Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Antimicrob Agents Chemother ; 66(1): e0153521, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34606338

RESUMEN

Phenotypic screening identified an arylsulfonamide compound with activity against Trypanosoma cruzi, the causative agent of Chagas' disease. Comprehensive mode of action studies revealed that this compound primarily targets the T. cruzi proteasome, binding at the interface between ß4 and ß5 subunits that catalyze chymotrypsin-like activity. A mutation in the ß5 subunit of the proteasome was associated with resistance to compound 1, while overexpression of this mutated subunit also reduced susceptibility to compound 1. Further genetically engineered and in vitro-selected clones resistant to proteasome inhibitors known to bind at the ß4/ß5 interface were cross-resistant to compound 1. Ubiquitinated proteins were additionally found to accumulate in compound 1-treated epimastigotes. Finally, thermal proteome profiling identified malic enzyme as a secondary target of compound 1, although malic enzyme inhibition was not found to drive potency. These studies identify a novel pharmacophore capable of inhibiting the T. cruzi proteasome that may be exploitable for anti-chagasic drug discovery.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Enfermedad de Chagas/tratamiento farmacológico , Descubrimiento de Drogas , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Trypanosoma cruzi/química
2.
Artículo en Inglés | MEDLINE | ID: mdl-31405854

RESUMEN

Chagas' disease, which is caused by the Trypanosoma cruzi parasite, has become a global health problem that is currently treated with poorly tolerated drugs that require prolonged dosing. Therefore, there is a clinical need for new therapeutic agents that can mitigate these issues. The phosphomannomutase (PMM) and GDP-mannose pyrophosphorylase (GDP-MP) enzymes form part of the de novo biosynthetic pathway to the nucleotide sugar GDP-mannose. This nucleotide sugar is used either directly, or indirectly via the formation of dolichol-phosphomannose, for the assembly of all mannose-containing glycoconjugates. In T. cruzi, mannose-containing glycoconjugates include the cell-surface glycoinositol-phospholipids and the glycosylphosphatidylinositol-anchored mucin-like glycoproteins that dominate the cell surface architectures of all life cycle stages. This makes PMM and GDP-MP potentially attractive targets for a drug discovery program against Chagas' disease. To assess the ligandability of these enzymes in T. cruzi, we have screened 18,117 structurally diverse compounds exploring drug-like chemical space and 16,845 small polar fragment compounds using an assay interrogating the activities of both PMM and GDP-MP enzymes simultaneously. This resulted in 48 small fragment hits, and on retesting 20 were found to be active against the enzymes. Deconvolution revealed that these were all inhibitors of T. cruzi GDP-MP, with compounds 2 and 3 acting as uncompetitive and competitive inhibitors, respectively. Based on these findings, the T. cruzi PMM and GDP-MP enzymes were deemed not ligandable and poorly ligandable, respectively, using small molecules from conventional drug discovery chemical space. This presents a significant hurdle to exploiting these enzymes as therapeutic targets for Chagas' disease.


Asunto(s)
Antiprotozoarios/farmacología , Manosa/metabolismo , Nucleotidiltransferasas/metabolismo , Fosfotransferasas (Fosfomutasas)/metabolismo , Trypanosoma cruzi/enzimología , Enfermedad de Chagas/parasitología , Descubrimiento de Drogas/métodos , Manosafosfatos/metabolismo , Nucleotidiltransferasas/genética , Fosfotransferasas (Fosfomutasas)/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-31307977

RESUMEN

Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, is a potentially life-threatening condition that has become a global issue. Current treatment is limited to two medicines that require prolonged dosing and are associated with multiple side effects, which often lead to treatment discontinuation and failure. One way to address these shortcomings is through target-based drug discovery on validated T. cruzi protein targets. One such target is the proteasome, which plays a crucial role in protein degradation and turnover through chymotrypsin-, trypsin-, and caspase-like catalytic activities. In order to initiate a proteasome drug discovery program, we isolated proteasomes from T. cruzi epimastigotes and characterized their activity using a commercially available glow-like luminescence-based assay. We developed a high-throughput biochemical assay for the chymotrypsin-like activity of the T. cruzi proteasome, which was found to be sensitive, specific, and robust but prone to luminescence technology interference. To mitigate this, we also developed a counterscreen assay that identifies potential interferers at the levels of both the luciferase enzyme reporter and the mechanism responsible for a glow-like response. Interestingly, we also found that the peptide substrate for chymotrypsin-like proteasome activity was not specific and was likely partially turned over by other catalytic sites of the protein. Finally, we utilized these biochemical tools to screen 18,098 compounds, exploring diverse drug-like chemical space, which allowed us to identify 39 hits that were active in the primary screening assay and inactive in the counterscreen assay.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Sistema Libre de Células , Luminiscencia , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Reproducibilidad de los Resultados , Trypanosoma cruzi/química
4.
PLoS Biol ; 11(6): e1001593, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23824517

RESUMEN

The drug molecule PTC124 (Ataluren) has been described as a read-through agent, capable of suppressing premature termination codons (PTCs) and restoring functional protein production from genes disrupted by nonsense mutations. Following the discovery of PTC124 there was some controversy regarding its mechanism of action with two reports attributing its activity to an off-target effect on the Firefly luciferase (FLuc) reporter used in the development of the molecule. Despite questions remaining as to its mechanism of action, development of PTC124 continued into the clinic and it is being actively pursued as a potential nonsense mutation therapy. To thoroughly test the ability of PTC124 to read through nonsense mutations, we conducted a detailed assessment comparing the efficacy of PTC124 with the classical aminoglycoside antibiotic read-through agent geneticin (G418) across a diverse range of in vitro reporter assays. We can confirm the off-target FLuc activity of PTC124 but found that, while G418 exhibits varying activity in every read-through assay, there is no evidence of activity for PTC124.


Asunto(s)
Bioensayo , Codón sin Sentido/genética , Genes Reporteros , Oxadiazoles/farmacología , Animales , Línea Celular , Colágeno Tipo VII/metabolismo , Gentamicinas/farmacología , Humanos , Luciferasas de Luciérnaga/metabolismo , Transfección , beta-Galactosidasa/metabolismo
5.
Nature ; 464(7289): 728-32, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20360736

RESUMEN

African sleeping sickness or human African trypanosomiasis, caused by Trypanosoma brucei spp., is responsible for approximately 30,000 deaths each year. Available treatments for this disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease when the parasite has infected the central nervous system. Here we report the validation of a molecular target and the discovery of associated lead compounds with the potential to address this lack of suitable treatments. Inhibition of this target-T. brucei N-myristoyltransferase-leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis in mice. These high-affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have promising pharmaceutical properties and represent an opportunity to develop oral drugs to treat this devastating disease. Our studies validate T. brucei N-myristoyltransferase as a promising therapeutic target for human African trypanosomiasis.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Antiparasitarios/farmacología , Antiparasitarios/uso terapéutico , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Aciltransferasas/metabolismo , Aminopiridinas/química , Aminopiridinas/metabolismo , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Animales , Antiparasitarios/química , Antiparasitarios/metabolismo , Pruebas de Enzimas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Ratones , Estructura Molecular , Pirazoles/química , Pirazoles/metabolismo , Pirazoles/farmacología , Pirazoles/uso terapéutico , Ratas , Sulfonamidas/química , Sulfonamidas/metabolismo , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Factores de Tiempo , Trypanosoma brucei brucei/crecimiento & desarrollo
6.
Biochem J ; 459(2): 323-32, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24444291

RESUMEN

Co- and post-translational N-myristoylation is known to play a role in the correct subcellular localization of specific proteins in eukaryotes. The enzyme that catalyses this reaction, NMT (N-myristoyltransferase), has been pharmacologically validated as a drug target in the African trypanosome, Trypanosoma brucei. In the present study, we evaluate NMT as a potential drug target in Trypanosoma cruzi, the causative agent of Chagas' disease, using chemical and genetic approaches. Replacement of both allelic copies of TcNMT (T. cruzi NMT) was only possible in the presence of a constitutively expressed ectopic copy of the gene, indicating that this gene is essential for survival of T. cruzi epimastigotes. The pyrazole sulphonamide NMT inhibitor DDD85646 is 13-23-fold less potent against recombinant TcNMT than TbNMT (T. brucei NMT), with Ki values of 12.7 and 22.8 nM respectively, by scintillation proximity or coupled assay methods. DDD85646 also inhibits growth of T. cruzi epimastigotes (EC50=6.9 µM), but is ~1000-fold less potent than that reported for T. brucei. On-target activity is demonstrated by shifts in cell potency in lines that over- and under-express NMT and by inhibition of intracellular N-myristoylation of several proteins in a dose-dependent manner. Collectively, our findings suggest that N-myristoylation is an essential and druggable target in T. cruzi.


Asunto(s)
Aciltransferasas/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Trypanosoma cruzi/enzimología , Aciltransferasas/genética , Aminopiridinas , Animales , Chlorocebus aethiops , Clonación Molecular , Eliminación de Gen , Cinética , Organismos Modificados Genéticamente , Proteínas Recombinantes , Sulfonamidas , Células Vero
7.
ACS Infect Dis ; 8(9): 1962-1974, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36037410

RESUMEN

There is a pressing need for new medicines to prevent and treat malaria. Most antimalarial drug discovery is reliant upon phenotypic screening. However, with the development of improved target validation strategies, target-focused approaches are now being utilized. Here, we describe the development of a toolkit to support the therapeutic exploitation of a promising target, lysyl tRNA synthetase (PfKRS). The toolkit includes resistant mutants to probe resistance mechanisms and on-target engagement for specific chemotypes; a hybrid KRS protein capable of producing crystals suitable for ligand soaking, thus providing high-resolution structural information to guide compound optimization; chemical probes to facilitate pulldown studies aimed at revealing the full range of specifically interacting proteins and thermal proteome profiling (TPP); as well as streamlined isothermal TPP methods to provide unbiased confirmation of on-target engagement within a biologically relevant milieu. This combination of tools and methodologies acts as a template for the development of future target-enabling packages.


Asunto(s)
Antimaláricos , Lisina-ARNt Ligasa , Malaria , Antimaláricos/química , Antimaláricos/farmacología , Descubrimiento de Drogas , Humanos , Lisina-ARNt Ligasa/química , Lisina-ARNt Ligasa/genética , Lisina-ARNt Ligasa/metabolismo , Plasmodium falciparum/metabolismo
8.
J Biol Chem ; 284(52): 36137-36145, 2009 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-19828449

RESUMEN

In the search for new therapeutics for the treatment of human African trypanosomiasis, many potential drug targets in Trypanosoma brucei have been validated by genetic means, but very few have been chemically validated. Trypanothione synthetase (TryS; EC 6.3.1.9; spermidine/glutathionylspermidine:glutathione ligase (ADP-forming)) is one such target. To identify novel inhibitors of T. brucei TryS, we developed an in vitro enzyme assay, which was amenable to high throughput screening. The subsequent screen of a diverse compound library resulted in the identification of three novel series of TryS inhibitors. Further chemical exploration resulted in leads with nanomolar potency, which displayed mixed, uncompetitive, and allosteric-type inhibition with respect to spermidine, ATP, and glutathione, respectively. Representatives of all three series inhibited growth of bloodstream T. brucei in vitro. Exposure to one of our lead compounds (DDD86243; 2 x EC(50) for 72 h) decreased intracellular trypanothione levels to <10% of wild type. In addition, there was a corresponding 5-fold increase in the precursor metabolite, glutathione, providing strong evidence that DDD86243 was acting on target to inhibit TryS. This was confirmed with wild-type, TryS single knock-out, and TryS-overexpressing cell lines showing expected changes in potency to DDD86243. Taken together, these data provide initial chemical validation of TryS as a drug target in T. brucei.


Asunto(s)
Amida Sintasas/antagonistas & inhibidores , Antiprotozoarios/farmacocinética , Inhibidores Enzimáticos/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Trypanosoma brucei brucei/enzimología , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/enzimología , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/genética , Amida Sintasas/genética , Amida Sintasas/metabolismo , Animales , Antiprotozoarios/química , Antiprotozoarios/uso terapéutico , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Humanos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crecimiento & desarrollo
9.
ACS Infect Dis ; 6(5): 1044-1057, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32275825

RESUMEN

Methionyl-tRNA synthetase (MetRS) is a chemically validated drug target in kinetoplastid parasites Trypanosoma brucei and Leishmania donovani. To date, all kinetoplastid MetRS inhibitors described bind in a similar way to an expanded methionine pocket and an adjacent, auxiliary pocket. In the current study, we have identified a structurally novel class of inhibitors containing a 4,6-diamino-substituted pyrazolopyrimidine core (the MetRS02 series). Crystallographic studies revealed that MetRS02 compounds bind to an allosteric pocket in L. major MetRS not previously described, and enzymatic studies demonstrated a noncompetitive mode of inhibition. Homology modeling of the Trypanosoma cruzi MetRS enzyme revealed key differences in the allosteric pocket between the T. cruzi and Leishmania enzymes. These provide a likely explanation for the lower MetRS02 potencies that we observed for the T. cruzi enzyme compared to the Leishmania enzyme. The identification of a new series of MetRS inhibitors and the discovery of a new binding site in kinetoplastid MetRS enzymes provide a novel strategy in the search for new therapeutics for kinetoplastid diseases.


Asunto(s)
Sitio Alostérico , Metionina-ARNt Ligasa/química , Proteínas Protozoarias/química , Trypanosoma brucei brucei/enzimología , Metionina
10.
FEBS J ; 286(22): 4509-4524, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31260169

RESUMEN

Burkholderia pseudomallei is a serious, difficult to treat Gram-negative pathogen and an increase in the occurrence of drug-resistant strains has been detected. We have directed efforts to identify and to evaluate potential drug targets relevant to treatment of infection by B. pseudomallei. We have selected and characterised the essential enzyme d-alanine-d-alanine ligase (BpDdl), required for the ATP-assisted biosynthesis of a peptidoglycan precursor. A recombinant supply of protein supported high-resolution crystallographic and biophysical studies with ligands (AMP and AMP+d-Ala-d-Ala), and comparisons with orthologues enzymes suggest a ligand-induced conformational change occurring that might be relevant to the catalytic cycle. The detailed biochemical characterisation of the enzyme, development and optimisation of ligand binding assays supported the search for novel inhibitors by screening of selected compound libraries. In a similar manner to that observed previously in other studies, we note a paucity of hits that are worth follow-up and then in combination with a computational analysis of the active site, we conclude that this ligase represents a difficult target for drug discovery. Nevertheless, our reagents, protocols and data can underpin future efforts exploiting more diverse chemical libraries and structure-based approaches.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/química , Burkholderia pseudomallei/enzimología , Inhibidores Enzimáticos/farmacología , Péptido Sintasas/química , Adenosina Monofosfato/metabolismo , Alanina/metabolismo , Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Sitios de Unión , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Péptido Sintasas/antagonistas & inhibidores , Péptido Sintasas/metabolismo , Unión Proteica , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
11.
PLoS One ; 14(5): e0217828, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31150492

RESUMEN

The discovery of 20 unconventional kinetochore proteins in Trypanosoma brucei has opened a new and interesting area of evolutionary research to study a biological process previously thought to be highly conserved in all eukaryotes. In addition, the discovery of novel proteins involved in a critical cellular process provides an opportunity to exploit differences between kinetoplastid and human kinetochore proteins to develop therapeutics for diseases caused by kinetoplastid parasites. Consequently, we identified two of the unconventional kinetochore proteins as key targets (the highly related kinases KKT10 and KKT19). Recombinant T. brucei KKT19 (TbKKT19) protein was produced, a peptide substrate phosphorylated by TbKKT19 identified (KKLRRTLSVA), Michaelis constants for KKLRRTLSVA and ATP were determined (179 µM and 102 µM respectively) and a robust high-throughput compatible biochemical assay developed. This biochemical assay was validated pharmacologically with inhibition by staurosporine and hypothemycin (IC50 values of 288 nM and 65 nM respectively). Surprisingly, a subsequent high-throughput screen of a kinase-relevant compound library (6,624 compounds) yielded few hits (8 hits; final hit rate 0.12%). The low hit rate observed was unusual for a kinase target, particularly when screened against a compound library enriched with kinase hinge binding scaffolds. In an attempt to understand the low hit rate a TbKKT19 homology model, based on human cdc2-like kinase 1 (CLK1), was generated. Analysis of the TbKKT19 sequence and structure revealed no obvious features that could explain the low hit rates. Further work will therefore be necessary to explore this unique kinetochore kinase as well as to assess whether the few hits identified can be developed into tool molecules or new drugs.


Asunto(s)
Péptidos/antagonistas & inhibidores , Fosfotransferasas/antagonistas & inhibidores , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/dietoterapia , Animales , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Humanos , Cinetocoros/efectos de los fármacos , Cinetocoros/enzimología , Péptidos/química , Fosfotransferasas/química , Fosfotransferasas/genética , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Estaurosporina/farmacología , Trypanosoma brucei brucei/enzimología , Tripanosomiasis Africana/parasitología , Zearalenona/análogos & derivados , Zearalenona/farmacología
12.
ACS Infect Dis ; 5(1): 111-122, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30380837

RESUMEN

Visceral leishmaniasis (VL), caused by the protozoan parasites Leishmania donovani and L. infantum, is responsible for ∼30 000 deaths annually. Available treatments are inadequate, and there is a pressing need for new therapeutics. N-Myristoyltransferase (NMT) remains one of the few genetically validated drug targets in these parasites. Here, we sought to pharmacologically validate this enzyme in Leishmania. A focused set of 1600 pyrazolyl sulfonamide compounds was screened against L. major NMT in a robust high-throughput biochemical assay. Several potent inhibitors were identified with marginal selectivity over the human enzyme. There was little correlation between the enzyme potency of these inhibitors and their cellular activity against L. donovani axenic amastigotes, and this discrepancy could be due to poor cellular uptake due to the basicity of these compounds. Thus, a series of analogues were synthesized with less basic centers. Although most of these compounds continued to suffer from relatively poor antileishmanial activity, our most potent inhibitor of LmNMT (DDD100097, K i of 0.34 nM) showed modest activity against L. donovani intracellular amastigotes (EC50 of 2.4 µM) and maintained a modest therapeutic window over the human enzyme. Two unbiased approaches, namely, screening against our cosmid-based overexpression library and thermal proteome profiling (TPP), confirm that DDD100097 (compound 2) acts on-target within parasites. Oral dosing with compound 2 resulted in a 52% reduction in parasite burden in our mouse model of VL. Thus, NMT is now a pharmacologically validated target in Leishmania. The challenge in finding drug candidates remains to identify alternative strategies to address the drop-off in activity between enzyme inhibition and in vitro activity while maintaining sufficient selectivity over the human enzyme, both issues that continue to plague studies in this area.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Antiprotozoarios/farmacología , Descubrimiento de Drogas , Leishmania donovani/efectos de los fármacos , Pirazoles/química , Pirazoles/farmacología , Animales , Cósmidos , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Leishmaniasis Visceral/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos , Proteoma/análisis , Proteómica
13.
Nat Rev Microbiol ; 16(11): 714, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30206344

RESUMEN

The structures of nifurtimox in Table 1 were incorrect and have been updated in the pdf and online. The authors apologize for any confusion caused.

14.
J Med Chem ; 61(18): 8374-8389, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30207721

RESUMEN

Crystallography has guided the hybridization of two series of Trypanosoma brucei N-myristoyltransferase (NMT) inhibitors, leading to a novel highly selective series. The effect of combining the selectivity enhancing elements from two pharmacophores is shown to be additive and has led to compounds that have greater than 1000-fold selectivity for TbNMT vs HsNMT. Further optimization of the hybrid series has identified compounds with significant trypanocidal activity capable of crossing the blood-brain barrier. By using CF-1 mdr1a deficient mice, we were able to demonstrate full cures in vivo in a mouse model of stage 2 African sleeping sickness. This and previous work provides very strong validation for NMT as a drug target for human African trypanosomiasis in both the peripheral and central nervous system stages of disease.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Barrera Hematoencefálica/efectos de los fármacos , Diseño de Fármacos , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Animales , Supervivencia Celular , Femenino , Humanos , Ratones , Ratones Endogámicos , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Relación Estructura-Actividad , Tripanosomiasis Africana/microbiología
15.
Nat Rev Microbiol ; 15(4): 217-231, 2017 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-28239154

RESUMEN

The WHO recognizes human African trypanosomiasis, Chagas disease and the leishmaniases as neglected tropical diseases. These diseases are caused by parasitic trypanosomatids and range in severity from mild and self-curing to near invariably fatal. Public health advances have substantially decreased the effect of these diseases in recent decades but alone will not eliminate them. In this Review, we discuss why new drugs against trypanosomatids are required, approaches that are under investigation to develop new drugs and why the drug discovery pipeline remains essentially unfilled. In addition, we consider the important challenges to drug discovery strategies and the new technologies that can address them. The combination of new drugs, new technologies and public health initiatives is essential for the management, and hopefully eventual elimination, of trypanosomatid diseases from the human population.

16.
J Med Chem ; 60(23): 9790-9806, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29125744

RESUMEN

N-Myristoyltransferase (NMT) represents a promising drug target within the parasitic protozoa Trypanosoma brucei (T. brucei), the causative agent for human African trypanosomiasis (HAT) or sleeping sickness. We have previously validated T. brucei NMT as a promising druggable target for the treatment of HAT in both stages 1 and 2 of the disease. We report on the use of the previously reported DDD85646 (1) as a starting point for the design of a class of potent, brain penetrant inhibitors of T. brucei NMT.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Aminopiridinas/química , Aminopiridinas/farmacología , Sulfonamidas/química , Sulfonamidas/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Tripanosomiasis Africana/tratamiento farmacológico , Aciltransferasas/metabolismo , Aminopiridinas/síntesis química , Aminopiridinas/farmacocinética , Animales , Encéfalo/metabolismo , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Humanos , Ratones , Sulfonamidas/síntesis química , Sulfonamidas/farmacocinética , Tripanocidas/síntesis química , Tripanocidas/farmacocinética , Tripanosomiasis Africana/metabolismo
17.
ACS Infect Dis ; 3(10): 718-727, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-28967262

RESUMEN

Methionyl-tRNA synthetase (MetRS) has been chemically validated as a drug target in the kinetoplastid parasite Trypanosoma brucei. In the present study, we investigate the validity of this target in the related trypanosomatid Leishmania donovani. Following development of a robust high-throughput compatible biochemical assay, a compound screen identified DDD806905 as a highly potent inhibitor of LdMetRS (Ki of 18 nM). Crystallography revealed this compound binds to the methionine pocket of MetRS with enzymatic studies confirming DDD806905 displays competitive inhibition with respect to methionine and mixed inhibition with respect to ATP binding. DDD806905 showed activity, albeit with different levels of potency, in various Leishmania cell-based viability assays, with on-target activity observed in both Leishmania promastigote cell assays and a Leishmania tarentolae in vitro translation assay. Unfortunately, this compound failed to show efficacy in an animal model of leishmaniasis. We investigated the potential causes for the discrepancies in activity observed in different Leishmania cell assays and the lack of efficacy in the animal model and found that high protein binding as well as sequestration of this dibasic compound into acidic compartments may play a role. Despite medicinal chemistry efforts to address the dibasic nature of DDD806905 and analogues, no progress could be achieved with the current chemical series. Although DDD806905 is not a developable antileishmanial compound, MetRS remains an attractive antileishmanial drug target.


Asunto(s)
Antiprotozoarios/farmacología , Inhibidores Enzimáticos/farmacología , Leishmania donovani/enzimología , Metionina-ARNt Ligasa/antagonistas & inhibidores , Metionina-ARNt Ligasa/metabolismo , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Leishmania donovani/efectos de los fármacos , Estructura Molecular
18.
ChemMedChem ; 10(11): 1821-36, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26395087

RESUMEN

The enzyme N-myristoyltransferase (NMT) from Trypanosoma brucei has been validated both chemically and biologically as a potential drug target for human African trypanosomiasis. We previously reported the development of some very potent compounds based around a pyrazole sulfonamide series, derived from a high-throughput screen. Herein we describe work around thiazolidinone and benzomorpholine scaffolds that were also identified in the screen. An X-ray crystal structure of the thiazolidinone hit in Leishmania major NMT showed the compound bound in the previously reported active site, utilising a novel binding mode. This provides potential for further optimisation. The benzomorpholinone was also found to bind in a similar region. Using an X-ray crystallography/structure-based design approach, the benzomorpholinone series was further optimised, increasing activity against T. brucei NMT by >1000-fold. A series of trypanocidal compounds were identified with suitable in vitro DMPK properties, including CNS exposure for further development. Further work is required to increase selectivity over the human NMT isoform and activity against T. brucei.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Trypanosoma brucei brucei/enzimología , Aciltransferasas/metabolismo , Sitios de Unión/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Trypanosoma brucei brucei/efectos de los fármacos
19.
ACS Chem Biol ; 10(6): 1425-34, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25706802

RESUMEN

Treatment of filamentous fungal infections relies on a limited repertoire of antifungal agents. Compounds possessing novel modes of action are urgently required. N-myristoylation is a ubiquitous modification of eukaryotic proteins. The enzyme N-myristoyltransferase (NMT) has been considered a potential therapeutic target in protozoa and yeasts. Here, we show that the filamentous fungal pathogen Aspergillus fumigatus possesses an active NMT enzyme that is essential for survival. Surprisingly, partial repression of the gene revealed downstream effects of N-myristoylation on cell wall morphology. Screening a library of inhibitors led to the discovery of a pyrazole sulphonamide compound that inhibits the enzyme and is fungicidal under partially repressive nmt conditions. Together with a crystallographic complex showing the inhibitor binding in the peptide substrate pocket, we provide evidence of NMT being a potential drug target in A. fumigatus.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Pared Celular/efectos de los fármacos , Proteínas Fúngicas/antagonistas & inhibidores , Procesamiento Proteico-Postraduccional , Aciltransferasas/química , Aciltransferasas/metabolismo , Aminopiridinas/química , Aminopiridinas/farmacología , Antifúngicos/química , Aspergillus fumigatus/enzimología , Aspergillus fumigatus/genética , Aspergillus fumigatus/crecimiento & desarrollo , Dominio Catalítico , Pared Celular/química , Pared Celular/enzimología , Cristalografía por Rayos X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Cinética , Pruebas de Sensibilidad Microbiana , Unión Proteica , Estructura Secundaria de Proteína , Pirazoles/química , Pirazoles/farmacología , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/farmacología
20.
J Med Chem ; 57(23): 9855-69, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25412409

RESUMEN

Trypanosoma brucei N-myristoyltransferase (TbNMT) is an attractive therapeutic target for the treatment of human African trypanosomiasis (HAT). From previous studies, we identified pyrazole sulfonamide, DDD85646 (1), a potent inhibitor of TbNMT. Although this compound represents an excellent lead, poor central nervous system (CNS) exposure restricts its use to the hemolymphatic form (stage 1) of the disease. With a clear clinical need for new drug treatments for HAT that address both the hemolymphatic and CNS stages of the disease, a chemistry campaign was initiated to address the shortfalls of this series. This paper describes modifications to the pyrazole sulfonamides which markedly improved blood-brain barrier permeability, achieved by reducing polar surface area and capping the sulfonamide. Moreover, replacing the core aromatic with a flexible linker significantly improved selectivity. This led to the discovery of DDD100097 (40) which demonstrated partial efficacy in a stage 2 (CNS) mouse model of HAT.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Pirazoles/síntesis química , Sulfonamidas/síntesis química , Tripanocidas/síntesis química , Tripanosomiasis Africana/tratamiento farmacológico , Aminopiridinas/química , Animales , Barrera Hematoencefálica/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Femenino , Humanos , Concentración 50 Inhibidora , Ratones , Pirazoles/farmacología , Pirazoles/uso terapéutico , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA