Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(6): e1012227, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38870216

RESUMEN

Small populations (e.g., hospitals, schools or workplaces) are characterised by high contact heterogeneity and stochasticity affecting pathogen transmission dynamics. Empirical individual contact data provide unprecedented information to characterize such heterogeneity and are increasingly available, but are usually collected over a limited period, and can suffer from observation bias. We propose an algorithm to stochastically reconstruct realistic temporal networks from individual contact data in healthcare settings (HCS) and test this approach using real data previously collected in a long-term care facility (LTCF). Our algorithm generates full networks from recorded close-proximity interactions, using hourly inter-individual contact rates and information on individuals' wards, the categories of staff involved in contacts, and the frequency of recurring contacts. It also provides data augmentation by reconstructing contacts for days when some individuals are present in the HCS without having contacts recorded in the empirical data. Recording bias is formalized through an observation model, to allow direct comparison between the augmented and observed networks. We validate our algorithm using data collected during the i-Bird study, and compare the empirical and reconstructed networks. The algorithm was substantially more accurate to reproduce network characteristics than random graphs. The reconstructed networks reproduced well the assortativity by ward (first-third quartiles observed: 0.54-0.64; synthetic: 0.52-0.64) and the hourly staff and patient contact patterns. Importantly, the observed temporal correlation was also well reproduced (0.39-0.50 vs 0.37-0.44), indicating that our algorithm could recreate a realistic temporal structure. The algorithm consistently recreated unobserved contacts to generate full reconstructed networks for the LTCF. To conclude, we propose an approach to generate realistic temporal contact networks and reconstruct unobserved contacts from summary statistics computed using individual-level interaction networks. This could be applied and extended to generate contact networks to other HCS using limited empirical data, to subsequently inform individual-based epidemic models.


Asunto(s)
Algoritmos , Trazado de Contacto , Humanos , Trazado de Contacto/métodos , Trazado de Contacto/estadística & datos numéricos , Biología Computacional/métodos , Cuidados a Largo Plazo
2.
PLoS Med ; 20(6): e1004240, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37276186

RESUMEN

BACKGROUND: Circulation of multidrug-resistant bacteria (MRB) in healthcare facilities is a major public health problem. These settings have been greatly impacted by the Coronavirus Disease 2019 (COVID-19) pandemic, notably due to surges in COVID-19 caseloads and the implementation of infection control measures. We sought to evaluate how such collateral impacts of COVID-19 impacted the nosocomial spread of MRB in an early pandemic context. METHODS AND FINDINGS: We developed a mathematical model in which Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and MRB cocirculate among patients and staff in a theoretical hospital population. Responses to COVID-19 were captured mechanistically via a range of parameters that reflect impacts of SARS-CoV-2 outbreaks on factors relevant for pathogen transmission. COVID-19 responses include both "policy responses" willingly enacted to limit SARS-CoV-2 transmission (e.g., universal masking, patient lockdown, and reinforced hand hygiene) and "caseload responses" unwillingly resulting from surges in COVID-19 caseloads (e.g., abandonment of antibiotic stewardship, disorganization of infection control programmes, and extended length of stay for COVID-19 patients). We conducted 2 main sets of model simulations, in which we quantified impacts of SARS-CoV-2 outbreaks on MRB colonization incidence and antibiotic resistance rates (the share of colonization due to antibiotic-resistant versus antibiotic-sensitive strains). The first set of simulations represents diverse MRB and nosocomial environments, accounting for high levels of heterogeneity across bacterial parameters (e.g., rates of transmission, antibiotic sensitivity, and colonization prevalence among newly admitted patients) and hospital parameters (e.g., rates of interindividual contact, antibiotic exposure, and patient admission/discharge). On average, COVID-19 control policies coincided with MRB prevention, including 28.2% [95% uncertainty interval: 2.5%, 60.2%] fewer incident cases of patient MRB colonization. Conversely, surges in COVID-19 caseloads favoured MRB transmission, resulting in a 13.8% [-3.5%, 77.0%] increase in colonization incidence and a 10.4% [0.2%, 46.9%] increase in antibiotic resistance rates in the absence of concomitant COVID-19 control policies. When COVID-19 policy responses and caseload responses were combined, MRB colonization incidence decreased by 24.2% [-7.8%, 59.3%], while resistance rates increased by 2.9% [-5.4%, 23.2%]. Impacts of COVID-19 responses varied across patients and staff and their respective routes of pathogen acquisition. The second set of simulations was tailored to specific hospital wards and nosocomial bacteria (methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase producing Escherichia coli). Consequences of nosocomial SARS-CoV-2 outbreaks were found to be highly context specific, with impacts depending on the specific ward and bacteria evaluated. In particular, SARS-CoV-2 outbreaks significantly impacted patient MRB colonization only in settings with high underlying risk of bacterial transmission. Yet across settings and species, antibiotic resistance burden was reduced in facilities with timelier implementation of effective COVID-19 control policies. CONCLUSIONS: Our model suggests that surges in nosocomial SARS-CoV-2 transmission generate selection for the spread of antibiotic-resistant bacteria. Timely implementation of efficient COVID-19 control measures thus has 2-fold benefits, preventing the transmission of both SARS-CoV-2 and MRB, and highlighting antibiotic resistance control as a collateral benefit of pandemic preparedness.


Asunto(s)
COVID-19 , Infección Hospitalaria , Staphylococcus aureus Resistente a Meticilina , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control , SARS-CoV-2 , Pandemias/prevención & control , Control de Infecciones/métodos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Hospitales , Farmacorresistencia Bacteriana Múltiple
3.
Occup Environ Med ; 80(5): 268-272, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36914254

RESUMEN

OBJECTIVES: To quantify the burden of COVID-19-related sick leave during the first pandemic wave in France, accounting for sick leaves due to symptomatic COVID-19 ('symptomatic sick leaves') and those due to close contact with COVID-19 cases ('contact sick leaves'). METHODS: We combined data from a national demographic database, an occupational health survey, a social behaviour survey and a dynamic SARS-CoV-2 transmission model. Sick leave incidence from 1 March 2020 to 31 May 2020 was estimated by summing daily probabilities of symptomatic and contact sick leaves, stratified by age and administrative region. RESULTS: There were an estimated 1.70M COVID-19-related sick leaves among France's 40M working-age adults during the first pandemic wave, including 0.42M due to COVID-19 symptoms and 1.28M due to COVID-19 contacts. There was great geographical variation, with peak daily sick leave incidence ranging from 230 in Corse (Corsica) to 33 000 in Île-de-France (the greater Paris region), and greatest overall burden in regions of north-eastern France. Regional sick leave burden was generally proportional to local COVID-19 prevalence, but age-adjusted employment rates and contact behaviours also contributed. For instance, 37% of symptomatic infections occurred in Île-de-France, but 45% of sick leaves. Middle-aged workers bore disproportionately high sick leave burden, owing predominantly to greater incidence of contact sick leaves. CONCLUSIONS: France was heavily impacted by sick leave during the first pandemic wave, with COVID-19 contacts accounting for approximately three-quarters of COVID-19-related sick leaves. In the absence of representative sick leave registry data, local demography, employment patterns, epidemiological trends and contact behaviours can be synthesised to quantify sick leave burden and, in turn, predict economic consequences of infectious disease epidemics.


Asunto(s)
COVID-19 , Ausencia por Enfermedad , Adulto , Persona de Mediana Edad , Humanos , Pandemias , COVID-19/epidemiología , SARS-CoV-2 , Empleo , Francia/epidemiología
4.
Emerg Infect Dis ; 28(7): 1345-1354, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35580960

RESUMEN

Outbreaks of SARS-CoV-2 infection frequently occur in hospitals. Preventing nosocomial infection requires insight into hospital transmission. However, estimates of the basic reproduction number (R0) in care facilities are lacking. Analyzing a closely monitored SARS-CoV-2 outbreak in a hospital in early 2020, we estimated the patient-to-patient transmission rate and R0. We developed a model for SARS-CoV-2 nosocomial transmission that accounts for stochastic effects and undetected infections and fit it to patient test results. The model formalizes changes in testing capacity over time, and accounts for evolving PCR sensitivity at different stages of infection. R0 estimates varied considerably across wards, ranging from 3 to 15 in different wards. During the outbreak, the hospital introduced a contact precautions policy. Our results strongly support a reduction in the hospital-level R0 after this policy was implemented, from 8.7 to 1.3, corresponding to a policy efficacy of 85% and demonstrating the effectiveness of nonpharmaceutical interventions.


Asunto(s)
COVID-19 , Infección Hospitalaria , Número Básico de Reproducción , COVID-19/epidemiología , COVID-19/prevención & control , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control , Humanos , Control de Infecciones/métodos , SARS-CoV-2
5.
Occup Environ Med ; 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35981866

RESUMEN

OBJECTIVE: Healthcare workers (HCWs) are at high risk of experiencing stress and fatigue due to the demands of their work within hospitals. Improving their physical and mental health and, in turn, the quality and safety of care requires considering factors at both individual and organisational/ward levels. Using a multicentre prospective cohort, this study aims to identify the individual and organisational predictors of stress and fatigue of HCWs in several wards from university hospitals. METHODS: Our cohort consists of 695 HCWs from 32 hospital wards drawn at random within four volunteer hospital centres in Paris-area. Three-level longitudinal analyses, accounting for repeated measures (level 1) across participants (level 2) nested within wards (level 3) and adjusted for relevant fixed and time-varying confounders, were performed. RESULTS: At baseline, the sample was composed by 384 registered nurses, 300 auxiliary nurses and 11 midwives. According to the three-level longitudinal models, some predictors were found in common for both stress and fatigue (low social support from supervisors, work overcommitment, sickness presenteeism and number of beds per ward). However, specific predictors for high level of stress (negative life events, low social support from colleagues and breaks frequently cancelled due to work overload) and fatigue (longer commuting duration, frequent use of interim staff in the ward) were also found. CONCLUSION: Our results may help identify at-risk HCWs and wards, where interventions to reduce stress and fatigue should be focused. These interventions could include manager training to favour better staff support and overall safety culture of HCWs.

6.
Clin Infect Dis ; 72(1): 141-143, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-32473007

RESUMEN

To date, no specific estimate of R0 for SARS-CoV-2 is available for healthcare settings. Using interindividual contact data, we highlight that R0 estimates from the community cannot translate directly to healthcare settings, with pre-pandemic R0 values ranging 1.3-7.7 in 3 illustrative healthcare institutions. This has implications for nosocomial COVID-19 control.


Asunto(s)
COVID-19 , SARS-CoV-2 , Número Básico de Reproducción , Atención a la Salud , Humanos , Pandemias
7.
BMC Infect Dis ; 21(1): 52, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33430793

RESUMEN

BACKGROUND: Workplace absenteeism increases significantly during influenza epidemics. Sick leave records may facilitate more timely detection of influenza outbreaks, as trends in increased sick leave may precede alerts issued by sentinel surveillance systems by days or weeks. Sick leave data have not been comprehensively evaluated in comparison to traditional surveillance methods. The aim of this paper is to study the performance and the feasibility of using a detection system based on sick leave data to detect influenza outbreaks. METHODS: Sick leave records were extracted from private French health insurance data, covering on average 209,932 companies per year across a wide range of sizes and sectors. We used linear regression to estimate the weekly number of new sick leave spells between 2016 and 2017 in 12 French regions, adjusting for trend, seasonality and worker leaves on historical data from 2010 to 2015. Outbreaks were detected using a 95%-prediction interval. This method was compared to results from the French Sentinelles network, a gold-standard primary care surveillance system currently in place. RESULTS: Using sick leave data, we detected 92% of reported influenza outbreaks between 2016 and 2017, on average 5.88 weeks prior to outbreak peaks. Compared to the existing Sentinelles model, our method had high sensitivity (89%) and positive predictive value (86%), and detected outbreaks on average 2.5 weeks earlier. CONCLUSION: Sick leave surveillance could be a sensitive, specific and timely tool for detection of influenza outbreaks.


Asunto(s)
Absentismo , Epidemias , Gripe Humana/epidemiología , Vigilancia en Salud Pública/métodos , Vigilancia de Guardia , Ausencia por Enfermedad , Francia/epidemiología , Humanos , Incidencia , Gripe Humana/virología , Seguro de Salud , Persona de Mediana Edad , Modelos Estadísticos , Estudios Retrospectivos , Sensibilidad y Especificidad , Lugar de Trabajo
8.
Risk Anal ; 41(8): 1427-1446, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33128307

RESUMEN

Antimicrobial resistance (AMR) has become a major threat worldwide, especially in countries with inadequate sanitation and low antibiotic regulation. However, adequately prioritizing AMR interventions in such settings requires a quantification of the relative impacts of environmental, animal, and human sources in a One-Health perspective. Here, we propose a stochastic quantitative risk assessment model for the different components at interplay in AMR selection and spread. The model computes the incidence of AMR colonization in humans from five different sources: water or food consumption, contacts with livestock, and interhuman contacts in hospitals or the community, and combines these incidences into a per-year acquisition risk. Using data from the literature and Monte-Carlo simulations, we apply the model to hypothetical Asian-like settings, focusing on resistant bacteria that may cause infections in humans. In both scenarios A, illustrative of low-income countries, and B, illustrative of high-income countries, the overall individual risk of becoming colonized with resistant bacteria at least once per year is high. However, the average predicted incidence of colonization was lower in scenario B at 0.82 (CrI [0.13, 5.1]) acquisitions/person/year, versus 1.69 (CrI [0.66, 11.13]) acquisitions/person/year for scenario A. A high percentage of population with no access to improved water on premises and a high percentage of population involved in husbandry are shown to strongly increase the AMR acquisition risk. The One-Health AMR risk assessment framework we developed may prove useful to policymakers throughout Asia, as it can easily be parameterized to realistically reproduce conditions in a given country, provided data are available.


Asunto(s)
Farmacorresistencia Bacteriana , Medición de Riesgo/métodos , Animales , Antibacterianos , Asia , Pueblo Asiatico , Bacterias , Alimentos , Humanos , Incidencia , Ganado , Método de Montecarlo , Salud Única , Prevalencia , Reproducibilidad de los Resultados , Saneamiento , Agua
9.
BMC Med ; 18(1): 386, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33287821

RESUMEN

BACKGROUND: Long-term care facilities (LTCFs) are vulnerable to outbreaks of coronavirus disease 2019 (COVID-19). Timely epidemiological surveillance is essential for outbreak response, but is complicated by a high proportion of silent (non-symptomatic) infections and limited testing resources. METHODS: We used a stochastic, individual-based model to simulate transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) along detailed inter-individual contact networks describing patient-staff interactions in a real LTCF setting. We simulated distribution of nasopharyngeal swabs and reverse transcriptase polymerase chain reaction (RT-PCR) tests using clinical and demographic indications and evaluated the efficacy and resource-efficiency of a range of surveillance strategies, including group testing (sample pooling) and testing cascades, which couple (i) testing for multiple indications (symptoms, admission) with (ii) random daily testing. RESULTS: In the baseline scenario, randomly introducing a silent SARS-CoV-2 infection into a 170-bed LTCF led to large outbreaks, with a cumulative 86 (95% uncertainty interval 6-224) infections after 3 weeks of unmitigated transmission. Efficacy of symptom-based screening was limited by lags to symptom onset and silent asymptomatic and pre-symptomatic transmission. Across scenarios, testing upon admission detected just 34-66% of patients infected upon LTCF entry, and also missed potential introductions from staff. Random daily testing was more effective when targeting patients than staff, but was overall an inefficient use of limited resources. At high testing capacity (> 10 tests/100 beds/day), cascades were most effective, with a 19-36% probability of detecting outbreaks prior to any nosocomial transmission, and 26-46% prior to first onset of COVID-19 symptoms. Conversely, at low capacity (< 2 tests/100 beds/day), group testing strategies detected outbreaks earliest. Pooling randomly selected patients in a daily group test was most likely to detect outbreaks prior to first symptom onset (16-27%), while pooling patients and staff expressing any COVID-like symptoms was the most efficient means to improve surveillance given resource limitations, compared to the reference requiring only 6-9 additional tests and 11-28 additional swabs to detect outbreaks 1-6 days earlier, prior to an additional 11-22 infections. CONCLUSIONS: COVID-19 surveillance is challenged by delayed or absent clinical symptoms and imperfect diagnostic sensitivity of standard RT-PCR tests. In our analysis, group testing was the most effective and efficient COVID-19 surveillance strategy for resource-limited LTCFs. Testing cascades were even more effective given ample testing resources. Increasing testing capacity and updating surveillance protocols accordingly could facilitate earlier detection of emerging outbreaks, informing a need for urgent intervention in settings with ongoing nosocomial transmission.


Asunto(s)
COVID-19/epidemiología , Cuidados a Largo Plazo/organización & administración , Vigilancia en Salud Pública/métodos , Infecciones por Coronavirus/epidemiología , Femenino , Humanos , Masculino , Tamizaje Masivo/métodos , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Guías de Práctica Clínica como Asunto , SARS-CoV-2
10.
PLoS Comput Biol ; 15(5): e1006496, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31145725

RESUMEN

Antibiotic-resistance of hospital-acquired infections is a major public health issue. The worldwide emergence and diffusion of extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae, including Escherichia coli (ESBL-EC) and Klebsiella pneumoniae (ESBL-KP), is of particular concern. Preventing their nosocomial spread requires understanding their transmission. Using Close Proximity Interactions (CPIs), measured by wearable sensors, and weekly ESBL-EC-and ESBL-KP-carriage data, we traced their possible transmission paths among 329 patients in a 200-bed long-term care facility over 4 months. Based on phenotypically defined resistance profiles to 12 antibiotics only, new bacterial acquisitions were tracked. Extending a previously proposed statistical method, the CPI network's ability to support observed incident-colonization episodes of ESBL-EC and ESBL-KP was tested. Finally, mathematical modeling based on our findings assessed the effect of several infection-control measures. A potential infector was identified in the CPI network for 80% (16/20) of ESBL-KP acquisition episodes. The lengths of CPI paths between ESBL-KP incident cases and their potential infectors were shorter than predicted by chance (P = 0.02), indicating that CPI-network relationships were consistent with dissemination. Potential ESBL-EC infectors were identified for 54% (19/35) of the acquisitions, with longer-than-expected lengths of CPI paths. These contrasting results yielded differing impacts of infection control scenarios, with contact reduction interventions proving less effective for ESBL-EC than for ESBL-KP. These results highlight the widely variable transmission patterns among ESBL-producing Enterobacteriaceae species. CPI networks supported ESBL-KP, but not ESBL-EC spread. These outcomes could help design more specific surveillance and control strategies to prevent in-hospital Enterobacteriaceae dissemination.


Asunto(s)
Infección Hospitalaria/epidemiología , Transmisión de Enfermedad Infecciosa/prevención & control , Control de Infecciones/métodos , Adulto , Anciano , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/fisiología , Farmacorresistencia Microbiana , Enterobacteriaceae/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/microbiología , Femenino , Hospitales , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Masculino , Persona de Mediana Edad , Tecnología Inalámbrica , beta-Lactamasas/metabolismo
11.
PLoS Comput Biol ; 13(8): e1005666, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28837555

RESUMEN

Hospital-acquired infections (HAIs), including emerging multi-drug resistant organisms, threaten healthcare systems worldwide. Efficient containment measures of HAIs must mobilize the entire healthcare network. Thus, to best understand how to reduce the potential scale of HAI epidemic spread, we explore patient transfer patterns in the French healthcare system. Using an exhaustive database of all hospital discharge summaries in France in 2014, we construct and analyze three patient networks based on the following: transfers of patients with HAI (HAI-specific network); patients with suspected HAI (suspected-HAI network); and all patients (general network). All three networks have heterogeneous patient flow and demonstrate small-world and scale-free characteristics. Patient populations that comprise these networks are also heterogeneous in their movement patterns. Ranking of hospitals by centrality measures and comparing community clustering using community detection algorithms shows that despite the differences in patient population, the HAI-specific and suspected-HAI networks rely on the same underlying structure as that of the general network. As a result, the general network may be more reliable in studying potential spread of HAIs. Finally, we identify transfer patterns at both the French regional and departmental (county) levels that are important in the identification of key hospital centers, patient flow trajectories, and regional clusters that may serve as a basis for novel wide-scale infection control strategies.


Asunto(s)
Biología Computacional/métodos , Infección Hospitalaria/transmisión , Transferencia de Pacientes/estadística & datos numéricos , Algoritmos , Análisis por Conglomerados , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control , Francia/epidemiología , Hospitales , Humanos , Control de Infecciones
12.
Curr Opin Infect Dis ; 30(4): 410-418, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28570284

RESUMEN

PURPOSE OF REVIEW: Mathematical modeling approaches have brought important contributions to the study of pathogen spread in healthcare settings over the last 20 years. Here, we conduct a comprehensive systematic review of mathematical models of disease transmission in healthcare settings and assess the application of contact and patient transfer network data over time and their impact on our understanding of transmission dynamics of infections. RECENT FINDINGS: Recently, with the increasing availability of data on the structure of interindividual and interinstitution networks, models incorporating this type of information have been proposed, with the aim of providing more realistic predictions of disease transmission in healthcare settings. Models incorporating realistic data on individual or facility networks often remain limited to a few settings and a few pathogens (mostly methicillin-resistant Staphylococcus aureus). SUMMARY: To respond to the objectives of creating improved infection prevention and control measures and better understanding of healthcare-associated infections transmission dynamics, further innovations in data collection and parameter estimation in modeling is required.


Asunto(s)
Infección Hospitalaria/transmisión , Modelos Teóricos , Infección Hospitalaria/microbiología , Infección Hospitalaria/prevención & control , Humanos , Control de Infecciones , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/transmisión
13.
PLoS Comput Biol ; 11(3): e1004170, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25789632

RESUMEN

Close proximity interactions (CPIs) measured by wireless electronic devices are increasingly used in epidemiological models. However, no evidence supports that electronically collected CPIs inform on the contacts leading to transmission. Here, we analyzed Staphylococcus aureus carriage and CPIs recorded simultaneously in a long-term care facility for 4 months in 329 patients and 261 healthcare workers to test this hypothesis. In the broad diversity of isolated S. aureus strains, 173 transmission events were observed between participants. The joint analysis of carriage and CPIs showed that CPI paths linking incident cases to other individuals carrying the same strain (i.e. possible infectors) had fewer intermediaries than predicted by chance (P < 0.001), a feature that simulations showed to be the signature of transmission along CPIs. Additional analyses revealed a higher dissemination risk between patients via healthcare workers than via other patients. In conclusion, S. aureus transmission was consistent with contacts defined by electronically collected CPIs, illustrating their potential as a tool to control hospital-acquired infections and help direct surveillance.


Asunto(s)
Infección Hospitalaria/epidemiología , Infección Hospitalaria/transmisión , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/transmisión , Staphylococcus aureus , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biología Computacional , Femenino , Hospitales , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Adulto Joven
14.
BMC Infect Dis ; 16: 395, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27507065

RESUMEN

BACKGROUND: Norovirus, the leading cause of gastroenteritis, causes higher morbidity and mortality in nursing homes (NHs) than in the community. Hence, implementing infection control measures is crucial. However, the evidence on the effectiveness of these measures in NH settings is lacking. Using an innovative data-driven modeling approach, we assess various interventions to control norovirus spread in NHs. METHODS: We collected data on resident and staff characteristics and inter-human contacts in a French NH. Based on this data, we developed a stochastic compartmental model of norovirus transmission among the residents and staff of a 100-bed NH. Using this model, we investigated how the size of a 100-day norovirus outbreak changed following three interventions: increasing hand hygiene (HH) among the staff or residents and isolating symptomatic residents. RESULTS: Assuming a baseline staff HH compliance rate of 15 %, the model predicted on average 19 gastroenteritis cases over 100 days among the residents, which is consistent with published incidence data in NHs. Isolating symptomatic residents was highly effective, leading to an 88 % reduction in the predicted number of cases. The number of expected cases could also be reduced significantly by increasing HH compliance among the staff; for instance, by 75 % when assuming a 60 % HH compliance rate. While there was a linear reduction in the predicted number of cases when HH practices among residents increased, the achieved impact was less important. CONCLUSIONS: This study shows that simple interventions can help control the spread of norovirus in NHs. Modeling, which has seldom been used in these settings, may be a useful tool for decision makers to design optimal and cost-effective control strategies.


Asunto(s)
Infecciones por Caliciviridae/prevención & control , Gastroenteritis/prevención & control , Higiene de las Manos/métodos , Control de Infecciones/métodos , Casas de Salud , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/transmisión , Brotes de Enfermedades/prevención & control , Francia/epidemiología , Gastroenteritis/epidemiología , Gastroenteritis/virología , Humanos , Modelos Teóricos , Norovirus/patogenicidad
15.
Elife ; 132024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451256

RESUMEN

Non-pharmaceutical interventions implemented to block SARS-CoV-2 transmission in early 2020 led to global reductions in the incidence of invasive pneumococcal disease (IPD). By contrast, most European countries reported an increase in antibiotic resistance among invasive Streptococcus pneumoniae isolates from 2019 to 2020, while an increasing number of studies reported stable pneumococcal carriage prevalence over the same period. To disentangle the impacts of the COVID-19 pandemic on pneumococcal epidemiology in the community setting, we propose a mathematical model formalizing simultaneous transmission of SARS-CoV-2 and antibiotic-sensitive and -resistant strains of S. pneumoniae. To test hypotheses underlying these trends five mechanisms were built into the model and examined: (1) a population-wide reduction of antibiotic prescriptions in the community, (2) lockdown effect on pneumococcal transmission, (3) a reduced risk of developing an IPD due to the absence of common respiratory viruses, (4) community azithromycin use in COVID-19 infected individuals, (5) and a longer carriage duration of antibiotic-resistant pneumococcal strains. Among 31 possible pandemic scenarios involving mechanisms individually or in combination, model simulations surprisingly identified only two scenarios that reproduced the reported trends in the general population. They included factors (1), (3), and (4). These scenarios replicated a nearly 50% reduction in annual IPD, and an increase in antibiotic resistance from 20% to 22%, all while maintaining a relatively stable pneumococcal carriage. Exploring further, higher SARS-CoV-2 R0 values and synergistic within-host virus-bacteria interaction mechanisms could have additionally contributed to the observed antibiotic resistance increase. Our work demonstrates the utility of the mathematical modeling approach in unraveling the complex effects of the COVID-19 pandemic responses on AMR dynamics.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Streptococcus pneumoniae , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , SARS-CoV-2 , Pandemias , Control de Enfermedades Transmisibles
16.
PLOS Glob Public Health ; 4(2): e0002821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38358962

RESUMEN

When compliance with infection control recommendations is non-optimal, hospitals may play an important role in hepatitis C (HCV) transmission. However, few studies have analyzed the nosocomial HCV acquisition risk based on detailed empirical data. Here, we used data from a prospective cohort study conducted on 500 patients in the Ain Shams hospital (Cairo, Egypt) in 2017 with the objective of identifying (i) high-risk patient profiles and (ii) transmission hotspots within the hospital. Data included information on patient HCV status upon admission, their trajectories between wards and the invasive procedures they underwent. We first performed a sequence analysis to identify different hospitalization profiles. Second, we estimated each patient's individual risk of HCV acquisition based on ward-specific prevalence and procedures undergone, and risk hotspots by computing ward-level risks. Then, using a beta regression model, we evaluated upon-admission factors linked to HCV acquisition risk and built a score estimating the risk of HCV infection during hospitalization based on these factors. Finally, we assessed and compared ward-focused and patient-focused HCV control strategies. The sequence analysis based on patient trajectories allowed us to identify four distinct patient trajectory profiles. The risk of HCV infection was greater in the internal medicine department, compared to the surgery department (0·188% [0·142%-0·235%] vs. 0·043%, CI 95%: [0·036%-0·050%]), with risk hotspots in the geriatric, tropical medicine and intensive-care wards. Upon-admission risk predictors included source of admission, age, reason for hospitalization, and medical history. Interventions focused on the most at-risk patients were most effective to reduce HCV infection risk. Our results might help reduce the risk of HCV acquisition during hospitalization in Egypt by targeting enhanced control measures to ward-level transmission hotspots and to at-risk patients identified upon admission.

17.
Infect Control Hosp Epidemiol ; 45(4): 491-500, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38086622

RESUMEN

BACKGROUND: Accidental exposure to blood (AEB) poses a risk of bloodborne infections for healthcare workers (HCWs) during hospital activities. In this study, we identified individual behavioral and organizational predictors of AEB among HCWs. METHODS: The study was a prospective, 1-year follow-up cohort study conducted in university hospitals in Paris, France. Data were collected from the Stress at Work and Infectious Risk in Patients and Caregivers (STRIPPS) study. Eligible participants included nurses, nursing assistants, midwives, and physicians from 32 randomly selected wards in 4 hospitals. AEB occurrences were reported at baseline, 4 months, 8 months, and 12 months, and descriptive statistical and multilevel risk-factor analyses were performed. RESULTS: The study included 730 HCWs from 32 wards, predominantly nurses (52.6%), nursing assistants (41.1%), physicians (4.8%), and midwives (1.5%). The incidence rate of AEB remained stable across the 4 visits. The multilevel longitudinal analysis identified several significant predictors of AEB occurrence. Individual-level predictors included younger age, occupation as nurses or midwives, irregular work schedule, rotating shifts, and lack of support from supervisors. The use of external nurses was the most significant ward-level predictor associated with AEB occurrence. CONCLUSIONS: AEBs among HCWs are strongly associated with organizational predictors, highlighting the importance of complementing infection control policies with improved staff management and targeted training. This approach can help reduce AEB occurrences and enhance workplace safety for HCWs.


Asunto(s)
Personal de Salud , Personal de Hospital , Humanos , Estudios Longitudinales , Estudios Prospectivos , Estudios de Seguimiento , Hospitales Universitarios
18.
Sci Rep ; 14(1): 3702, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355640

RESUMEN

The transmission risk of SARS-CoV-2 within hospitals can exceed that in the general community because of more frequent close proximity interactions (CPIs). However, epidemic risk across wards is still poorly described. We measured CPIs directly using wearable sensors given to all present in a clinical ward over a 36-h period, across 15 wards in three hospitals in April-June 2020. Data were collected from 2114 participants and combined with a simple transmission model describing the arrival of a single index case to the ward to estimate the risk of an outbreak. Estimated epidemic risk ranged four-fold, from 0.12 secondary infections per day in an adult emergency to 0.49 per day in general paediatrics. The risk presented by an index case in a patient varied 20-fold across wards. Using simulation, we assessed the potential impact on outbreak risk of targeting the most connected individuals for prevention. We found that targeting those with the highest cumulative contact hours was most impactful (20% reduction for 5% of the population targeted), and on average resources were better spent targeting patients. This study reveals patterns of interactions between individuals in hospital during a pandemic and opens new routes for research into airborne nosocomial risk.


Asunto(s)
Hospitales , SARS-CoV-2 , Adulto , Humanos , Niño , Brotes de Enfermedades , Pandemias/prevención & control
19.
Antimicrob Agents Chemother ; 57(9): 4410-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23817383

RESUMEN

Interventions designed to reduce antibiotic consumption are under way worldwide. While overall reductions are often achieved, their impact on the selection of antibiotic-resistant selection cannot be assessed accurately from currently available data. We developed a mathematical model of methicillin-sensitive and methicillin-resistant Staphylococcus aureus (MSSA and MRSA) transmission inside and outside the hospital. A systematic simulation study was then conducted with two objectives: to assess the impact of antibiotic class-specific changes during an antibiotic reduction period and to investigate the interactions between antibiotic prescription changes in the hospital and the community. The model reproduced the overall reduction in MRSA frequency in French intensive-care units (ICUs) with antibiotic consumption in France from 2002 to 2003 as an input. However, the change in MRSA frequency depended on which antibiotic classes changed the most, with the same overall 10% reduction in antibiotic use over 1 year leading to anywhere between a 69% decrease and a 52% increase in MRSA frequency in ICUs and anywhere between a 37% decrease and a 46% increase in the community. Furthermore, some combinations of antibiotic prescription changes in the hospital and the community could act in a synergistic or antagonistic way with regard to overall MRSA selection. This study shows that class-specific changes in antibiotic use, rather than overall reductions, need to be considered in order to properly anticipate the impact of an antibiotic reduction campaign. It also highlights the fact that optimal gains will be obtained by coordinating interventions in hospitals and in the community, since the effect of an intervention in a given setting may be strongly affected by exogenous factors.


Asunto(s)
Antibacterianos/uso terapéutico , Resistencia a la Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Modelos Estadísticos , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/química , Antibacterianos/clasificación , Interacciones Farmacológicas , Francia/epidemiología , Humanos , Unidades de Cuidados Intensivos , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/transmisión
20.
Proc Biol Sci ; 280(1764): 20130519, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23782877

RESUMEN

Pneumococcus is an important human pathogen, highly antibiotic resistant and a major cause of bacterial meningitis worldwide. Better prevention requires understanding the drivers of pneumococcal infection incidence and antibiotic susceptibility. Although respiratory viruses (including influenza) have been suggested to influence pneumococcal infections, the underlying mechanisms are still unknown, and viruses are rarely considered when studying pneumococcus epidemiology. Here, we propose a novel mathematical model to examine hypothetical relationships between Streptococcus pneumoniae meningitis incidence (SPMI), acute viral respiratory infections (AVRIs) and antibiotic exposure. French time series of SPMI, AVRI and penicillin consumption over 2001-2004 are analysed and used to assess four distinct virus-bacteria interaction submodels, ascribing the interaction on pneumococcus transmissibility and/or pathogenicity. The statistical analysis reveals strong associations between time series: SPMI increases shortly after AVRI incidence and decreases overall as the antibiotic-prescription rate rises. Model simulations require a combined impact of AVRI on both pneumococcal transmissibility (up to 1.3-fold increase at the population level) and pathogenicity (up to threefold increase) to reproduce the data accurately, along with diminished epidemic fitness of resistant pneumococcal strains causing meningitis (0.97 (0.96-0.97)). Overall, our findings suggest that AVRI and antibiotics strongly influence SPMI trends. Consequently, vaccination protecting against respiratory virus could have unexpected benefits to limit invasive pneumococcal infections.


Asunto(s)
Antibacterianos/uso terapéutico , Meningitis Neumocócica/epidemiología , Modelos Estadísticos , Modelos Teóricos , Infecciones del Sistema Respiratorio/epidemiología , Francia/epidemiología , Humanos , Meningitis Neumocócica/tratamiento farmacológico , Análisis Multivariante , Penicilinas , Streptococcus pneumoniae/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA