vivo assays to investigate its bioactivity and explore its underlying mechanism against DLBCL cells. The results showed that DCZ0801 treatment gave rise to a dose- and time-dependent inhibition of cell viability as determined by CCK-8 assay and flow cytometry assay. Western blot analysis results showed that the expression of caspase-3, caspase-8, caspase-9 and Bax was increased, while BCL-2 and BCL-XL levels were decreased, which suggested that DCZ0801 inhibited cell proliferation and promoted intrinsic apoptosis. In addition, DCZ0801 induced G0/G1 phase arrest by downregulating the protein expression levels of CDK4, CDK6 and cyclin D1. Furthermore, DCZ0801 exerted an anti-tumor effect by down-regulating the expressions of p-PI3K and p-AKT. There also existed a trend that the expression of p-JNK and p-P38 was restrained. Intraperitoneal injection of DCZ0801 suppressed tumor development in xenograft mouse models. The preliminary metabolic study showed that DCZ0801 displayed a rapid metabolism within 30 min. These results demonstrated that DCZ0801 may be a new potential anti-DLBCL agent in DLBCL therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Puntos de Control del Ciclo Celular/efectos de los fármacos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Ciclofosfamida/química , Ciclofosfamida/farmacología , Citotoxinas/química , Citotoxinas/farmacología , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Salicilanilidas/química , Salicilanilidas/farmacología , Estilbenos/química , Estilbenos/farmacología
16.
Acta Biochim Biophys Sin (Shanghai) ; 51(5): 517-523, 2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-30947332

RESUMEN

Multiple myeloma (MM) is a refractory malignant hematological malignancy, and many therapeutic strategies have been developed to cure patients with MM. DCZ0801 is a compound that consists of oxophenamide and pterostilbene. The role of these compounds in hematological cancers such as MM has yet to be studied. In this study, we explored the potential mechanism of DCZ0801 action, its anti-tumor activity both in vitro and in vivo on MM. This study was carried out via cell cycle proliferation assay, apoptotic analysis, western blot analysis, and examination of xenotransplantation model of tumors. The in vitro studies revealed that DCZ0801 could inhibit cell proliferation and induce apoptosis by regulating both caspase-dependent and mitogen-activated protein kinase signaling pathways, inducing S-phase arrest of the cell cycle related to downregulation of CDK2, cyclin-A2, and CDC25A protein expression. The in vivo studies showed that DCZ0801 could significantly reduce the size of the tumors in nude mice. Our results demonstrated that DCZ0801 may emerge as the new therapeutic option for the patient with MM.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mieloma Múltiple/tratamiento farmacológico , Estilbenos/farmacología , Animales , Antineoplásicos/química , Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Ratones Desnudos , Estructura Molecular , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Estilbenos/química , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Acta Biochim Biophys Sin (Shanghai) ; 50(7): 643-650, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688264

RESUMEN

DCZ3301, a novel aryl-guanidino compound, was previously found to have potent anti-tumor activity in myeloma and B-cell lymphoma. In the present study, we investigated the effects of DCZ3301 on T-cell leukemia/lymphoma cells both in vitro and in vivo via cell proliferation, cell cycle analysis, apoptosis assay, mitochondrial membrane potential (MMP) assay, western blot analysis and tumor xenograft models. We found that DCZ3301 inhibited the viability of T-cell leukemia/lymphoma cells in a dose- and time-dependent manner. DCZ3301-induced G2/M cell cycle arrest, associated with downregulation of CDK1, cyclin B1, and cdc25C. DCZ3301 also induced cell apoptosis by decreasing MMP in T-cell leukemia/lymphoma cells, but had no significant pro-apoptotic effect on normal peripheral blood mononuclear cells (PBMCs). In addition, DCZ3301-induced apoptosis may be mediated by the caspase-dependent pathway and suppressing the phosphoinositide 3-kinase (PI3K)/AKT pathway. Finally, we showed that DCZ3301 treatment effectively inhibited tumor growth, with no significant side effects, in xenograft mouse models. In conclusion, these results suggest that DCZ3301 may be regarded as a new therapeutic strategy for T-cell leukemia/lymphoma patients.


Asunto(s)
Amidas/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Leucemia de Células T/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridinas/farmacología , Amidas/química , Antineoplásicos/química , Línea Celular Tumoral , Humanos , Células Jurkat , Leucemia de Células T/metabolismo , Leucemia de Células T/patología , Linfoma de Células T/metabolismo , Linfoma de Células T/patología , Estructura Molecular , Piridinas/química , Transducción de Señal/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Acta Biochim Biophys Sin (Shanghai) ; 50(8): 782-792, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29961897

RESUMEN

Mantle cell lymphoma (MCL) is an aggressive and mostly incurable B-cell malignancy with frequent relapses after an initial response to standard chemotherapy. Therefore, novel therapies are urgently required to improve MCL clinical outcomes. In this study, MCL cell lines were treated with pterostilbene (PTE), a non-toxic natural phenolic compound primarily found in blueberries. The antitumor activity of PTE was examined by using the Cell Counting Kit-8, apoptosis assays, cell cycle analysis, JC-1 mitochondrial membrane potential assay, western blot analysis, and tumor xenograft models. PTE treatment induced a dose-dependent inhibition of cell proliferation, including the induction of cell apoptosis and cell cycle arrest at the G0/G1 phase. Moreover, the PI3K/Akt/mTOR pathway was downregulated after PTE treatment, which might account for the anti-MCL effects of PTE. Synergistic cytotoxicity was also observed, both in MCL cells and in xenograft mouse models, when PTE was administered in combination with bortezomib (BTZ). The antitumor effects of PTE shown in our study provide an innovative option for MCL patients with poor responses to standardized therapy. It is noteworthy that the treatment combining PTE with BTZ warrants clinical investigation, which may offer an alternative and effective MCL treatment in the future.


Asunto(s)
Linfoma de Células del Manto/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Estilbenos/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Progresión de la Enfermedad , Femenino , Humanos , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Ratones Endogámicos NOD , Ratones SCID , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Acta Biochim Biophys Sin (Shanghai) ; 50(4): 399-407, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29534146

RESUMEN

MCT-1 (multiple copies in T-cell lymphoma-1), a novel oncogene, was originally identified in T-cell lymphoma. A recent study has demonstrated that MCT-1 is highly expressed in 85% of diffuse large B-cell lymphomas (DLBCL). PKC (protein kinase C) plays an essential role in signal transduction for multiple biologically active substances for activating cellular functions and proliferation. In this study, we found that the mRNA and protein expression levels of MCT-1 were visibly decreased after knocking down PKC by siRNA in SUDHL-4 and OCI-LY8 DLBCL cell lines. A selective PKC inhibitor, sotrastaurin, effectively inhibited cell proliferation and induced cell apoptosis in a dose- and time-dependent manner. Meanwhile, we also observed that the cell cycle was arrested in the G1 phase in sotrastaurin-treated cells. In addition, MCT-1 was down-regulated in the sotrastaurin treatment group in vivo. Furthermore, we demonstrated that the PKC inhibitor sotrastaurin induced cell apoptosis and cell cycle arrest in DLBCL cells potentially through regulating the expression of MCT-1. Our data suggest that targeting PKC may be a potential therapeutic approach for lymphomas and related malignancies that exhibit high levels of MCT-1 protein.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Regulación de la Expresión Génica , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Proteínas Oncogénicas/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Pirroles/farmacología , Quinazolinas/farmacología , Animales , Apoptosis , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Relación Dosis-Respuesta a Droga , Femenino , Silenciador del Gen , Humanos , Linfoma/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal
20.
Acta Biochim Biophys Sin (Shanghai) ; 49(5): 420-427, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28338993

RESUMEN

Multiple myeloma (MM) is the second most frequent malignant hematological disease. Dihydrocelastrol (DHCE) is synthesized by hydrogenated celastrol, a treterpene isolated from Chinese medicinal plant Tripterygium regelii. In this study, we first reported the anti-tumor activity of DHCE on MM cells. We found that DHCE could inhibit cell proliferation and promote apoptosis through caspase-dependent way in vitro. In addition, DHCE could inactivate the expression of interleukin (IL)-6 and downregulate the phosphorylation of extracellular regulated protein kinases (ERK1/2) and the signal transducer and activator of transcription 3 (STAT3) in MM. It also retained its activity against MM cell lines in the presence of IL-6. Furthermore, treatment of MM cells with DHCE resulted in an accumulation of cells in G0/G1 phase of the cell cycle. Notably, DHCE reduced the expression of cyclin D1 and cyclin-dependent kinases 4 and 6 in MM cell lines. Additionally, its efficacy toward the MM cell lines could be enhanced in combination with the histone deacetylase inhibitor panobinostat (LBH589), which implied the possibility of the combination treatment of DHCE and LBH589 as a potential therapeutic strategy in MM. In addition, treatment of NCI-H929 tumor-bearing nude mice with DHCE (10 mg/kg/d, i.p., 1-14 days) resulted in 73% inhibition of the tumor growth in vivo. Taken together, the results of our present study indicated that DHCE could inhibit cellular proliferation and induce cell apoptosis in myeloma cells mediated through different mechanisms, possibly through inhibiting the IL-6/STAT3 and ERK1/2 pathways. And it may provide a new therapeutic option for MM patients.


Asunto(s)
Apoptosis/efectos de los fármacos , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Factor de Transcripción STAT3/metabolismo , Triterpenos/administración & dosificación , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Desnudos , Mieloma Múltiple/patología , Triterpenos Pentacíclicos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA