Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36971487

RESUMEN

Our understanding of the molecular events driving cell specification in early mammalian development relies mainly on mouse studies, and it remains unclear whether these mechanisms are conserved across mammals, including humans. We have shown that the establishment of cell polarity via aPKC is a conserved event in the initiation of the trophectoderm (TE) placental programme in mouse, cow and human embryos. However, the mechanisms transducing cell polarity into cell fate in cow and human embryos are unknown. Here, we have examined the evolutionary conservation of Hippo signalling, which is thought to function downstream of aPKC activity, in four different mammalian species: mouse, rat, cow and human. In all four species, inhibition of the Hippo pathway by targeting LATS kinases is sufficient to drive ectopic TE initiation and downregulation of SOX2. However, the timing and localisation of molecular markers differ across species, with rat embryos more closely recapitulating human and cow developmental dynamics, compared with the mouse. Our comparative embryology approach uncovered intriguing differences as well as similarities in a fundamental developmental process among mammals, reinforcing the importance of cross-species investigations.


Asunto(s)
Vía de Señalización Hippo , Transducción de Señal , Bovinos , Humanos , Femenino , Embarazo , Ratones , Ratas , Animales , Transducción de Señal/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Blastocisto/metabolismo , Placenta/metabolismo , Mamíferos/metabolismo , Linaje de la Célula
2.
Nature ; 587(7834): 443-447, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32968278

RESUMEN

Current understandings of cell specification in early mammalian pre-implantation development are based mainly on mouse studies. The first lineage differentiation event occurs at the morula stage, with outer cells initiating a trophectoderm (TE) placental progenitor program. The inner cell mass arises from inner cells during subsequent developmental stages and comprises precursor cells of the embryo proper and yolk sac1. Recent gene-expression analyses suggest that the mechanisms that regulate early lineage specification in the mouse may differ in other mammals, including human2-5 and cow6. Here we show the evolutionary conservation of a molecular cascade that initiates TE segregation in human, cow and mouse embryos. At the morula stage, outer cells acquire an apical-basal cell polarity, with expression of atypical protein kinase C (aPKC) at the contact-free domain, nuclear expression of Hippo signalling pathway effectors and restricted expression of TE-associated factors such as GATA3, which suggests initiation of a TE program. Furthermore, we demonstrate that inhibition of aPKC by small-molecule pharmacological modulation or Trim-Away protein depletion impairs TE initiation at the morula stage. Our comparative embryology analysis provides insights into early lineage specification and suggests that a similar mechanism initiates a TE program in human, cow and mouse embryos.


Asunto(s)
Evolución Biológica , Ectodermo/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transcripción Genética , Trofoblastos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Masa Celular Interna del Blastocisto/citología , Masa Celular Interna del Blastocisto/metabolismo , Bovinos , Linaje de la Célula , Polaridad Celular , Ectodermo/citología , Embrión de Mamíferos/enzimología , Femenino , Factor de Transcripción GATA3/metabolismo , Vía de Señalización Hippo , Humanos , Ratones , Mórula/citología , Mórula/enzimología , Mórula/metabolismo , Placenta/citología , Placenta/metabolismo , Embarazo , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Trofoblastos/citología , Proteínas Señalizadoras YAP , Saco Vitelino/citología , Saco Vitelino/metabolismo
3.
Hum Mol Genet ; 31(21): 3629-3642, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35285472

RESUMEN

Humans present remarkable diversity in their mitochondrial DNA (mtDNA) in terms of variants across individuals as well as across tissues and even cells within one person. We have investigated the timing of the first appearance of this variant-driven mosaicism. For this, we deep-sequenced the mtDNA of 254 oocytes from 85 donors, 158 single blastomeres of 25 day-3 embryos, 17 inner cell mass and trophectoderm samples of 7 day-5 blastocysts, 142 bulk DNA and 68 single cells of different adult tissues. We found that day-3 embryos present blastomeres that carry variants only detected in that cell, showing that mtDNA mosaicism arises very early in human development. We classified the mtDNA variants based on their recurrence or uniqueness across different samples. Recurring variants had higher heteroplasmic loads and more frequently resulted in synonymous changes or were located in non-coding regions than variants unique to one oocyte or single embryonic cell. These differences were maintained through development, suggesting that the mtDNA mosaicism arising in the embryo is maintained into adulthood. We observed a decline in potentially pathogenic variants between day 3 and day 5 of development, suggesting early selection. We propose a model in which closely clustered mitochondria carrying specific mtDNA variants in the ooplasm are asymmetrically distributed throughout the cell divisions of the preimplantation embryo, resulting in the earliest form of mtDNA mosaicism in human development.


Asunto(s)
ADN Mitocondrial , Desarrollo Embrionario , Adulto , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Linaje de la Célula/genética , Desarrollo Embrionario/genética , Oocitos/metabolismo , Mitocondrias/genética , Mosaicismo
4.
Hum Reprod ; 38(8): 1529-1537, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37295967

RESUMEN

STUDY QUESTION: What have we learnt after 10 years of electronic witnessing? SUMMARY ANSWER: When applied correctly, an electronic witnessing system can replace manual witnessing in the medically assisted reproduction lab to prevent sample mix-up. WHAT IS KNOWN ALREADY: Electronic witnessing systems have been implemented to improve the correct identification, processing, and traceability of biological materials. When non-matching samples are simultaneously present in a single workstation, a mismatch event is generated to prevent sample mix-up. STUDY DESIGN, SIZE, DURATION: This evaluation investigates the mismatch and administrator assign rate over a 10-year period (March 2011-December 2021) with the use of an electronic witnessing system. Radiofrequency identification tags and barcodes were used for patient and sample identification. Since 2011, IVF and ICSI cycles and frozen embryo transfer cycles (FET) were included; IUIs cycles were included since 2013. PARTICIPANTS/MATERIALS, SETTING, METHODS: The total number of tags and witnessing points were recorded. Witnessing points in a particular electronic witnessing system represent all the actions that have been performed from gamete collection through embryo production, to cryopreservation and transfer. Mismatches and administrator assigns were collected and stratified per procedure (sperm preparation, oocyte retrieval, IVF/ICSI, cleavage stage embryo or blastocyst embryo biopsy, vitrification and warming, embryo transfer, medium changeover, and IUI). Critical mismatches (such as mislabelling or non-matching samples within one work area) and critical administrator assigns (such as samples not identified by the electronic witnessing system and unconfirmed witnessing points) were selected. MAIN RESULTS AND THE ROLE OF CHANCE: A total of 109 655 cycles were included: 53 023 IVF/ICSI, 36 347 FET, and 20 285 IUI cycles. The 724 096 used tags, led to a total of 849 650 witnessing points. The overall mismatch rate was 0.251% (2132/849 650) per witnessing point and 1.944% per cycle. In total, 144 critical mismatches occurred over the different procedures. The yearly mean critical mismatch rate was 0.017 ± 0.007% per witnessing point and 0.129 ± 0.052% per cycle. The overall administrator assign rate was 0.111% (940/849 650) per witnessing point and 0.857% per cycle, including 320 critical administrator assigns. The yearly mean critical administrator assign rate was 0.039 ± 0.010% per witnessing point and 0.301 ± 0.069% per cycle. Overall mismatch and administrator assign rates remained fairly stable during the evaluated time period. Sperm preparation and IVF/ICSI were the procedures most prone to critical mismatch and administrator assigns. LIMITATIONS, REASONS FOR CAUTION: The procedures and methods of integration of an electronic witnessing system may vary from one laboratory to another and result in differences in the potential risks related to sample identification. Individual embryos cannot (yet) be identified by such a system; this makes extra manual witnessing indispensable at certain critical steps where potential errors are not recorded. The electronic witnessing system still needs to be used in combination with manual labelling of both the bottom and lid of dishes and tubes to guarantee correct assignment in case of malfunction or incorrect use of radiofrequency identification tags. WIDER IMPLICATIONS OF THE FINDINGS: Electronic witnessing is considered to be the ultimate tool to safeguard correct identification of gametes and embryos. But this is only possible when used correctly, and proper training and attention of the staff is required. It may also induce new risks, i.e. blind witnessing of samples by the operator. STUDY FUNDING/COMPETING INTEREST(S): No funding was either sought or obtained for this study. J.S. presents webinars on RIW for CooperSurgical. The remaining authors have nothing to declare. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Técnicas Reproductivas Asistidas , Semen , Embarazo , Femenino , Masculino , Humanos , Índice de Embarazo , Transferencia de Embrión/métodos , Reproducción , Estudios Retrospectivos , Fertilización In Vitro/métodos
5.
Hum Reprod ; 38(8): 1484-1498, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37295962

RESUMEN

STUDY QUESTION: Which processes and transcription factors specify the first and second lineage segregation events during human preimplantation development? SUMMARY ANSWER: Differentiation into trophectoderm (TE) cells can be initiated independently of polarity; moreover, TEAD1 and YAP1 co-localize in (precursor) TE and primitive endoderm (PrE) cells, suggesting a role in both the first and the second lineage segregation events. WHAT IS KNOWN ALREADY: We know that polarity, YAP1/GATA3 signalling and phospholipase C signalling play a key role in TE initiation in compacted human embryos, however, little is known about the TEAD family of transcription factors that become activated by YAP1 and, especially, whether they play a role during epiblast (EPI) and PrE formation. In mouse embryos, polarized outer cells show nuclear TEAD4/YAP1 activity that upregulates Cdx2 and Gata3 expression while inner cells exclude YAP1 which upregulates Sox2 expression. The second lineage segregation event in mouse embryos is orchestrated by FGF4/FGFR2 signalling which could not be confirmed in human embryos; TEAD1/YAP1 signalling also plays a role during the establishment of mouse EPI cells. STUDY DESIGN, SIZE, DURATION: Based on morphology, we set up a development timeline of 188 human preimplantation embryos between Day 4 and 6 post-fertilization (dpf). The compaction process was divided into three subgroups: embryos at the start (C0), during (C1), and at the end (C2) of, compaction. Inner cells were identified as cells that were entirely separated from the perivitelline space and enclosed by cellular contacts on all sides. The blastulation process was divided into six subgroups, starting with early blastocysts with sickle-cell shaped outer cells (B0) and further on, blastocysts with a cavity (B1). Full blastocysts (B2) showed a visible ICM and outer cells referred to as TE. Further expanded blastocysts (B3) had accumulated fluid and started to expand due to TE cell proliferation and zona pellucida (ZP) thinning. The blastocysts then significantly expanded further (B4) and started to hatch out of the ZP (B5) until they were fully hatched (B6). PARTICIPANTS/MATERIALS, SETTING, METHODS: After informed consent and the expiration of the 5-year cryopreservation duration, 188 vitrified high quality eight-cell stage human embryos (3 dpf) were warmed and cultured until the required stages were reached. We also cultured 14 embryos that were created for research until the four- and eight-cell stage. The embryos were scored according to their developmental stage (C0-B6) displaying morphological key differences, rather than defining them according to their chronological age. They were fixed and immunostained for different combinations of cytoskeleton (F-actin), polarization (p-ERM), TE (GATA3), EPI (NANOG), PrE (GATA4 and SOX17), and members of the Hippo signalling pathway (YAP1, TEAD1 and TEAD4). We choose these markers based on previous observations in mouse embryos and single cell RNA-sequencing data of human embryos. After confocal imaging (LSM800, Zeiss), we analysed cell numbers within each lineage, different co-localization patterns and nuclear enrichment. MAIN RESULTS AND THE ROLE OF CHANCE: We found that in human preimplantation embryos compaction is a heterogeneous process that takes place between the eight-cell to the 16-cell stages. Inner and outer cells are established at the end of the compaction process (C2) when the embryos contain up to six inner cells. Full apical p-ERM polarity is present in all outer cells of compacted C2 embryos. Co-localization of p-ERM and F-actin increases steadily from 42.2% to 100% of the outer cells, between C2 and B1 stages, while p-ERM polarizes before F-actin (P < 0.00001). Next, we sought to determine which factors specify the first lineage segregation event. We found that 19.5% of the nuclei stain positive for YAP1 at the start of compaction (C0) which increases to 56.1% during compaction (C1). At the C2 stage, 84.6% of polarized outer cells display high levels of nuclear YAP1 while it is absent in 75% of non-polarized inner cells. In general, throughout the B0-B3 blastocyst stages, polarized outer/TE cells are mainly positive for YAP1 and non-polarized inner/ICM cells are negative for YAP1. From the C1 stage onwards, before polarity is established, the TE marker GATA3 is detectable in YAP1 positive cells (11.6%), indicating that differentiation into TE cells can be initiated independently of polarity. Co-localization of YAP1 and GATA3 increases steadily in outer/TE cells (21.8% in C2 up to 97.3% in B3). Transcription factor TEAD4 is ubiquitously present throughout preimplantation development from the compacted stage onwards (C2-B6). TEAD1 displays a distinct pattern that coincides with YAP1/GATA3 co-localization in the outer cells. Most outer/TE cells throughout the B0-B3 blastocyst stages are positive for TEAD1 and YAP1. However, TEAD1 proteins are also detected in most nuclei of the inner/ICM cells of the blastocysts from cavitation onwards, but at visibly lower levels as compared to that in TE cells. In the ICM of B3 blastocysts, we found one main population of cells with NANOG+/SOX17-/GATA4- nuclei (89.1%), but exceptionally we found NANOG+/SOX17+/GATA4+ cells (0.8%). In seven out of nine B3 blastocysts, nuclear NANOG was found in all the ICM cells, supporting the previously reported hypothesis that PrE cells arise from EPI cells. Finally, to determine which factors specify the second lineage segregation event, we co-stained for TEAD1, YAP1, and GATA4. We identified two main ICM cell populations in B4-6 blastocysts: the EPI (negative for the three markers, 46.5%) and the PrE (positive for the three markers, 28.1%) cells. We conclude that TEAD1 and YAP1 co-localise in (precursor) TE and PrE cells, indicating that TEAD1/YAP1 signalling plays a role in the first and the second lineage segregation events. LIMITATIONS, REASONS FOR CAUTION: In this descriptive study, we did not perform functional studies to investigate the role of TEAD1/YAP1 signalling during the first and second lineage segregation events. WIDER IMPLICATIONS OF THE FINDINGS: Our detailed roadmap on polarization, compaction, position and lineage segregation events during human preimplantation development paves the way for further functional studies. Understanding the gene regulatory networks and signalling pathways involved in early embryogenesis could ultimately provide insights into why embryonic development is sometimes impaired and facilitate the establishment of guidelines for good practice in the IVF lab. STUDY FUNDING/COMPETING INTERESTS: This work was financially supported by Wetenschappelijk Fonds Willy Gepts (WFWG) of the University Hospital UZ Brussel (WFWG142) and the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO, G034514N). M.R. is doctoral fellow at the FWO. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Actinas , Blastocisto , Embarazo , Femenino , Humanos , Ratones , Animales , Actinas/metabolismo , Blastocisto/metabolismo , Desarrollo Embrionario/fisiología , Factores de Transcripción/genética , Embrión de Mamíferos/metabolismo , Factores de Transcripción de Dominio TEA
6.
J Assist Reprod Genet ; 37(11): 2657-2660, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32959144

RESUMEN

PURPOSE: To visualize SARS-CoV-2 host receptors ACE2 and CD147 on human oocytes and blastocysts. METHODS: Immunohistochemistry and confocal microscopy on human primary oocytes and pre (5 days post fertilization (dpf5) and (dpf6))- and peri (dpf7)-implantation blastocysts donated to research. RESULTS: SARS-CoV-2 host receptors ACE2 and CD147 are present on the membrane of trophectoderm, epiblast and hypoblast cells in human blastocysts. CD147 is also present on the oolemma. CONCLUSION: Theoretically, the earliest stages of embryonic development may be vulnerable for SARS-CoV-2 infection.


Asunto(s)
Basigina/metabolismo , Blastocisto/metabolismo , Oocitos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Enzima Convertidora de Angiotensina 2 , Femenino , Humanos , Inmunohistoquímica
7.
Hum Reprod ; 33(2): 196-201, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29206936

RESUMEN

STUDY QUESTION: Does extended culture to the blastocyst stage affect singleton birthweight after either fresh or vitrified-warmed embryo transfer? SUMMARY ANSWER: Singleton birthweight z-scores did not vary significantly after a fresh blastocyst transfer, whereas the additional effect of vitrification remains inconclusive. WHAT IS KNOWN ALREADY: Observational studies have associated extended culture with an increased risk of preterm birth and low birthweight. On the contrary, in terms of birthweight and gestational age, singletons born after vitrification have been associated with a better perinatal outcome when compared to those born following a fresh transfer. STUDY DESIGN, SIZE, DURATION: Our post-hoc cohort analysis on neonatal outcomes included 447 liveborn singletons was derived from a recent retrospective analysis on cumulative live birth rates after cleavage-stage and blastocyst transfers. These babies were born following a fresh single cleavage-stage transfer (FCT Day 3, n = 113), fresh single blastocyst transfer (FBT Day 5, n = 218), vitrified-warmed cleavage-stage transfer (VCT Day 3, n = 58) or vitrified-warmed blastocyst transfer (VBT Day 5, n = 58). PARTICIPANTS/MATERIALS, SETTING, METHODS: Singleton birthweight was the primary outcome measure. Gestational age and gender of the newborn were accounted for by using birthweight z-scores in a multivariable linear regression analysis, adjusting for other confounders (maternal age, BMI, parity and smoking behaviour). Vanishing twins were excluded from the analysis. MAIN RESULTS AND THE ROLE OF CHANCE: A significantly lower z-score was observed after blastocyst transfer compared to cleavage-stage transfer in the vitrified-warmed Day 5 group (P = 0.013), a difference not observed in the fresh transfer groups (P = 0.32). Following multivariable regression analysis [adjusted regression coefficient (95% confidence interval)], the FCT and FBT groups showed no significant influence on the birthweight z-scores after fresh transfer [-0.19 (-0.44; 0.05)], but the transfer of vitrified blastocysts (VBT) was associated with a lower birthweight [-0.52 (-0.90; -0.15)] compared with the transfer of vitrified cleavage-stage embryos (VCT). LIMITATIONS, REASONS FOR CAUTION: The present cohort was relatively small, especially in the vitrified-warmed subgroups. Pregnancy-associated factors possibly influencing birthweight (such as diabetes, hypertension, pre-eclampsia) were also not accounted for in the analysis. WIDER IMPLICATIONS OF THE FINDINGS: Different ART procedures, including extended culture and vitrification, may hold potential safety issues. These results require further confirmation in future larger studies. STUDY FUNDING/COMPETING INTEREST(S): None. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Peso al Nacer , Fase de Segmentación del Huevo/citología , Fase de Segmentación del Huevo/trasplante , Técnicas de Cultivo de Embriones/métodos , Transferencia de Embrión/métodos , Adulto , Estudios de Cohortes , Transferencia de Embrión/efectos adversos , Femenino , Humanos , Recién Nacido , Masculino , Evaluación de Resultado en la Atención de Salud , Embarazo , Estudios Retrospectivos , Vitrificación
8.
J Assist Reprod Genet ; 35(6): 1005-1010, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29392515

RESUMEN

PURPOSE: Calcium ionophore treatment is being used in assisted reproductive technology (ART) for cases with previous low fertilization rate or total absence of fertilization after insemination by intracytoplasmic sperm injection or when a specific indication such as globozoospermia is present. As this technique is more invasive and differs from the physiological process of fertilization, a thorough investigation of the health of the children born following this procedure is required. We intent to report the medical outcome of all children conceived following calcium ionophore treatment in our IVF center. METHODS: One-armed descriptive study is performed to report the obstetrical and neonatal outcome of children born after using calcium ionophore treatment during the intracytoplasmic sperm injection procedure in our center. RESULTS: A number of 237 cycles were included in this study, with 74 pregnancies reported, from which 47 children (31 singletons and 16 twin children) were born. No major malformations were detected in singletons. In twins, three children were diagnosed with major malformations. Minor malformations were present in seven singletons and in one twin. CONCLUSIONS: In conclusion, our results regarding birth characteristics and congenital malformations are within the expected range but, although reassuring, should be interpreted with caution due to the small number of children included.


Asunto(s)
Ionóforos de Calcio/farmacología , Anomalías Congénitas/etiología , Fertilización In Vitro/efectos adversos , Enfermedades del Recién Nacido/etiología , Oocitos/efectos de los fármacos , Inyecciones de Esperma Intracitoplasmáticas/efectos adversos , Adulto , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Resultado del Embarazo
9.
Mol Hum Reprod ; 23(7): 478-487, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28402555

RESUMEN

STUDY QUESTION: Is implantation failure following ART associated with a perturbed decidual response in endometrial stromal cells (EnSCs)? SUMMARY ANSWER: Dynamic changes in the secretome of decidualizing EnSCs underpin the transition of a hostile to a supportive endometrial microenvironment for embryo implantation; perturbation in this transitional pathway prior to ART is associated with implantation failure. WHAT IS KNOWN ALREADY: Implantation is the rate-limiting step in ART, although the contribution of an aberrant endometrial microenvironment in IVF failure remains ill defined. STUDY DESIGN, SIZE, DURATION: In vitro characterization of the temporal changes in the decidual response of primary EnSCs isolated prior to a successful or failed ART cycle. An analysis of embryo responses to secreted cues from undifferentiated and decidualizing EnSCs was performed. The primary clinical outcome of the study was a positive urinary pregnancy test 14 days after embryo transfer. PARTICIPANTS/MATERIALS, SETTING, METHODS: Primary EnSCs were isolated from endometrial biopsies obtained prior to IVF treatment and cryopreserved. EnSCs from 10 pregnant and 10 non-pregnant patients were then thawed, expanded in culture, subjected to clonogenic assays, and decidualized for either 2 or 8 days. Transcript levels of decidual marker gene [prolactin (PRL), insulin-like growth factor binding protein 1 (IGFBP1) and 11ß-hydroxysteroid dehydrogenase (HSD11B1)] were analysed using real-time quantitative PCR and temporal secretome changes of 45 cytokines, chemokines and growth factors were measured by multiplex suspension bead immunoassay. The impact of the EnSC secretome on human blastocyst development was scored morphologically; and embryo secretions in response to EnSC cues analyzed by multiplex suspension bead immunoassay. MAIN RESULTS AND THE ROLE OF CHANCE: Clonogenicity and induction of decidual marker genes were comparable between EnSC cultures from pregnant and non-pregnant group groups (P > 0.05). Analysis of 23 secreted factors revealed that successful implantation was associated with co-ordinated secretome changes in decidualizing EnSCs, which were most pronounced on Day 2 of differentiation: 17 differentially secreted proteins on Day 2 of decidualization relative to undifferentiated (Day 0) EnSCs (P < 0.05); 11 differentially secreted proteins on Day 8 relative to Day 2 (P < 0.05); and eight differentially secreted proteins on Day 8 relative to Day 0 (P < 0.05). By contrast, failed implantation was associated with a disordered secretome response. Blastocyst development was compromised when cultured for 24 h in medium conditioned by undifferentiated EnSCs when compared to decidualizing EnSCs. Analysis of the embryo microdroplets revealed that human blastocysts mount a secretory cytokine response to soluble decidual factors produced during the early (Day 2) but not late phase (Day 8) of differentiation. The embryo responses to secreted factors from decidualizing EnSCs were comparable between the pregnant and non-pregnant group (P > 0.05). LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: Although this study uses primary EnSCs and human embryos, caution is warranted when extrapolating the results to the in vivo situation because of the correlative nature of the study and limited sample size. WIDER IMPLICATIONS OF THE FINDINGS: Our finding raises the prospect that endometrial analysis prior to ART could minimize the risk of treatment failure. STUDY FUNDING AND COMPETING INTEREST(S): This work was supported by funds from the Biomedical Research Unit in Reproductive Health, a joint initiative of the University Hospitals Coventry & Warwickshire NHS Trust and Warwick Medical School, the University of Nottingham and Nurture Fertility, and the National Medical Research Council, Singapore (NMRC/BNIG14NOV023), the "Instituut voor Innovatie door Wetenschap en Technologie" (IWT, Flanders, Belgium), the "Fonds voor Wetenschappelijk Onderzoek" (FWO, Flanders, Belgium) and the "Wetenschappelijk Fonds Willy Gepts" (WFWG, UZ Brussel). The authors have declared that no conflict of interest exists.


Asunto(s)
Blastocisto/metabolismo , Decidua/metabolismo , Implantación del Embrión , Regulación de la Expresión Génica , Células del Estroma/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Adulto , Biomarcadores/metabolismo , Blastocisto/citología , Diferenciación Celular , Citocinas/genética , Citocinas/metabolismo , Decidua/citología , Femenino , Fertilización In Vitro , Humanos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Análisis de los Mínimos Cuadrados , Masculino , Embarazo , Prolactina/genética , Prolactina/metabolismo , Células del Estroma/citología
10.
EMBO Rep ; 16(7): 791-802, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26077710

RESUMEN

Embryonic stem cell (ESC) cultures display a heterogeneous gene expression profile, ranging from a pristine naïve pluripotent state to a primed epiblast state. Addition of inhibitors of GSK3ß and MEK (so-called 2i conditions) pushes ESC cultures toward a more homogeneous naïve pluripotent state, but the molecular underpinnings of this naïve transition are not completely understood. Here, we demonstrate that DAZL, an RNA-binding protein known to play a key role in germ-cell development, marks a subpopulation of ESCs that is actively transitioning toward naïve pluripotency. Moreover, DAZL plays an essential role in the active reprogramming of cytosine methylation. We demonstrate that DAZL associates with mRNA of Tet1, a catalyst of 5-hydroxylation of methyl-cytosine, and enhances Tet1 mRNA translation. Overexpression of DAZL in heterogeneous ESC cultures results in elevated TET1 protein levels as well as increased global hydroxymethylation. Conversely, null mutation of Dazl severely stunts 2i-mediated TET1 induction and hydroxymethylation. Our results provide insight into the regulation of the acquisition of naïve pluripotency and demonstrate that DAZL enhances TET1-mediated cytosine hydroxymethylation in ESCs that are actively reprogramming to a pluripotent ground state.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias de Ratones/fisiología , Células Madre Pluripotentes/fisiología , Proteínas Proto-Oncogénicas/genética , Proteínas de Unión al ARN/metabolismo , Animales , Diferenciación Celular , Reprogramación Celular , Citosina/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Estratos Germinativos/fisiología , Ratones , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Transcriptoma
11.
Hum Reprod ; 31(11): 2442-2449, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27619768

RESUMEN

STUDY QUESTION: Do cumulative live birth rates differ between single cleavage-stage Day 3 transfer and single blastocyst-stage Day 5 transfer? SUMMARY ANSWER: Cumulative live birth rates after Day 3 and 5 transfers were similar in young patients when the vitrified embryo transfers were also taken into account. WHAT IS KNOWN ALREADY: Previous evidence has shown that the probability of live birth following IVF with a fresh embryo transfer is significantly higher after blastocyst-stage Day 5 transfer. However, because the introduction of vitrification has enhanced the survival of cryopreserved embryos and improved pregnancy rates, the optimal outcome measure for this comparison should now be cumulative live birth rates, as these include the eventual contribution of vitrified-warmed embryos. STUDY DESIGN, SIZE, DURATION: Our retrospective study included first IVF/ICSI cycles performed between January 2010 and December 2013 at a tertiary care centre. PARTICIPANTS/MATERIALS, SETTING, METHODS: All patients were scheduled for fresh single embryo transfer, either on Day 3 (n = 377) or on Day 5 (n = 623). Both IVF and ICSI cycles were included and the sperm used were either fresh or frozen partner ejaculates, or frozen donor ejaculates. The primary outcome was cumulative live birth (after 24 weeks) rate per started cycle, including the eventual contribution of vitrification until the birth of a first child. MAIN RESULTS AND THE ROLE OF CHANCE: Live birth rates per started cycle were significantly lower after transferring the fresh single cleavage-stage embryo, compared to a blastocyst (31.3% and 37.8%, respectively, P = 0.041). Furthermore, the number of embryo transfers necessary until the first live birth was significantly lower for blastocyst-stage embryos (P < 0.001). However, the cumulative live birth rates were 52.6% for cleavage-stage and 52.5% for blastocyst-stage transfers (P = 0.989). LIMITATIONS, REASONS FOR CAUTION: The extrapolation of the results is limited by the retrospective nature of the study. Furthermore, the analysis was restricted to patients under 36 years of age undergoing their first treatment cycle. WIDER IMPLICATIONS OF THE FINDINGS: These results deserve further clinical consideration in terms of time and cost efficiency. A subsequent analysis of the neonatal outcomes is necessary to confirm the safety of treatment cycles using extended culture. STUDY FUNDING/COMPETING INTERESTS: No external funding was received and there are no conflicts of interest to declare.


Asunto(s)
Tasa de Natalidad , Fertilización In Vitro/métodos , Nacimiento Vivo , Adulto , Transferencia de Embrión/métodos , Femenino , Humanos , Embarazo , Índice de Embarazo , Estudios Retrospectivos , Vitrificación
12.
Mol Reprod Dev ; 83(7): 594-605, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27163211

RESUMEN

After fertilization, the mammalian embryo undergoes epigenetic reprogramming with genome-wide DNA demethylation and subsequent remethylation. Oxidation of 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) was suggested to be an intermediate step in the DNA demethylation pathway. Other evidence, such as the stability of 5hmC in specific tissues, suggests that 5hmC constitutes a new epigenetic modification with its own biological function. Since few studies have been conducted on human material compared to animal models and species-specific epigenetic differences have been reported, we studied global DNA methylation and hydroxymethylation patterns in human in vitro preimplantation embryos using immunocytochemistry, comparing these patterns in good-quality and abnormally developing embryos. Our data showed that DNA methylation and hydroxymethylation modifications co-exist. 5mC and 5hmC signals were found in oocytes and in paternal and maternal pronuclei of zygotes, present in non-reciprocal patterns-which contrasts published data for the mouse. These two epigenetic modifications are present between Days 1 and 7 of in vitro development, with 5mC levels declining over cell divisions without noticeable remethylation during this period. A main decline in 5mC and 5hmC occurred as the embryo progressed from compaction to the blastocyst stage. No difference in (hydroxy)methylation was found between the inner cell mass and trophectoderm. When comparing normally and abnormally developing embryos, DNA (hydroxy)methylation reprogramming was abnormal in poor-quality embryos, especially during the first cleavages. Mol. Reprod. Dev. 83: 594-605, 2016 © 2016 Wiley Periodicals, Inc.


Asunto(s)
5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Blastocisto/metabolismo , Metilación de ADN/fisiología , Desarrollo Embrionario/fisiología , Animales , Blastocisto/citología , Humanos , Ratones
13.
Development ; 139(5): 871-82, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22278923

RESUMEN

At the blastocyst stage of mammalian pre-implantation development, three distinct cell lineages have formed: trophectoderm, hypoblast (primitive endoderm) and epiblast. The inability to derive embryonic stem (ES) cell lines in a variety of species suggests divergence between species in the cell signaling pathways involved in early lineage specification. In mouse, segregation of the primitive endoderm lineage from the pluripotent epiblast lineage depends on FGF/MAP kinase signaling, but it is unknown whether this is conserved between species. Here we examined segregation of the hypoblast and epiblast lineages in bovine and human embryos through modulation of FGF/MAP kinase signaling pathways in cultured embryos. Bovine embryos stimulated with FGF4 and heparin form inner cell masses (ICMs) composed entirely of hypoblast cells and no epiblast cells. Inhibition of MEK in bovine embryos results in ICMs with increased epiblast precursors and decreased hypoblast precursors. The hypoblast precursor population was not fully ablated upon MEK inhibition, indicating that other factors are involved in hypoblast differentiation. Surprisingly, inhibition of FGF signaling upstream of MEK had no effects on epiblast and hypoblast precursor numbers in bovine development, suggesting that GATA6 expression is not dependent on FGF signaling. By contrast, in human embryos, inhibition of MEK did not significantly alter epiblast or hypoblast precursor numbers despite the ability of the MEK inhibitor to potently inhibit ERK phosphorylation in human ES cells. These findings demonstrate intrinsic differences in early mammalian development in the role of the FGF/MAP kinase signaling pathways in governing hypoblast versus epiblast lineage choices.


Asunto(s)
Linaje de la Célula , Embrión de Mamíferos , Factor 4 de Crecimiento de Fibroblastos/farmacología , Estratos Germinativos , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Bovinos , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/fisiología , Factor de Transcripción GATA4/metabolismo , Factor de Transcripción GATA6/metabolismo , Estratos Germinativos/citología , Estratos Germinativos/efectos de los fármacos , Estratos Germinativos/enzimología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Heparina/farmacología , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteína Homeótica Nanog , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteoglicanos/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores
14.
Mol Hum Reprod ; 20(9): 861-74, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24994815

RESUMEN

DNA methylation is a key epigenetic modification which is essential for normal embryonic development. Major epigenetic reprogramming takes place during gametogenesis and in the early embryo; the complex DNA methylation patterns are established and maintained by DNA methyltransferases (DNMTs). However, the influence of assisted reproductive technologies (ART) on DNA methylation reprogramming enzymes has predominantly been studied in mice and less so in human oocytes and embryos. The expression and localization patterns of the four known DNMTs were analysed in human oocytes and IVF/ICSI embryos by immunocytochemistry and compared between a reference group of good quality fresh embryos and groups of abnormally developing embryos or embryo groups after cryopreservation. In humans, DNMT1o rather than DNMT1s seems to be the key player for maintaining methylation in early embryos. DNMT3b, rather than DNMT3a and DNMT3L, appears to ensure global DNA remethylation in the blastocysts before implantation. DNMT3L, an important regulator of maternal imprint methylation in mouse, was not detected in human oocytes (GV, MI and MII stage). Our study confirms the existence of species differences for mammalian DNA methylation enzymes. In poor quality fresh embryos, the switch towards nuclear DNMT3b expression was delayed and nuclear DNMT1, DNMT1s and DNMT3b expression was less common. Compared with the reference embryos, a smaller number of cryopreserved embryos showed nuclear DNMT1, while a delayed switch to nuclear DNMT3b and an extended DNMT1s temporal expression pattern were also observed. The spatial and temporal expression patterns of DNMTs seem to be disturbed in abnormally developing embryos and in embryos that have been cryopreserved. Further research must be performed in order to understand whether the potentially disturbed embryonic DNMT expression after cryopreservation has any long-term developmental consequences.


Asunto(s)
Blastocisto/metabolismo , Metilasas de Modificación del ADN/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Oocitos/metabolismo , Técnicas Reproductivas Asistidas , Blastocisto/citología , Blastocisto/patología , Núcleo Celular/enzimología , Núcleo Celular/metabolismo , Núcleo Celular/patología , Criopreservación , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Metilasas de Modificación del ADN/genética , Ectogénesis , Femenino , Fertilización In Vitro/efectos adversos , Humanos , Inmunohistoquímica , Infertilidad Femenina/metabolismo , Infertilidad Femenina/patología , Isoenzimas/genética , Isoenzimas/metabolismo , Oocitos/citología , Oocitos/patología , ARN Mensajero/metabolismo , Técnicas Reproductivas Asistidas/efectos adversos , Inyecciones de Esperma Intracitoplasmáticas/efectos adversos , ADN Metiltransferasa 3B
15.
Hum Reprod Update ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805697

RESUMEN

BACKGROUND: The genetic composition of embryos generated by in vitro fertilization (IVF) can be examined with preimplantation genetic testing (PGT). Until recently, PGT was limited to detecting single-gene, high-risk pathogenic variants, large structural variants, and aneuploidy. Recent advances have made genome-wide genotyping of IVF embryos feasible and affordable, raising the possibility of screening embryos for their risk of polygenic diseases such as breast cancer, hypertension, diabetes, or schizophrenia. Despite a heated debate around this new technology, called polygenic embryo screening (PES; also PGT-P), it is already available to IVF patients in some countries. Several articles have studied epidemiological, clinical, and ethical perspectives on PES; however, a comprehensive, principled review of this emerging field is missing. OBJECTIVE AND RATIONALE: This review has four main goals. First, given the interdisciplinary nature of PES studies, we aim to provide a self-contained educational background about PES to reproductive specialists interested in the subject. Second, we provide a comprehensive and critical review of arguments for and against the introduction of PES, crystallizing and prioritizing the key issues. We also cover the attitudes of IVF patients, clinicians, and the public towards PES. Third, we distinguish between possible future groups of PES patients, highlighting the benefits and harms pertaining to each group. Finally, our review, which is supported by ESHRE, is intended to aid healthcare professionals and policymakers in decision-making regarding whether to introduce PES in the clinic, and if so, how, and to whom. SEARCH METHODS: We searched for PubMed-indexed articles published between 1/1/2003 and 1/3/2024 using the terms 'polygenic embryo screening', 'polygenic preimplantation', and 'PGT-P'. We limited the review to primary research papers in English whose main focus was PES for medical conditions. We also included papers that did not appear in the search but were deemed relevant. OUTCOMES: The main theoretical benefit of PES is a reduction in lifetime polygenic disease risk for children born after screening. The magnitude of the risk reduction has been predicted based on statistical modelling, simulations, and sibling pair analyses. Results based on all methods suggest that under the best-case scenario, large relative risk reductions are possible for one or more diseases. However, as these models abstract several practical limitations, the realized benefits may be smaller, particularly due to a limited number of embryos and unclear future accuracy of the risk estimates. PES may negatively impact patients and their future children, as well as society. The main personal harms are an unindicated IVF treatment, a possible reduction in IVF success rates, and patient confusion, incomplete counselling, and choice overload. The main possible societal harms include discarded embryos, an increasing demand for 'designer babies', overemphasis of the genetic determinants of disease, unequal access, and lower utility in people of non-European ancestries. Benefits and harms will vary across the main potential patient groups, comprising patients already requiring IVF, fertile people with a history of a severe polygenic disease, and fertile healthy people. In the United States, the attitudes of IVF patients and the public towards PES seem positive, while healthcare professionals are cautious, sceptical about clinical utility, and concerned about patient counselling. WIDER IMPLICATIONS: The theoretical potential of PES to reduce risk across multiple polygenic diseases requires further research into its benefits and harms. Given the large number of practical limitations and possible harms, particularly unnecessary IVF treatments and discarded viable embryos, PES should be offered only within a research context before further clarity is achieved regarding its balance of benefits and harms. The gap in attitudes between healthcare professionals and the public needs to be narrowed by expanding public and patient education and providing resources for informative and unbiased genetic counselling.

16.
Nat Commun ; 15(1): 1232, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336715

RESUMEN

Children conceived through assisted reproductive technologies (ART) have an elevated risk of lower birthweight, yet the underlying cause remains unclear. Our study explores mitochondrial DNA (mtDNA) variants as contributors to birthweight differences by impacting mitochondrial function during prenatal development. We deep-sequenced the mtDNA of 451 ART and spontaneously conceived (SC) individuals, 157 mother-child pairs and 113 individual oocytes from either natural menstrual cycles or after ovarian stimulation (OS) and find that ART individuals carried a different mtDNA genotype than SC individuals, with more de novo non-synonymous variants. These variants, along with rRNA variants, correlate with lower birthweight percentiles, independent of conception mode. Their higher occurrence in ART individuals stems from de novo mutagenesis associated with maternal aging and OS-induced oocyte cohort size. Future research will establish the long-term health consequences of these changes and how these findings will impact the clinical practice and patient counselling in the future.


Asunto(s)
Recien Nacido Prematuro , Nacimiento Prematuro , Embarazo , Recién Nacido , Femenino , Humanos , Resultado del Embarazo , Embarazo Múltiple , Nacimiento Prematuro/epidemiología , Peso al Nacer , Mitocondrias/genética , ADN Mitocondrial/genética
17.
Hum Reprod ; 28(3): 740-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23257394

RESUMEN

STUDY QUESTION: Are human trophectoderm (TE) cells committed or still able to develop into inner cell mass (ICM) cells? SUMMARY ANSWER: Human full blastocyst TE cells still have the capacity to develop into ICM cells expressing the pluripotency marker NANOG, thus they are not yet committed. WHAT IS KNOWN ALREADY: Human Day 5 full blastocyst TE cells express the pluripotency markers POU5F1, SOX2 and SALL4 as well as the TE markers HLA-G and KRT18 but not yet CDX2, therefore their developmental direction may not yet be definite. STUDY DESIGN, SIZE, DURATION: The potency of human blastocyst TE cells was investigated by determining their in vitro capacity to develop into a blastocyst with ICM cells expressing NANOG; TE cells were isolated either by aspiration under visual control or after labeling with fluorescent 594-wheat germ agglutinin. Further on, aspirated TE cells were also labeled with fluorescent PKH67 and repositioned in the center of the original embryo. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human preimplantation embryos were used for research after obtaining informed consent from IVF patients. The experiments were approved by the Local Ethical Committee and the 'Belgian Federal Committee on medical and scientific research on embryos in vitro'. Outer cells were isolated and reaggregated by micromanipulation. Reconstituted embryos were analyzed by immunocytochemistry. MAIN RESULTS AND THE ROLE OF CHANCE: Isolated and reaggregated TE cells from full human blastocysts are able to develop into blastocysts with ICM cells expressing the pluripotency marker NANOG. Moreover, the majority of the isolated TE cells which were repositioned in the center of the embryo do not sort back to their original position but integrate within the ICM and start to express NANOG. LIMITATIONS, REASONS FOR CAUTION: Owing to legal and ethical restrictions, manipulated human embryos cannot be transferred into the uterus to determine their totipotent capacity. The definitive demonstration that embryos reconstructed with TE cells are a source of pluripotent cells is to obtain human embryonic stem cell 'like' line(s), which will allow full characterization of the cells. WIDER IMPLICATIONS OF THE FINDINGS: Our finding has important implications in reproductive medicine and stem cell biology because TE cells have a greater developmental potential than assumed previously. STUDY FUNDING/COMPETING INTEREST(S): Scientific Research Foundation-Flanders (FWO-Vlaanderen) and Research Council (OZR) of the Vrije Universiteit Brussel. None of the authors declared a conflict of interest.


Asunto(s)
Blastocisto/citología , Ectogénesis , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Blastocisto/metabolismo , Masa Celular Interna del Blastocisto/citología , Masa Celular Interna del Blastocisto/metabolismo , Separación Celular , Técnicas de Cultivo de Embriones , Células Madre Embrionarias/metabolismo , Colorantes Fluorescentes/química , Proteínas de Homeodominio/metabolismo , Humanos , Inmunohistoquímica , Micromanipulación , Proteína Homeótica Nanog , Células Madre Pluripotentes/metabolismo , Antígenos Embrionarios Específico de Estadio/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo
18.
J Immunol ; 186(4): 2663-71, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21248264

RESUMEN

Human leukocyte Ag-G, a tolerogenic molecule that acts on cells of both innate and adaptive immunity, plays an important role in tumor progression, transplantation, placentation, as well as the protection of the allogeneic fetus from the maternal immune system. We investigated HLA-G mRNA and protein expression in human embryonic stem cells (hESC) derived from the inner cell mass (ICM) of blastocysts. hESC self-renew indefinitely in culture while maintaining pluripotency, providing an unlimited source of cells for therapy. HLA-G mRNA was present in early and late passage hESC, as assessed by real time RT-PCR. Protein expression was demonstrated by flow cytometry, immunocytochemistry, and ELISA on an hESC extract. Binding of HLA-G with its ILT2 receptor demonstrated the functional active status. To verify this finding in a physiologically relevant setting, HLA-G protein expression was investigated during preimplantation development. We demonstrated HLA-G protein expression in oocytes, cleavage stage embryos, and blastocysts, where we find it in trophectoderms but also in ICM cells. During blastocyst development, a downregulation of HLA-G in the ICM cells was present. This data might be important for cell therapy and transplantation because undifferentiated hESC can contaminate the transplant of differentiated stem cells and develop into malignant cancer cells.


Asunto(s)
Masa Celular Interna del Blastocisto/inmunología , Masa Celular Interna del Blastocisto/metabolismo , Células Madre Embrionarias/inmunología , Células Madre Embrionarias/metabolismo , Antígenos HLA/biosíntesis , Antígenos de Histocompatibilidad Clase I/biosíntesis , Antígenos CD/metabolismo , Masa Celular Interna del Blastocisto/citología , Línea Celular Tumoral , Células Cultivadas , Fase de Segmentación del Huevo/citología , Fase de Segmentación del Huevo/inmunología , Fase de Segmentación del Huevo/metabolismo , Regulación de la Expresión Génica/inmunología , Antígenos HLA/genética , Antígenos HLA/metabolismo , Antígenos HLA-G , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Tolerancia Inmunológica/genética , Receptor Leucocitario Tipo Inmunoglobulina B1 , Oocitos/inmunología , Oocitos/metabolismo , Unión Proteica/genética , Unión Proteica/inmunología , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Inmunológicos/metabolismo
19.
Curr Opin Genet Dev ; 83: 102125, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37801801

RESUMEN

Despite over 40 years following the first birth from medically assisted reproduction (MAR) technologies, mechanisms underlying the key developmental events during the first 7 days of human development, such as signaling pathway contribution, are remaining a mystery. An in-depth mechanistic understanding of how the human preimplantation embryo develops would support the optimization of embryo quality assessment methods and culturing conditions, thereby increasing the success rate of MAR. However, the limited availability of human embryos, legitimate ethical concerns, and regulations still present an obstacle toward our advancement of knowledge. Stem cell-based embryonic models, including blastoids than model blastocysts, offer unprecedented opportunities to fill knowledge gaps and complement animal models. Blastoids' predictive power depends on how faithfully they recapitulate the blastocyst. Here, we review the state of the art of human pre- and peri-implantation development and outline the specificities of human embryo research to clarify the framework for blastoid research.


Asunto(s)
Blastocisto , Implantación del Embrión , Animales , Humanos , Implantación del Embrión/genética , Blastocisto/metabolismo , Desarrollo Embrionario/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA