Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 144(3): 963-974, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33484116

RESUMEN

Tau is a microtubule stabilizing protein that forms abnormal aggregates in many neurodegenerative disorders, including Alzheimer's disease. We have previously shown that co-expression of fragmented and full-length tau in P301SxTAU62on tau transgenic mice results in the formation of oligomeric tau species and causes severe paralysis. This paralysis is fully reversible once expression of the tau fragment is halted, even though P301S tau expression is maintained. Whereas various strategies to target tau aggregation have been developed, little is known about the long-term consequences of reverted tau toxicity. Therefore, we studied the long-term motor fitness of recovered, formerly paralysed P301SxTAU62on-off mice. To assess the seeding competence of oligomeric toxic tau species, we also inoculated ALZ17 mice with brainstem homogenates from paralysed P301SxTAU62on mice. Counter-intuitively, after recovery from paralysis due to oligomeric tau species expression, ageing P301SxTAU62on-off mice did not develop more motor impairment or tau pathology when compared to heterozygous P301S tau transgenic littermates. Thus, toxic tau species causing extensive neuronal dysfunction can be cleared without inducing seeding effects. Moreover, these toxic tau species also lack long-term tau seeding effects upon intrahippocampal inoculation into ALZ17 mice. In conclusion, tau species can be neurotoxic in the absence of seeding-competent tau aggregates, and mice can clear these tau forms permanently without tau seeding or spreading effects. These observations suggest that early targeting of non-fibrillar tau species may represent a therapeutically effective intervention in tauopathies. On the other hand, the absent seeding competence of early toxic tau species also warrants caution when using seeding-based tests for preclinical tauopathy diagnostics.


Asunto(s)
Tauopatías/patología , Proteínas tau/metabolismo , Proteínas tau/toxicidad , Animales , Humanos , Ratones , Ratones Transgénicos
2.
Alzheimers Dement ; 18(12): 2481-2492, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35142027

RESUMEN

Abnormal tau protein aggregates constitute a hallmark of Alzheimer's disease. The mechanisms underlying the initiation of tau aggregation in sporadic neurodegeneration remain unclear. Here we investigate whether a non-human prion can seed tau aggregation. Due to their structural similarity with tau aggregates, we chose Sup35NM yeast prion domain fibrils for explorative tau seedings. Upon in vitro incubation with tau monomers, Sup35NM fibrils promoted the formation of morphologically distinct tau fibril strains. In vivo, intrahippocampal inoculation of Sup35NM fibrils accentuated tau pathology in P301S tau transgenic mice. Thus, our results provide first in vivo evidence for heterotypic cross-species seeding of a neurodegenerative human prion-like protein by a yeast prion. This opens up the conceptual perspective that non-mammalian prions present in the human microbiome could be involved in the initiation of protein misfolding in neurodegenerative disorders, a mechanism for which we propose the term "trans-seeding."


Asunto(s)
Enfermedad de Alzheimer , Priones , Tauopatías , Ratones , Animales , Humanos , Proteínas tau/metabolismo , Priones/metabolismo , Enfermedad de Alzheimer/metabolismo , Tauopatías/patología , Saccharomyces cerevisiae/metabolismo , Ratones Transgénicos
3.
J Pathol ; 250(1): 19-29, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31471895

RESUMEN

In non-small cell lung cancer (NSCLC), immune checkpoint inhibitors (ICIs) significantly improve overall survival (OS). Tumor mutational burden (TMB) has emerged as a predictive biomarker for patients treated with ICIs. Here, we evaluated the predictive power of TMB measured by the Oncomine™ Tumor Mutational Load targeted sequencing assay in 76 NSCLC patients treated with ICIs. TMB was assessed retrospectively in 76 NSCLC patients receiving ICI therapy. Clinical data (RECIST 1.1) were collected and patients were classified as having either durable clinical benefit (DCB) or no durable benefit (NDB). Additionally, genetic alterations and PD-L1 expression were assessed and compared with TMB and response rate. TMB was significantly higher in patients with DCB than in patients with NDB (median TMB = 8.5 versus 6.0 mutations/Mb, Mann-Whitney p = 0.0244). 64% of patients with high TMB (cut-off = third tertile, TMB ≥ 9) were responders (DCB) compared to 33% and 29% of patients with intermediate and low TMB, respectively (cut-off = second and first tertile, TMB = 5-9 and TMB ≤ 4, respectively). TMB-high patients showed significantly longer progression-free survival (PFS) and OS (log-rank test p = 0.0014 for PFS and 0.0197 for OS). While identifying different subgroups of patients, combining PD-L1 expression and TMB increased the predictive power (from AUC 0.63 to AUC 0.65). Our results show that the TML panel is an effective tool to stratify patients for ICI treatment. A combination of biomarkers might maximize the predictive precision for patient stratification. Our study supports TMB evaluation through targeted NGS in NSCLC patient samples as a tool to predict response to ICI therapy. We offer recommendations for a reliable and cost-effective assessment of TMB in a routine diagnostic setting. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Análisis Mutacional de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Pulmonares/genética , Mutación , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos Inmunológicos/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Toma de Decisiones Clínicas , Femenino , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Selección de Paciente , Fenotipo , Medicina de Precisión , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Suiza
4.
Histopathology ; 77(2): 198-209, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32364264

RESUMEN

AIMS: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly evolved into a sweeping pandemic. Its major manifestation is in the respiratory tract, and the general extent of organ involvement and the microscopic changes in the lungs remain insufficiently characterised. Autopsies are essential to elucidate COVID-19-associated organ alterations. METHODS AND RESULTS: This article reports the autopsy findings of 21 COVID-19 patients hospitalised at the University Hospital Basel and at the Cantonal Hospital Baselland, Switzerland. An in-corpore technique was performed to ensure optimal staff safety. The primary cause of death was respiratory failure with exudative diffuse alveolar damage and massive capillary congestion, often accompanied by microthrombi despite anticoagulation. Ten cases showed superimposed bronchopneumonia. Further findings included pulmonary embolism (n = 4), alveolar haemorrhage (n = 3), and vasculitis (n = 1). Pathologies in other organ systems were predominantly attributable to shock; three patients showed signs of generalised and five of pulmonary thrombotic microangiopathy. Six patients were diagnosed with senile cardiac amyloidosis upon autopsy. Most patients suffered from one or more comorbidities (hypertension, obesity, cardiovascular diseases, and diabetes mellitus). Additionally, there was an overall predominance of males and individuals with blood group A (81% and 65%, respectively). All relevant histological slides are linked as open-source scans in supplementary files. CONCLUSIONS: This study provides an overview of postmortem findings in COVID-19 cases, implying that hypertensive, elderly, obese, male individuals with severe cardiovascular comorbidities as well as those with blood group A may have a lower threshold of tolerance for COVID-19. This provides a pathophysiological explanation for higher mortality rates among these patients.


Asunto(s)
COVID-19/patología , Capilares/patología , Enfermedades Vasculares/patología , Enfermedades Vasculares/virología , Anciano , Anciano de 80 o más Años , Autopsia , Capilares/virología , Femenino , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad , SARS-CoV-2
5.
Acta Neuropathol ; 138(6): 943-970, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31456031

RESUMEN

Granulovacuolar degeneration bodies (GVBs) are membrane-bound vacuolar structures harboring a dense core that accumulate in the brains of patients with neurodegenerative disorders, including Alzheimer's disease and other tauopathies. Insight into the origin of GVBs and their connection to tau pathology has been limited by the lack of suitable experimental models for GVB formation. Here, we used confocal, automated, super-resolution and electron microscopy to demonstrate that the seeding of tau pathology triggers the formation of GVBs in different mouse models in vivo and in primary mouse neurons in vitro. Seeding-induced intracellular tau aggregation, but not seed exposure alone, causes GVB formation in cultured neurons, but not in astrocytes. The extent of tau pathology strongly correlates with the GVB load. Tau-induced GVBs are immunoreactive for the established GVB markers CK1δ, CK1ɛ, CHMP2B, pPERK, peIF2α and pIRE1α and contain a LAMP1- and LIMP2-positive single membrane that surrounds the dense core and vacuole. The proteolysis reporter DQ-BSA is detected in the majority of GVBs, demonstrating that GVBs contain degraded endocytic cargo. GFP-tagged CK1δ accumulates in the GVB core, whereas GFP-tagged tau or GFP alone does not, indicating selective targeting of cytosolic proteins to GVBs. Taken together, we established the first in vitro model for GVB formation by seeding tau pathology in primary neurons. The tau-induced GVBs have the marker signature and morphological characteristics of GVBs in the human brain. We show that GVBs are lysosomal structures distinguished by the accumulation of a characteristic subset of proteins in a dense core.


Asunto(s)
Lisosomas/patología , Neuronas/patología , Tauopatías/patología , Vacuolas/patología , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Astrocitos/patología , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Femenino , Humanos , Lisosomas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Tauopatías/metabolismo , Vacuolas/metabolismo , Proteínas tau/genética
6.
Biochim Biophys Acta ; 1857(8): 1267-1276, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26997499

RESUMEN

During apoptosis mitochondria undergo cristae remodeling and fragmentation, but how the latter relates to outer membrane permeabilization and downstream caspase activation is unclear. Here we show that the mitochondrial fission protein Dynamin Related Protein (Drp) 1 participates in cytochrome c release by selected intrinsic death stimuli. While Bax, Bak double deficient (DKO) and Apaf1(-/-) mouse embryonic fibroblasts (MEFs) were less susceptible to apoptosis by Bcl-2 family member BID, H(2)O(2), staurosporine and thapsigargin, Drp1(-/-) MEFs were protected only from BID and H(2)O(2). Resistance to cell death of Drp1(-/-) and DKO MEFs correlated with blunted cytochrome c release, whereas mitochondrial fragmentation occurred in all cell lines in response to all tested stimuli, indicating that other mechanisms accounted for the reduced cytochrome c release. Indeed, cristae remodeling was reduced in Drp1(-/-) cells, potentially explaining their resistance to apoptosis. Our results indicate that caspase-independent mitochondrial fission and Drp1-dependent cristae remodeling amplify apoptosis. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Asunto(s)
Apoptosis/genética , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Dinaminas/genética , Fibroblastos/metabolismo , Dinámicas Mitocondriales/genética , Animales , Apoptosis/efectos de los fármacos , Factor Apoptótico 1 Activador de Proteasas/deficiencia , Factor Apoptótico 1 Activador de Proteasas/genética , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Línea Celular , Citocromos c/metabolismo , Dinaminas/deficiencia , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica , Peróxido de Hidrógeno/farmacología , Ratones , Ratones Noqueados , Dinámicas Mitocondriales/efectos de los fármacos , Estrés Oxidativo , Transducción de Señal , Estaurosporina/farmacología , Tapsigargina/farmacología , Proteína Destructora del Antagonista Homólogo bcl-2/deficiencia , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/deficiencia , Proteína X Asociada a bcl-2/genética
7.
Neurodegener Dis ; 17(6): 261-275, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28810250

RESUMEN

BACKGROUND/AIMS: Cerebral small vessel disease (SVD) is characterized by periventricular white matter (WM) changes and can lead to vascular dementia, the second most common form of age-dependent dementia. The pathogenesis of the disease remains poorly understood, and studies of its molecular basis are limited. By profiling gene expression of dissected postmortem brain tissue in SVD patients and comparisons with tissue of nonneurological controls, we aimed to identify genes and processes that are involved in the pathogenesis of SVD to gain new pathogenetic insights. METHODS: We performed genome-wide expression analyses in postmortem brain tissue samples dissected from frontal, temporal, and occipital lobes as well as basal nuclei comprising thalamus, basal ganglia, and hippocampus from 5 SVD cases and 5 nonaffected control cases. Cellular pathways associated with differently expressed genes were identified in each brain region individually. RESULTS: This analysis disclosed regional differences, with frontal lobe and thalamus showing the highest numbers of genes with significantly altered expression. Biological functions and pathways associated with changed gene expression depicted brain area-specific defective pathways. Vessel-associated functions, such as increased extracellular matrix-receptor interactions and cell adhesion molecules, were enhanced in all regions. Inflammation and apoptosis were induced particularly in basal nuclei and temporal and occipital regions. Interestingly, genes associated with the ubiquitin-dependent proteolysis (ubiquitin proteasome system) pathway were downregulated in the frontal lobe and in the thalamus, leading to the formation of protein aggregates. CONCLUSION: This analysis deciphers brain region-specific molecular processes to increase the present knowledge of SVD pathology and determine new potential therapeutic targets.


Asunto(s)
Encéfalo/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/patología , Enfermedades de los Pequeños Vasos Cerebrales/fisiopatología , Regulación de la Expresión Génica/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Anciano , Anciano de 80 o más Años , Autopsia , Encéfalo/patología , Femenino , Expresión Génica/fisiología , Humanos , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , ARN Mensajero/metabolismo , Proteína Sequestosoma-1/metabolismo , Transducción de Señal/fisiología , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteínas tau/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(23): 9535-40, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23690619

RESUMEN

Filamentous inclusions made of hyperphosphorylated tau are characteristic of numerous human neurodegenerative diseases, including Alzheimer's disease, tangle-only dementia, Pick disease, argyrophilic grain disease (AGD), progressive supranuclear palsy, and corticobasal degeneration. In Alzheimer's disease and AGD, it has been shown that filamentous tau appears to spread in a stereotypic manner as the disease progresses. We previously demonstrated that the injection of brain extracts from human mutant P301S tau-expressing transgenic mice into the brains of mice transgenic for wild-type human tau (line ALZ17) resulted in the assembly of wild-type human tau into filaments and the spreading of tau inclusions from the injection sites to anatomically connected brain regions. Here we injected brain extracts from humans who had died with various tauopathies into the hippocampus and cerebral cortex of ALZ17 mice. Argyrophilic tau inclusions formed in all cases and following the injection of the corresponding brain extracts, we recapitulated the hallmark lesions of AGD, PSP and CBD. Similar inclusions also formed after intracerebral injection of brain homogenates from human tauopathies into nontransgenic mice. Moreover, the induced formation of tau aggregates could be propagated between mouse brains. These findings suggest that once tau aggregates have formed in discrete brain areas, they become self-propagating and spread in a prion-like manner.


Asunto(s)
Encéfalo/metabolismo , Tauopatías/fisiopatología , Extractos de Tejidos/farmacología , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Western Blotting , Encéfalo/patología , Cruzamientos Genéticos , Femenino , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Extractos de Tejidos/administración & dosificación , Trasplante Heterólogo , Proteínas tau/genética
9.
Acta Neuropathol ; 129(5): 749-56, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25628035

RESUMEN

It has been proposed that tau aggregation confined to entorhinal cortex and hippocampus, with no or only minimal Aß deposition, should be considered as a 'primary age-related tauopathy' (PART) that is not integral to the continuum of sporadic Alzheimer disease (AD). Here, we examine the evidence that PART has a pathogenic mechanism and a prognosis which differ from those of AD. We contend that no specific property of the entorhinal-hippocampal tau pathology makes it possible to predict either a limited progression or the development of AD, and that biochemical differences await an evidence base. On the other hand, entorhinal-hippocampal tau pathology is an invariant feature of AD and is always associated with its development. Rather than creating a separate disease entity, we recommend the continued use of an analytical approach based on NFT stages and Aß phases with no inference about hypothetical disease processes.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/metabolismo , Tauopatías/diagnóstico , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Diagnóstico Diferencial , Progresión de la Enfermedad , Corteza Entorrinal/patología , Hipocampo/patología , Humanos , Tauopatías/metabolismo , Tauopatías/patología
11.
Neurol Sci ; 36(2): 323-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25213617

RESUMEN

Retinal vasculopathy with cerebral leukodystrophy (RVCL) is an adult-onset disorder caused by C-terminal heterozygous frameshift (fs) mutations in the human 3'-5' DNA exonuclease TREX1. Hereditary systemic angiopathy (HSA) is considered a variant of RVCL with systemic involvement of unknown genetic cause, described in a unique family so far. Here we describe the second case of RVCL with systemic involvement, characterized by cerebral calcifications and pseudotumoral lesions, retinopathy, osteonecrosis, renal and hepatic failure. The genetic screening of TREX1 in this patient revealed the novel heterozygous T270fs mutation on the C-terminal region. On the same gene, we found the V235fs mutation, formerly shown in RVCL, in one patient previously reported with HSA. These mutations lead to important alterations of the C-terminal of the protein, with the loss of the transmembrane helix (T270fs) and the insertion of a premature stop codon, resulting in a truncated protein (V235fs). Functional analysis of T270fs-mutated fibroblasts showed a prevalent localization of the protein in the cytosol, rather than in the perinuclear region. RVCL with systemic involvement is an extremely rare condition, whose diagnosis is complex due to multiorgan manifestations, unusual radiological and histopathological findings, not easily attributable to a single disease. It should be suspected in young adults with systemic microangiopathy involving retina, liver, kidney, bones and brain. Here we confirm the causative role played by TREX1 autosomal dominant fs mutations disrupting the C-terminal of the protein, providing a model for the study of stroke in young adults.


Asunto(s)
Exodesoxirribonucleasas/genética , Mutación del Sistema de Lectura , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Fosfoproteínas/genética , Enfermedades de la Retina/genética , Enfermedades Vasculares/genética , Adulto , Línea Celular , Núcleo Celular/metabolismo , Núcleo Celular/patología , Citosol/metabolismo , Citosol/patología , Análisis Mutacional de ADN , Exodesoxirribonucleasas/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Estudios de Seguimiento , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/tratamiento farmacológico , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Microscopía Confocal , Fosfoproteínas/metabolismo , Enfermedades de la Retina/tratamiento farmacológico , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Tomografía Computarizada por Rayos X , Enfermedades Vasculares/tratamiento farmacológico , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patología
12.
Acta Neuropathol ; 127(5): 667-83, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24531916

RESUMEN

Intracellular inclusions composed of hyperphosphorylated filamentous tau are a hallmark of Alzheimer's disease, progressive supranuclear palsy, Pick's disease and other sporadic neurodegenerative tauopathies. Recent in vitro and in vivo studies have shown that tau aggregates do not only seed further tau aggregation within neurons, but can also spread to neighbouring cells and functionally connected brain regions. This process is referred to as 'tau propagation' and may explain the stereotypic progression of tau pathology in the brains of Alzheimer's disease patients. Here, we describe a novel in vivo model of tau propagation using human P301S tau transgenic mice infused unilaterally with brain extract containing tau aggregates. Infusion-related neurofibrillary tangle pathology was first observed 2 weeks post-infusion and increased in a stereotypic, time-dependent manner. Contralateral and anterior/posterior spread of tau pathology was also evident in nuclei with strong synaptic connections (efferent and afferent) to the site of infusion, indicating that spread was dependent on synaptic connectivity rather than spatial proximity. This notion was further supported by infusion-related tau pathology in white matter tracts that interconnect these regions. The rapid and robust propagation of tau pathology in this model will be valuable for both basic research and the drug discovery process.


Asunto(s)
Encéfalo/patología , Ovillos Neurofibrilares/patología , Tauopatías/patología , Proteínas tau/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Inmunohistoquímica , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Ovillos Neurofibrilares/metabolismo , Distribución Aleatoria , Sinapsis/metabolismo , Sinapsis/patología , Tauopatías/metabolismo , Factores de Tiempo , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Proteínas tau/genética
13.
Curr Neurol Neurosci Rep ; 14(11): 495, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25218483

RESUMEN

Neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, are characterized by the abnormal aggregation of a small number of intracellular proteins, with tau and α-synuclein being the most commonly affected. Until recently, the events leading to aggregate formation were believed to be entirely cell-autonomous, with protein misfolding occurring independently in many cells. It is now believed that protein aggregates form in a small number of brain cells, from which they propagate intercellularly through templated recruitment, reminiscent of the mechanisms by which prions spread through the nervous system.


Asunto(s)
Sistema Nervioso Central/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Priones/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Humanos , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/patología , Deficiencias en la Proteostasis/complicaciones
14.
Acta Neuropathol Commun ; 12(1): 51, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38576030

RESUMEN

DNA methylation analysis based on supervised machine learning algorithms with static reference data, allowing diagnostic tumour typing with unprecedented precision, has quickly become a new standard of care. Whereas genome-wide diagnostic methylation profiling is mostly performed on microarrays, an increasing number of institutions additionally employ nanopore sequencing as a faster alternative. In addition, methylation-specific parallel sequencing can generate methylation and genomic copy number data. Given these diverse approaches to methylation profiling, to date, there is no single tool that allows (1) classification and interpretation of microarray, nanopore and parallel sequencing data, (2) direct control of nanopore sequencers, and (3) the integration of microarray-based methylation reference data. Furthermore, no software capable of entirely running in routine diagnostic laboratory environments lacking high-performance computing and network infrastructure exists. To overcome these shortcomings, we present EpiDiP/NanoDiP as an open-source DNA methylation and copy number profiling suite, which has been benchmarked against an established supervised machine learning approach using in-house routine diagnostics data obtained between 2019 and 2021. Running locally on portable, cost- and energy-saving system-on-chip as well as gpGPU-augmented edge computing devices, NanoDiP works in offline mode, ensuring data privacy. It does not require the rigid training data annotation of supervised approaches. Furthermore, NanoDiP is the core of our public, free-of-charge EpiDiP web service which enables comparative methylation data analysis against an extensive reference data collection. We envision this versatile platform as a useful resource not only for neuropathologists and surgical pathologists but also for the tumour epigenetics research community. In daily diagnostic routine, analysis of native, unfixed biopsies by NanoDiP delivers molecular tumour classification in an intraoperative time frame.


Asunto(s)
Epigenómica , Neoplasias , Humanos , Aprendizaje Automático no Supervisado , Nube Computacional , Neoplasias/diagnóstico , Neoplasias/genética , Metilación de ADN
15.
Brain ; 135(Pt 7): 2169-77, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22689910

RESUMEN

The accumulation of insoluble proteins is a pathological hallmark of several neurodegenerative disorders. Tauopathies are caused by the dysfunction and aggregation of tau protein and an impairment of cellular protein degradation pathways may contribute to their pathogenesis. Thus, a deficiency in autophagy can cause neurodegeneration, while activation of autophagy is protective against some proteinopathies. Little is known about the role of autophagy in animal models of human tauopathy. In the present report, we assessed the effects of autophagy stimulation by trehalose in a transgenic mouse model of tauopathy, the human mutant P301S tau mouse, using biochemical and immunohistochemical analyses. Neuronal survival was evaluated by stereology. Autophagy was activated in the brain, where the number of neurons containing tau inclusions was significantly reduced, as was the amount of insoluble tau protein. This reduction in tau aggregates was associated with improved neuronal survival in the cerebral cortex and the brainstem. We also observed a decrease of p62 protein, suggesting that it may contribute to the removal of tau inclusions. Trehalose failed to activate autophagy in the spinal cord, where it had no impact on the level of sarkosyl-insoluble tau. Accordingly, trehalose had no effect on the motor impairment of human mutant P301S tau transgenic mice. Our findings provide direct evidence in favour of the degradation of tau aggregates by autophagy. Activation of autophagy may be worth investigating in the context of therapies for human tauopathies.


Asunto(s)
Autofagia/fisiología , Modelos Animales de Enfermedad , Degeneración Nerviosa/fisiopatología , Tauopatías/fisiopatología , Trehalosa/farmacología , Animales , Autofagia/efectos de los fármacos , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Degeneración Nerviosa/tratamiento farmacológico , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/fisiología , Tauopatías/tratamiento farmacológico , Factor de Transcripción TFIIH , Factores de Transcripción/metabolismo , Trehalosa/uso terapéutico , Proteínas tau/genética , Proteínas tau/metabolismo
16.
Eur Neurol ; 67(3): 142-50, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22261560

RESUMEN

Neurodegenerative tauopathies may be inherited as autosomal-dominant disorders with variable clinicopathological phenotypes, and causative mutations in the microtubule-associated protein tau (MAPT) gene are not regularly seen. Herein, we describe a patient with clinically typical and autopsy-proven corticobasal degeneration (CBD). Her mother was diagnosed to have Parkinson's disease, but autopsy showed CBD pathology as in the index patient. The sister of the index patient had the clinical symptoms of primary progressive aphasia (PPA), but no pathology was available to date. Molecular analysis did not reveal any mutation in the MAPT or progranulin (GRN) genes. Our findings illustrate that CBD, progressive supranuclear palsy and PPA may be overlapping diseases with a common pathological basis rather than distinct entities. Clinical presentation and course might be determined by additional, yet unknown, genetic modifying factors.


Asunto(s)
Enfermedades de los Ganglios Basales/patología , Encéfalo/patología , Degeneración Nerviosa/patología , Tauopatías/patología , Afasia Progresiva Primaria/genética , Afasia Progresiva Primaria/patología , Afasia Progresiva Primaria/psicología , Enfermedades de los Ganglios Basales/genética , Enfermedades de los Ganglios Basales/psicología , Femenino , Humanos , Persona de Mediana Edad , Degeneración Nerviosa/genética , Degeneración Nerviosa/psicología , Examen Neurológico , Pruebas Neuropsicológicas , Linaje , Fenotipo , Parálisis Supranuclear Progresiva/genética , Parálisis Supranuclear Progresiva/patología , Parálisis Supranuclear Progresiva/psicología , Tauopatías/genética , Tauopatías/psicología
17.
Virchows Arch ; 481(4): 647-652, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35622144

RESUMEN

Precision medicine is entering a new era of digital diagnostics; the availability of integrated digital pathology (DP) and structured clinical datasets has the potential to become a key catalyst for biomedical research, education and business development. In Europe, national programs for sharing of this data will be crucial for the development, testing, and validation of machine learning-enabled tools supporting clinical decision-making. Here, the Swiss Digital Pathology Consortium (SDiPath) discusses the creation of a Swiss Digital Pathology Infrastructure (SDPI), which aims to develop a unified national DP network bringing together the Swiss Personalized Health Network (SPHN) with Swiss university hospitals and subsequent inclusion of cantonal and private institutions. This effort builds on existing developments for the national implementation of structured pathology reporting. Opening this national infrastructure and data to international researchers in a sequential rollout phase can enable the large-scale integration of health data and pooling of resources for research purposes and clinical trials. Therefore, the concept of a SDPI directly synergizes with the priorities of the European Commission communication on the digital transformation of healthcare on an international level, and with the aims of the Swiss State Secretariat for Economic Affairs (SECO) for advancing research and innovation in the digitalization domain. SDPI directly addresses the needs of existing national and international research programs in neoplastic and non-neoplastic diseases by providing unprecedented access to well-curated clinicopathological datasets for the development and implementation of novel integrative methods for analysis of clinical outcomes and treatment response. In conclusion, a SDPI would facilitate and strengthen inter-institutional collaboration in technology, clinical development, business and research at a national and international scale, promoting improved patient care via precision medicine.


Asunto(s)
Investigación Biomédica , Europa (Continente) , Humanos , Aprendizaje Automático , Medicina de Precisión , Suiza
19.
EMBO Mol Med ; 13(11): e13714, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34661368

RESUMEN

Risk stratification of COVID-19 patients is essential for pandemic management. Changes in the cell fitness marker, hFwe-Lose, can precede the host immune response to infection, potentially making such a biomarker an earlier triage tool. Here, we evaluate whether hFwe-Lose gene expression can outperform conventional methods in predicting outcomes (e.g., death and hospitalization) in COVID-19 patients. We performed a post-mortem examination of infected lung tissue in deceased COVID-19 patients to determine hFwe-Lose's biological role in acute lung injury. We then performed an observational study (n = 283) to evaluate whether hFwe-Lose expression (in nasopharyngeal samples) could accurately predict hospitalization or death in COVID-19 patients. In COVID-19 patients with acute lung injury, hFwe-Lose is highly expressed in the lower respiratory tract and is co-localized to areas of cell death. In patients presenting in the early phase of COVID-19 illness, hFwe-Lose expression accurately predicts subsequent hospitalization or death with positive predictive values of 87.8-100% and a negative predictive value of 64.1-93.2%. hFwe-Lose outperforms conventional inflammatory biomarkers and patient age and comorbidities, with an area under the receiver operating characteristic curve (AUROC) 0.93-0.97 in predicting hospitalization/death. Specifically, this is significantly higher than the prognostic value of combining biomarkers (serum ferritin, D-dimer, C-reactive protein, and neutrophil-lymphocyte ratio), patient age and comorbidities (AUROC of 0.67-0.92). The cell fitness marker, hFwe-Lose, accurately predicts outcomes in COVID-19 patients. This finding demonstrates how tissue fitness pathways dictate the response to infection and disease and their utility in managing the current COVID-19 pandemic.


Asunto(s)
COVID-19 , Biomarcadores , Flores , Humanos , Pandemias , Curva ROC , Estudios Retrospectivos , SARS-CoV-2 , Índice de Severidad de la Enfermedad
20.
Cancer Cell ; 39(3): 288-293, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33482122

RESUMEN

The application and integration of molecular profiling technologies create novel opportunities for personalized medicine. Here, we introduce the Tumor Profiler Study, an observational trial combining a prospective diagnostic approach to assess the relevance of in-depth tumor profiling to support clinical decision-making with an exploratory approach to improve the biological understanding of the disease.


Asunto(s)
Neoplasias/genética , Neoplasias/metabolismo , Toma de Decisiones Clínicas/métodos , Biología Computacional/métodos , Sistemas de Apoyo a Decisiones Clínicas , Humanos , Medicina de Precisión/métodos , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA