Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Small ; 19(22): e2300767, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36843221

RESUMEN

Bottlebrush polymers are highly promising as unimolecular nanomedicines due to their unique control over the critical parameters of size, shape and chemical function. However, since they are prepared from biopersistent carbon backbones, most known bottlebrush polymers are non-degradable and thus unsuitable for systemic therapeutic administration. Herein, we report the design and synthesis of novel poly(organo)phosphazene-g-poly(α-glutamate) (PPz-g-PGA) bottlebrush polymers with exceptional control over their structure and molecular dimensions (Dh ≈ 15-50 nm). These single macromolecules show outstanding aqueous solubility, ultra-high multivalency and biodegradability, making them ideal as nanomedicines. While well-established in polymer therapeutics, it has hitherto not been possible to prepare defined single macromolecules of PGA in these nanosized dimensions. A direct correlation was observed between the macromolecular dimensions of the bottlebrush polymers and their intracellular uptake in CT26 colon cancer cells. Furthermore, the bottlebrush macromolecular structure visibly enhanced the pharmacokinetics by reducing renal clearance and extending plasma half-lives. Real-time analysis of the biodistribution dynamics showed architecture-driven organ distribution and enhanced tumor accumulation. This work, therefore, introduces a robust, controlled synthesis route to bottlebrush polypeptides, overcoming limitations of current polymer-based nanomedicines and, in doing so, offers valuable insights into the influence of architecture on the in vivo performance of nanomedicines.


Asunto(s)
Polímeros , Agua , Distribución Tisular , Polímeros/química , Sustancias Macromoleculares , Agua/química , Péptidos
2.
Chemistry ; 27(10): 3192, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33432677

RESUMEN

Invited for the cover of this issue is the group of Ian Teasdale and Yolanda Salinas at the Johannes Kepler University Linz. The image depicts the self-propelled Janus micromotors reported in this work. Read the full text of the article at 10.1002/chem.202004792.

3.
Chemistry ; 27(10): 3262-3267, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33205559

RESUMEN

This work reports a reversible braking system for micromotors that can be controlled by small temperature changes (≈5 °C). To achieve this, gated-mesoporous organosilica microparticles are internally loaded with metal catalysts (to form the motor) and the exterior (partially) grafted with thermosensitive bottle-brush polyphosphazenes to form Janus particles. When placed in an aqueous solution of H2 O2 (the fuel), rapid forward propulsion of the motors ensues due to decomposition of the fuel. Conformational changes of the polymers at defined temperatures regulate the bubble formation rate and thus act as brakes with considerable deceleration/acceleration observed. As the components can be easily varied, this represents a versatile, modular platform for the exogenous velocity control of micromotors.

4.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202795

RESUMEN

Porous organosilica microparticles consisting of silane-derived cyclophosphazene bridges were synthesized by a surfactant-mediated sol-gel process. Starting from the substitution of hexachlorocyclotriphosphazene with allylamine, two different precursors were obtained by anchoring three or six alkoxysilane units, via a thiol-ene photoaddition reaction. In both cases, spherical, microparticles (size average of ca. 1000 nm) with large pores were obtained, confirmed by both, scanning and transmission electron microscopy. Particles synthesized using the partially functionalized precursor containing free vinyl groups were further functionalized with a thiol-containing molecule. While most other reported mesoporous organosilica particles are essentially hybrids with tetraethyl orthosilicate (TEOS), a unique feature of these particles is that structural control is achieved by exclusively using organosilane precursors. This allows an increase in the proportion of the co-components and could springboard these novel phosphorus-containing organosilica microparticles for different areas of technology.


Asunto(s)
Compuestos de Organosilicio/química , Compuestos de Organosilicio/síntesis química , Tamaño de la Partícula , Porosidad
5.
Molecules ; 25(7)2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276516

RESUMEN

Polymers in which phosphorus is an integral part of the main chain, including polyphosphazenes and polyphosphoesters, have been widely investigated in recent years for their potential in a number of therapeutic applications. Phosphorus, as the central feature of these polymers, endears the chemical functionalization, and in some cases (bio)degradability, to facilitate their use in such therapeutic formulations. Recent advances in the synthetic polymer chemistry have allowed for controlled synthesis methods in order to prepare the complex macromolecular structures required, alongside the control and reproducibility desired for such medical applications. While the main polymer families described herein, polyphosphazenes and polyphosphoesters and their analogues, as well as phosphorus-based dendrimers, have hitherto predominantly been investigated in isolation from one another, this review aims to highlight and bring together some of this research. In doing so, the focus is placed on the essential, and often mutual, design features and structure-property relationships that allow the preparation of such functional materials. The first part of the review details the relevant features of phosphorus-containing polymers in respect to their use in therapeutic applications, while the second part highlights some recent and innovative applications, offering insights into the most state-of-the-art research on phosphorus-based polymers in a therapeutic context.


Asunto(s)
Fósforo/química , Polímeros/uso terapéutico , Hidrólisis , Sustancias Macromoleculares/química , Preparaciones Farmacéuticas/química , Polimerizacion , Polímeros/síntesis química , Polímeros/química
6.
Chemistry ; 25(42): 9851-9855, 2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31199024

RESUMEN

A simple supramolecular crosslinked gel is reported with a photosensitive ruthenium bipyridine complex functioning as a crosslinker and poly(4-vinylpyridine) (P4VP) as a macromolecular ligand. Irradiation of the organogels in H2 O/MeOH with visible and NIR light (in a multiphoton process) leads to cleavage of pyridine moieties from the ruthenium complex breaking the cross-links and causing degelation and hence solubilization of the P4VP chains. Real-time (RT) photorheology experiments of thin films showed a rapid degelation in several seconds, whereas larger bulk samples could also be photocleaved. Furthermore, the gels could be reformed or healed by simple heating of the system and restoration of the metal-ligand crosslinks. The relatively simple dynamic system with a high sensitivity towards light in the visible and NIR region make them interesting positive photoresists for nano/micropatterning applications, as was demonstrated by writing, erasing, and rewriting of the gels by single- and multiphoton lithography.

7.
Macromol Rapid Commun ; 40(22): e1900328, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31637803

RESUMEN

The incorporation of an extraneous on-off braking system is necessary for the effective motion control of the next generation of micrometer-sized motors. Here, the design and synthesis of micromotors is reported based on mesoporous silica particles containing bipyridine groups, introduced by cocondensation, for entrapping catalytic cobalt(II) ions within the mesochannels, and functionalized on the surface with silane-derived temperature responsive bottle-brush polyphosphazene. Switching the polymers in a narrow temperature window of 25-30 °C between the swollen and collapsed state, allows the access for the fuel H2 O2 contained in the dispersion medium to cobalt(II) bipyridinato catalyst sites. The decomposition of hydrogen peroxide is monitored by optical microscopy, and effectively operated by reversibly closing or opening the pores by the grafted gate-like polyphosphazene, to control on demand the oxygen bubble generation. This design represents one of the few examples using temperature as a trigger for the reversible on-off external switching of mesoporous silica micromotors.


Asunto(s)
Compuestos Organofosforados/química , Polímeros/química , Silanos/química , Dióxido de Silicio/química , Catálisis , Cobalto/química , Peróxido de Hidrógeno/química , Microscopía Electrónica de Transmisión , Estructura Molecular , Nanopartículas/química , Nanopartículas/ultraestructura , Oxidantes/química , Tamaño de la Partícula , Porosidad , Temperatura
8.
Eur J Inorg Chem ; 2019(11-12): 1445-1456, 2019 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-30983876

RESUMEN

This microreview details recent developments in stimuli-responsive polymers with phosphorus in the main-chain, in particular polyphosphazenes and polyphosphoesters. The presence of phosphorus in the polymers endows unique properties onto the macromolecules, which can be utilized for the preparation of materials capable of physically responding to specific stimuli. Achieving the desired responsiveness has been much facilitated by recent developments in synthetic polymer chemistry, in particular controlled synthesis and backbone functionalization phosphorus-based polymers, in order to achieve the required properties and hence responsiveness of the materials. The development of phosphorus-based polymers which respond to the most important stimuli are discussed, namely, pH, oxidation, reduction, temperature and biological triggers. The polymers are placed in the context not just of each other but also with reference to state-of-the-art organic polymers.

9.
Macromol Rapid Commun ; 39(18): e1800377, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30048024

RESUMEN

Polymers that, upon photochemical activation with visible light, undergo rapid degradation to small molecules are described. Through functionalization of a polyphosphazene backbone with pendant coumarin groups sensitive to light, polymers which are stable in the dark could be prepared. Upon irradiation, cleavage of the coumarin moieties exposes carboxylic acid moieties along the polymer backbone. The subsequent macromolecular photoacid is found to catalyze the rapid hydrolytic degradation of the polyphosphazene backbone. Water-soluble and non-water-soluble polymers are reported, which due to their sensitivity toward light in the visible region could be significant as photocleavable materials in biological applications.


Asunto(s)
Cumarinas/química , Luz , Compuestos Organofosforados/química , Polímeros/química , Catálisis , Hidrólisis , Sustancias Macromoleculares/química , Estructura Molecular
10.
Chemistry ; 23(70): 17721-17726, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-28758266

RESUMEN

The chemical synthesis and biological activity of novel functionalized imidazoquinoline derivatives (ImQ) to generate Toll-like receptor (TLR) 7/8 specific prodrugs are presented. In vivo activity of ImQs to induce inflammation was confirmed in zebrafish larvae. After covalent ligation to fully biodegradable polyphosphazenes (ImQ-polymer), the macromolecular prodrugs were designed to undergo intracellular pH-sensitive release of ImQs to induce inflammation through binding to endosomal TLR7/8 (danger signal). We showed ImQ dissociation from prodrugs at a pH 5 pointing towards endosomal prodrug degradability. ImQ-polymers strongly activated ovalbumin-specific T cells in murine splenocytes as shown by increased proliferation and expression of the IL-2 receptor (CD25) on CD8+ T cells accompanied by strong IFN-γ release. ImQ prodrugs presented here are suggested to form the basis of novel nanovaccines, for example, for intravenous or intratumoral cancer immunotherapeutic applications to trigger physiological antitumor immune responses.


Asunto(s)
Profármacos/química , Receptor Toll-Like 7/antagonistas & inhibidores , Receptor Toll-Like 8/antagonistas & inhibidores , Animales , Animales Modificados Genéticamente/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Concentración de Iones de Hidrógeno , Inflamación/etiología , Interferón gamma/metabolismo , Larva/efectos de los fármacos , Larva/metabolismo , Ratones , Microscopía Confocal , FN-kappa B/metabolismo , Profármacos/síntesis química , Profármacos/toxicidad , Quinolinas/síntesis química , Quinolinas/química , Quinolinas/toxicidad , Receptores de Interleucina-2/genética , Receptores de Interleucina-2/metabolismo , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/metabolismo , Pez Cebra/crecimiento & desarrollo
11.
Macromol Rapid Commun ; 38(4)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28044384

RESUMEN

This feature article briefly highlights some of the recent advances in polymers in which phosphorus is an integral part of the backbone, with a focus on the preparation of functional, highly branched, soluble polymers. A comparison is made between the related families of materials polyphosphazenes, phosphazene/phosphorus-based dendrimers and polyphosphoesters. The work described herein shows this to be a rich and burgeoning field, rapidly catching up with organic chemistry in terms of the macromolecular synthetic control and variety of available macromolecular architectures, whilst offering unique property combinations not available with carbon backbones, such as tunable degradation rates, high multi-valency and facile post-polymerization functionalization. As an example of their use in advanced applications, we highlight some investigations into their use as water-soluble drug carriers, whereby in particular the degradability in combination with multivalent nature has made them useful materials, as underlined by some of the recent studies in this area.


Asunto(s)
Sustancias Macromoleculares/química , Fósforo/química , Polímeros/química , Dendrímeros/síntesis química , Dendrímeros/química , Estructura Molecular , Nanomedicina , Compuestos Organofosforados/síntesis química , Compuestos Organofosforados/química , Polímeros/síntesis química
12.
Chem Soc Rev ; 45(19): 5200-15, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27314867

RESUMEN

Poly(organo)phosphazenes are a family of inorganic molecular hybrid polymers with very diverse properties due to the vast array of organic substituents possible. This tutorial review aims to introduce the basics of the synthetic chemistry of polyphosphazenes, detailing for readers outside the field the essential knowledge required to design and prepare polyphosphazenes with desired properties. A particular focus is given to some of the recent advances in their chemical synthesis which allows not only the preparation of polyphosphazenes with controlled molecular weights and polydispersities, but also novel branched architectures and block copolymers. We also discuss the preparation of supramolecular structures, bioconjugates and in situ forming gels from this diverse family of functional materials. This tutorial review aims to equip the reader to prepare defined polyphosphazenes with unique property combinations and in doing so we hope to stimulate further research and yet more innovative applications for these highly interesting multifaceted materials.

13.
Angew Chem Int Ed Engl ; 56(50): 15857-15860, 2017 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-28941025

RESUMEN

A photolabile ruthenium-based complex, [Ru(bpy)2 (4AMP)2 ](PF6 )2 , (4AMP=4-(aminomethyl)pyridine) is incorporated into polyurea organo- and hydrogels via the reactive amine moieties on the photocleavable 4AMP ligands. While showing long-term stability in the dark, cleavage of the pyridine-ruthenium bond upon irradiation with visible or near-infrared irradiation (in a two-photon process) leads to rapid de-gelation of the supramolecular gels, thus enabling spatiotemporal micropatterning by photomasking or pulsed NIR-laser irradiation.

14.
Macromol Rapid Commun ; 37(9): 769-74, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27027404

RESUMEN

A new synthetic procedure is described for the preparation of poly(organo)phosphazenes with star-branched and star dendritic molecular brush type structures, thus describing the first time it has been possible to prepare controlled, highly branched architectures for this type of polymer. Furthermore, as a result of the extremely high-arm density generated by the phosphazene repeat unit, the second-generation structures represent quite unique architectures for any type of polymer. Using two relativity straight forward iterative syntheses it is possible to prepare globular highly branched polymers with up to 30 000 functional end groups, while keeping relatively narrow polydispersities (1.2-1.6). Phosphine mediated polymerization of chlorophosphoranimine is first used to prepare three-arm star polymers. Subsequent substitution with diphenylphosphine moieties gives poly(organo)phosphazenes to function as multifunctional macroinitiators for the growth of a second generation of polyphosphazene arms. Macrosubstitution with Jeffamine oligomers gives a series of large, water soluble branched macromolecules with high-arm density and hydrodynamic diameters between 10 and 70 nm.


Asunto(s)
Dendrímeros/química , Dendrímeros/síntesis química , Compuestos Organofosforados/química , Compuestos Organofosforados/síntesis química , Polímeros/química , Polímeros/síntesis química
15.
Photochem Photobiol Sci ; 13(11): 1607-20, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25257955

RESUMEN

Two series of water soluble novel conjugates of the photosensitizer hypericin were prepared and evaluated for their use as agents for photodynamic therapy, with covalently and non-covalently loaded hypericin on functionalised, hydrolytically degradable inorganic-organic hybrid polyphosphazenes. The conjugates showed excellent aqueous solubility and similar fluorescence spectra to pristine hypericin. Detailed in vitro investigations revealed that the substances were non-toxic in the dark over a wide concentration range, but displayed phototoxicity upon irradiation. Cell uptake studies showed rapid uptake with localization of hypericin observed in endoplasmic reticulum, Golgi complex and particularly in the lysosomes. Furthermore, a DNA fragmentation assay revealed that the photosensitizer conjugates are efficient inducers of apoptosis with some tumor cell selectivity caused by faster and enhanced accumulation in A431 than in HaCaT cells, and thus a moderately higher phototoxicity of A431 compared to HaCaT cells. These novel photosensitizer conjugates hence represent viable hydrolytically degradable alternatives for the advanced delivery of hypericin.


Asunto(s)
Compuestos Organofosforados/química , Perileno/análogos & derivados , Fármacos Fotosensibilizantes/química , Polímeros/química , Antracenos , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Portadores de Fármacos/química , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Luz , Lisosomas/metabolismo , Perileno/química , Perileno/toxicidad , Fármacos Fotosensibilizantes/toxicidad
16.
Macromol Rapid Commun ; 35(12): 1135-41, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24700544

RESUMEN

A simple polymerization of trichlorophosphoranimine (Cl3 P = N-SiMe3 ) mediated by functionalized triphenylphosphines is presented. In situ initiator formation and the subsequent polymerization progress are investigated by (31) P NMR spectroscopy, demonstrating a living cationic polymerization mechanism. The polymer chain lengths and molecular weights of the resulting substituted poly(organo)phosphazenes are further studied by (1) H NMR spectroscopy and size exclusion chromatography. This strategy facilitates the preparation of polyphosphazenes with controlled molecular weights and specific functional groups at the α-chain end. Such well-defined, mono-end-functionalized polymers have great potential use in bioconjugation, surface modification, and as building blocks for complex macromolecular constructs.


Asunto(s)
Compuestos Organofosforados/química , Fosfinas/química , Polímeros/química , Cromatografía en Gel , Espectroscopía de Resonancia Magnética , Estructura Molecular , Compuestos Organofosforados/síntesis química , Polimerizacion , Polímeros/síntesis química , Estándares de Referencia
17.
Polymers (Basel) ; 16(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38932057

RESUMEN

Functional polymers play an important role in various biomedical applications. From many choices, poly(2-isopropenyl-2-oxazoline) (PIPOx) represents a promising reactive polymer with great potential in various biomedical applications. PIPOx, with pendant reactive 2-oxazoline groups, can be readily prepared in a controllable manner via several controlled/living polymerization methods, such as living anionic polymerization, atom transfer radical polymerization (ATRP), reversible addition-fragmentation transfer (RAFT) or rare earth metal-mediated group transfer polymerization. The reactivity of pendant 2-oxazoline allows selective reactions with thiol and carboxylic group-containing compounds without the presence of any catalyst. Moreover, PIPOx has been demonstrated to be a non-cytotoxic polymer with immunomodulative properties. Post-polymerization functionalization of PIPOx has been used for the preparation of thermosensitive or cationic polymers, drug conjugates, hydrogels, brush-like materials, and polymer coatings available for drug and gene delivery, tissue engineering, blood-like materials, antimicrobial materials, and many others. This mini-review covers new achievements in PIPOx synthesis, reactivity, and use in biomedical applications.

18.
J Funct Biomater ; 15(2)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38391893

RESUMEN

"Hot spot" 19F magnetic resonance imaging (MRI) has garnered significant attention recently for its ability to image various disease markers quantitatively. Unlike conventional gadolinium-based MRI contrast agents, which rely on proton signal modulation, 19F-MRI's direct detection has a unique advantage in vivo, as the human body exhibits a negligible background 19F-signal. However, existing perfluorocarbon (PFC) or PFC-based contrast materials suffer from several limitations, including low longitudinal relaxation rates and relatively low imaging efficiency. Hence, we designed a macromolecular contrast agent featuring a high number of magnetically equivalent 19F-nuclei in a single macromolecule, adequate fluorine nucleus mobility, and excellent water solubility. This design utilizes superfluorinated polyphosphazene (PPz) polymers as the 19F-source; these are modified with sodium mercaptoethanesulfonate (MESNa) to achieve water solubility exceeding 360 mg/mL, which is a similar solubility to that of sodium chloride. We observed substantial signal enhancement in MRI with these novel macromolecular carriers compared to non-enhanced surroundings and aqueous trifluoroacetic acid (TFA) used as a positive control. In conclusion, these novel water-soluble macromolecular carriers represent a promising platform for future MRI contrast agents.

19.
ACS Polym Au ; 4(1): 56-65, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38371734

RESUMEN

Due to their unique rheological and mechanical properties, bottlebrush polymers are inimitable components of biological and synthetic systems such as cartilage and ultrasoft elastomers. However, while their rheological properties can be precisely controlled through their macromolecular structures, the current chemical spectrum available is limited to a handful of synthetic polymers with aliphatic carbon backbones. Herein we design and synthesize a series of inorganic bottlebrush polymers based on a unique combination of polydimethylsiloxane (PDMS) and polyphosphazene (PPz) chemistry. This non-carbon-based platform allows for simple variation of the significant architectural dimensions of bottlebrush-polymer-based elastomers. Grafting PDMS to PPz and vice versa also allows us to further exploit the unique properties of these polymers combined in a single material. These novel hybrid bottlebrush polymers were cured to give supersoft, solvent-free elastomers. We systematically studied the effect of architectural parameters and chemical functionality on their rheological properties. Besides forming supersoft elastomers, the energy dissipation characteristics of the elastomers were observed to be considerably higher than those for PDMS-based elastomers. Hence this work introduces a robust synthetic platform for solvent-free supersoft elastomers with potential applications as biomimetic damping materials.

20.
Macromol Biosci ; 23(11): e2300127, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37326117

RESUMEN

Synthetic polymers are indispensable in biomedical applications because they can be fabricated with consistent and reproducible properties, facile scalability, and customizable functionality to perform diverse tasks. However, currently available synthetic polymers have limitations, most notably when timely biodegradation is required. Despite there being, in principle, an entire periodic table to choose from, with the obvious exception of silicones, nearly all known synthetic polymers are combinations of carbon, nitrogen, and oxygen in the main chain. Expanding this to main-group heteroatoms can open the way to novel material properties. Herein the authors report on research to incorporate the chemically versatile and abundant silicon and phosphorus into polymers to induce cleavability into the polymer main chain. Less stable polymers, which degrade in a timely manner in mild biological environments, have considerable potential in biomedical applications. Herein the basic chemistry behind these materials is described and some recent studies into their medical applications are highlighted.


Asunto(s)
Fósforo , Polímeros , Polímeros/química , Silicio , Sustancias Macromoleculares/química , Siliconas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA