Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Genet Sel Evol ; 54(1): 10, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35114933

RESUMEN

BACKGROUND: Multiple breed evaluation using genomic prediction includes the use of data from multiple populations, or from parental breeds and crosses, and is expected to lead to better genomic predictions. Increased complexity comes from the need to fit non-additive effects such as dominance and/or genotype-by-environment interactions. In these models, marker effects (and breeding values) are modelled as correlated between breeds, which leads to multiple trait formulations that are based either on markers [single nucleotide polymorphism best linear unbiased prediction (SNP-BLUP)] or on individuals [genomic(G)BLUP)]. As an alternative, we propose the use of generalized least squares (GLS) followed by backsolving of marker effects using selection index (SI) theory. RESULTS: All investigated options have advantages and inconveniences. The SNP-BLUP yields marker effects directly, which are useful for indirect prediction and for planned matings, but is very large in number of equations and is structured in dense and sparse blocks that do not allow for simple solving. GBLUP uses a multiple trait formulation and is very general, but results in many equations that are not used, which increase memory needs, and is also structured in dense and sparse blocks. An alternative formulation of GBLUP is more compact but requires tailored programming. The alternative of solving by GLS + SI is the least consuming, both in number of operations and in memory, and it uses only single dense blocks. However, it requires dedicated programming. Computational complexity problems are exacerbated when more than additive effects are fitted, e.g. dominance effects or genotype x environment interactions. CONCLUSIONS: As multi-breed predictions become more frequent and non-additive effects are more often included, standard equations for genomic prediction based on Henderson's mixed model equations become less practical and may need to be replaced by more efficient (although less general) approaches such as the GLS + SI approach proposed here.


Asunto(s)
Genética de Población , Genoma , Metagenómica , Modelos Genéticos , Cruzamiento , Genómica , Genotipo , Polimorfismo de Nucleótido Simple
2.
Genet Sel Evol ; 54(1): 69, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273127

RESUMEN

BACKGROUND: At the beginning of genomic selection, some Chinese companies genotyped pigs with different single nucleotide polymorphism (SNP) arrays. The obtained genomic data are then combined and to do this, several imputation strategies have been developed. Usually, only additive genetic effects are considered in genetic evaluations. However, dominance effects that may be important for some traits can be fitted in a mixed linear model as either 'classical' or 'genotypic' dominance effects. Their influence on genomic evaluation has rarely been studied. Thus, the objectives of this study were to use a dataset from Canadian Yorkshire pigs to (1) compare different strategies to combine data from two SNP arrays (Affymetrix 55K and Illumina 42K) and identify the most appropriate strategy for genomic evaluation and (2) evaluate the impact of dominance effects (classical' and 'genotypic') and inbreeding depression effects on genomic predictive abilities for average daily gain (ADG), backfat thickness (BF), loin muscle depth (LMD), days to 100 kg (AGE100), and the total number of piglets born (TNB) at first parity. RESULTS: The reliabilities obtained with the additive genomic models showed that the strategy used to combine data from two SNP arrays had little impact on genomic evaluations. Models with classical or genotypic dominance effect showed similar predictive abilities for all traits. For ADG, BF, LMD, and AGE100, dominance effects accounted for a small proportion (2 to 11%) of the total genetic variance, whereas for TNB, dominance effects accounted for 11 to 20%. For all traits, the predictive abilities of the models increased significantly when genomic inbreeding depression effects were included in the model. However, the inclusion of dominance effects did not change the predictive ability for any trait except for TNB. CONCLUSIONS: Our study shows that it is feasible to combine data from different SNP arrays for genomic evaluation, and that all combination methods result in similar accuracies. Regardless of how dominance effects are fitted in the genomic model, there is no impact on genetic evaluation. Models including inbreeding depression effects outperform a model with only additive effects, even if the trait is not strongly affected by dominant genes.


Asunto(s)
Depresión Endogámica , Embarazo , Femenino , Porcinos/genética , Animales , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Canadá , Genómica/métodos
3.
Genet Sel Evol ; 54(1): 19, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255802

RESUMEN

BACKGROUND: Genomic selection has revolutionized genetic improvement in animals and plants, but little is known about its long-term effects. Here, we investigated the long-term effects of genomic selection on response to selection, genetic variance, and the genetic architecture of traits using stochastic simulations. We defined the genetic architecture as the set of causal loci underlying each trait, their allele frequencies, and their statistical additive effects. We simulated a livestock population under 50 generations of phenotypic, pedigree, or genomic selection for a single trait, controlled by either only additive, additive and dominance, or additive, dominance, and epistatic effects. The simulated epistasis was based on yeast data. RESULTS: Short-term response was always greatest with genomic selection, while response after 50 generations was greater with phenotypic selection than with genomic selection when epistasis was present, and was always greater than with pedigree selection. This was mainly because loss of genetic variance and of segregating loci was much greater with genomic and pedigree selection than with phenotypic selection. Compared to pedigree selection, selection response was always greater with genomic selection. Pedigree and genomic selection lost a similar amount of genetic variance after 50 generations of selection, but genomic selection maintained more segregating loci, which on average had lower minor allele frequencies than with pedigree selection. Based on this result, genomic selection is expected to better maintain genetic gain after 50 generations than pedigree selection. The amount of change in the genetic architecture of traits was considerable across generations and was similar for genomic and pedigree selection, but slightly less for phenotypic selection. Presence of epistasis resulted in smaller changes in allele frequencies and less fixation of causal loci, but resulted in substantial changes in statistical additive effects across generations. CONCLUSIONS: Our results show that genomic selection outperforms pedigree selection in terms of long-term genetic gain, but results in a similar reduction of genetic variance. The genetic architecture of traits changed considerably across generations, especially under selection and when non-additive effects were present. In conclusion, non-additive effects had a substantial impact on the accuracy of selection and long-term response to selection, especially when selection was accurate.


Asunto(s)
Modelos Genéticos , Selección Genética , Animales , Genoma , Genómica/métodos , Linaje , Fenotipo
4.
Genet Sel Evol ; 51(1): 55, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31558151

RESUMEN

BACKGROUND: Mate allocation strategies that account for non-additive genetic effects can be used to maximize the overall genetic merit of future offspring. Accounting for dominance effects in genetic evaluations is easier in a genomic context, than in a classical pedigree-based context because the combinations of alleles at loci are known. The objective of our study was two-fold. First, dominance variance components were estimated for age at 100 kg (AGE), backfat depth (BD) at 140 days, and for average piglet weight at birth within litter (APWL). Second, the efficiency of mate allocation strategies that account for dominance and inbreeding depression to maximize the overall genetic merit of future offspring was explored. RESULTS: Genetic variance components were estimated using genomic models that included inbreeding depression with and without non-additive genetic effects (dominance). Models that included dominance effects did not fit the data better than the genomic additive model. Estimates of dominance variances, expressed as a percentage of additive genetic variance, were 20, 11, and 12% for AGE, BD, and APWL, respectively. Estimates of additive and dominance single nucleotide polymorphism effects were retrieved from the genetic variance component estimates and used to predict the outcome of matings in terms of total genetic and breeding values. Maximizing total genetic values instead of breeding values in matings gave the progeny an average advantage of - 0.79 days, - 0.04 mm, and 11.3 g for AGE, BD and APWL, respectively, but slightly reduced the expected additive genetic gain, e.g. by 1.8% for AGE. CONCLUSIONS: Genomic mate allocation accounting for non-additive genetic effects is a feasible and potential strategy to improve the performance of the offspring without dramatically compromising additive genetic gain.


Asunto(s)
Cruzamiento , Polimorfismo de Nucleótido Simple , Porcinos/genética , Animales , Peso Corporal/genética , Cruzamiento/métodos , Femenino , Genes Dominantes , Patrón de Herencia , Masculino , Selección Genética
5.
Genet Sel Evol ; 50(1): 71, 2018 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-30577727

RESUMEN

BACKGROUND: Epistatic genomic relationship matrices for interactions of any-order can be constructed using the Hadamard products of orthogonal additive and dominance genomic relationship matrices and standardization based on the trace of the resulting matrices. Variance components for litter size in pigs were estimated by Bayesian methods for five nested models with additive, dominance, and pairwise epistatic effects in a pig dataset, and including genomic inbreeding as a covariate. RESULTS: Estimates of additive and non-additive (dominance and epistatic) variance components were obtained for litter size. The variance component estimates were empirically orthogonal, i.e. they did not change when fitting increasingly complex models. Most of the genetic variance was captured by non-epistatic effects, as expected. In the full model, estimates of dominance and total epistatic variances (additive-by-additive plus additive-by-dominance plus dominance-by-dominance), expressed as a proportion of the total phenotypic variance, were equal to 0.02 and 0.04, respectively. The estimate of broad-sense heritability for litter size (0.15) was almost twice that of the narrow-sense heritability (0.09). Ignoring inbreeding depression yielded upward biased estimates of dominance variance, while estimates of epistatic variances were only slightly affected. CONCLUSIONS: Epistatic variance components can be easily computed using genomic relationship matrices. Correct orthogonal definition of the relationship matrices resulted in orthogonal partition of genetic variance into additive, dominance, and epistatic components, but obtaining accurate variance component estimates remains an issue. Genomic models that include non-additive effects must also consider inbreeding depression in order to avoid upward bias of estimates of dominance variance. Inclusion of epistasis did not improve the accuracy of prediction of breeding values.


Asunto(s)
Genómica/métodos , Tamaño de la Camada/genética , Selección Genética/genética , Animales , Teorema de Bayes , Cruzamiento/métodos , Epistasis Genética/genética , Femenino , Genes Dominantes/genética , Variación Genética/genética , Genoma/genética , Endogamia , Modelos Genéticos , Modelos Estadísticos , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Embarazo , Porcinos/genética
6.
Genet Sel Evol ; 50(1): 1, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29373954

RESUMEN

BACKGROUND: The quantitative genetics theory argues that inbreeding depression and heterosis are founded on the existence of directional dominance. However, most procedures for genomic selection that have included dominance effects assumed prior symmetrical distributions. To address this, two alternatives can be considered: (1) assume the mean of dominance effects different from zero, and (2) use skewed distributions for the regularization of dominance effects. The aim of this study was to compare these approaches using two pig datasets and to confirm the presence of directional dominance. RESULTS: Four alternative models were implemented in two datasets of pig litter size that consisted of 13,449 and 11,581 records from 3631 and 2612 sows genotyped with the Illumina PorcineSNP60 BeadChip. The models evaluated included (1) a model that does not consider directional dominance (Model SN), (2) a model with a covariate b for the average individual homozygosity (Model SC), (3) a model with a parameter λ that reflects asymmetry in the context of skewed Gaussian distributions (Model AN), and (4) a model that includes both b and λ (Model Full). The results of the analysis showed that posterior probabilities of a negative b or a positive λ under Models SC and AN were higher than 0.99, which indicate positive directional dominance. This was confirmed with the predictions of inbreeding depression under Models Full, SC and AN, that were higher than in the SN Model. In spite of differences in posterior estimates of variance components between models, comparison of models based on LogCPO and DIC indicated that Model SC provided the best fit for the two datasets analyzed. CONCLUSIONS: Our results confirmed the presence of positive directional dominance for pig litter size and suggested that it should be taken into account when dominance effects are included in genomic evaluation procedures. The consequences of ignoring directional dominance may affect predictions of breeding values and can lead to biased prediction of inbreeding depression and performance of potential mates. A model that assumes Gaussian dominance effects that are centered on a non-zero mean is recommended, at least for datasets with similar features to those analyzed here.


Asunto(s)
Cruzamiento , Genómica/métodos , Tamaño de la Camada/genética , Modelos Genéticos , Sus scrofa/genética , Animales , Cruzamientos Genéticos , Femenino , Genes Dominantes , Genotipo , Embarazo , Porcinos/genética
7.
Genet Sel Evol ; 49(1): 66, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28841821

RESUMEN

BACKGROUND: The effect of epistasis on response to selection is a highly debated topic. Here, we investigated the impact of epistasis on response to sequence-based selection via genomic best linear prediction (GBLUP) in a regime of strong non-symmetrical epistasis under divergent selection, using real Drosophila sequence data. We also explored the possible advantage of including epistasis in the evaluation model and/or of knowing the causal mutations. RESULTS: Response to selection was almost exclusively due to changes in allele frequency at a few loci with a large effect. Response was highly asymmetric (about four phenotypic standard deviations higher for upward than downward selection) due to the highly skewed site frequency spectrum. Epistasis accentuated this asymmetry and affected response to selection by modulating the additive genetic variance, which was sustained for longer under upward selection whereas it eroded rapidly under downward selection. Response to selection was quite insensitive to the evaluation model, especially under an additive scenario. Nevertheless, including epistasis in the model when there was none eventually led to lower accuracies as selection proceeded. Accounting for epistasis in the model, if it existed, was beneficial but only in the medium term. There was not much gain in response if causal mutations were known, compared to using sequence data, which is likely due to strong linkage disequilibrium, high heritability and availability of phenotypes on candidates. CONCLUSIONS: Epistatic interactions affect the response to genomic selection by modulating the additive genetic variance used for selection. Epistasis releases additive variance that may increase response to selection compared to a pure additive genetic action. Furthermore, genomic evaluation models and, in particular, GBLUP are robust, i.e. adding complexity to the model did not modify substantially the response (for a given architecture).


Asunto(s)
Epistasis Genética , Modelos Genéticos , Selección Genética , Animales , Bases de Datos Genéticas , Drosophila/genética , Genoma
8.
Genet Sel Evol ; 49(1): 34, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28283016

RESUMEN

BACKGROUND: Metafounders are pseudo-individuals that encapsulate genetic heterozygosity and relationships within and across base pedigree populations, i.e. ancestral populations. This work addresses the estimation and usefulness of metafounder relationships in single-step genomic best linear unbiased prediction (ssGBLUP). RESULTS: We show that ancestral relationship parameters are proportional to standardized covariances of base allelic frequencies across populations, such as [Formula: see text] fixation indexes. These covariances of base allelic frequencies can be estimated from marker genotypes of related recent individuals and pedigree. Simple methods for their estimation include naïve computation of allele frequencies from marker genotypes or a method of moments that equates average pedigree-based and marker-based relationships. Complex methods include generalized least squares (best linear unbiased estimator (BLUE)) or maximum likelihood based on pedigree relationships. To our knowledge, methods to infer [Formula: see text] coefficients from marker data have not been developed for related individuals. We derived a genomic relationship matrix, compatible with pedigree relationships, that is constructed as a cross-product of {-1,0,1} codes and that is equivalent (apart from scale factors) to an identity-by-state relationship matrix at genome-wide markers. Using a simulation with a single population under selection in which only males and youngest animals are genotyped, we observed that generalized least squares or maximum likelihood gave accurate and unbiased estimates of the ancestral relationship parameter (true value: 0.40) whereas the naïve method and the method of moments were biased (average estimates of 0.43 and 0.35). We also observed that genomic evaluation by ssGBLUP using metafounders was less biased in terms of estimates of genetic trend (bias of 0.01 instead of 0.12), resulted in less overdispersed (0.94 instead of 0.99) and as accurate (0.74) estimates of breeding values than ssGBLUP without metafounders and provided consistent estimates of heritability. CONCLUSIONS: Estimation of metafounder relationships can be achieved using BLUP-like methods with pedigree and markers. Inclusion of metafounder relationships reduces bias of genomic predictions with no loss in accuracy.


Asunto(s)
Algoritmos , Cruzamiento/métodos , Estudio de Asociación del Genoma Completo/métodos , Heterocigoto , Linaje , Animales , Sesgo , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo/normas , Masculino , Modelos Genéticos , Selección Genética
9.
Genet Sel Evol ; 48(1): 92, 2016 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-27887565

RESUMEN

BACKGROUND: Improved performance of crossbred animals is partly due to heterosis. One of the major genetic bases of heterosis is dominance, but it is seldom used in pedigree-based genetic evaluation of livestock. Recently, a trivariate genomic best linear unbiased prediction (GBLUP) model including dominance was developed, which can distinguish purebreds from crossbred animals explicitly. The objectives of this study were: (1) methodological, to show that inclusion of marker-based inbreeding accounts for directional dominance and inbreeding depression in purebred and crossbred animals, to revisit variance components of additive and dominance genetic effects using this model, and to develop marker-based estimators of genetic correlations between purebred and crossbred animals and of correlations of allele substitution effects between breeds; (2) to evaluate the impact of accounting for dominance effects and inbreeding depression on predictive ability for total number of piglets born (TNB) in a pig dataset composed of two purebred populations and their crossbreds. We also developed an equivalent model that makes the estimation of variance components tractable. RESULTS: For TNB in Danish Landrace and Yorkshire populations and their reciprocal crosses, the estimated proportions of dominance genetic variance to additive genetic variance ranged from 5 to 11%. Genetic correlations between breeding values for purebred and crossbred performances for TNB ranged from 0.79 to 0.95 for Landrace and from 0.43 to 0.54 for Yorkshire across models. The estimated correlation of allele substitution effects between Landrace and Yorkshire was low for purebred performances, but high for crossbred performances. Predictive ability for crossbred animals was similar with or without dominance. The inbreeding depression effect increased predictive ability and the estimated inbreeding depression parameter was more negative for Landrace than for Yorkshire animals and was in between for crossbred animals. CONCLUSIONS: Methodological developments led to closed-form estimators of inbreeding depression, variance components and correlations that can be easily interpreted in a quantitative genetics context. Our results confirm that genetic correlations of breeding values between purebred and crossbred performances within breed are positive and moderate. Inclusion of dominance in the GBLUP model does not improve predictive ability for crossbred animals, whereas inclusion of inbreeding depression does.


Asunto(s)
Cruzamiento , Cruzamientos Genéticos , Genes Dominantes , Genómica/métodos , Depresión Endogámica/genética , Sus scrofa/genética , Alelos , Animales , Femenino , Marcadores Genéticos , Patrón de Herencia/genética , Masculino , Reproducibilidad de los Resultados
10.
Genet Sel Evol ; 48: 6, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26825279

RESUMEN

BACKGROUND: Most developments in quantitative genetics theory focus on the study of intra-breed/line concepts. With the availability of massive genomic information, it becomes necessary to revisit the theory for crossbred populations. We propose methods to construct genomic covariances with additive and non-additive (dominance) inheritance in the case of pure lines and crossbred populations. RESULTS: We describe substitution effects and dominant deviations across two pure parental populations and the crossbred population. Gene effects are assumed to be independent of the origin of alleles and allelic frequencies can differ between parental populations. Based on these assumptions, the theoretical variance components (additive and dominant) are obtained as a function of marker effects and allelic frequencies. The additive genetic variance in the crossbred population includes the biological additive and dominant effects of a gene and a covariance term. Dominance variance in the crossbred population is proportional to the product of the heterozygosity coefficients of both parental populations. A genomic BLUP (best linear unbiased prediction) equivalent model is presented. We illustrate this approach by using pig data (two pure lines and their cross, including 8265 phenotyped and genotyped sows). For the total number of piglets born, the dominance variance in the crossbred population represented about 13 % of the total genetic variance. Dominance variation is only marginally important for litter size in the crossbred population. CONCLUSIONS: We present a coherent marker-based model that includes purebred and crossbred data and additive and dominant actions. Using this model, it is possible to estimate breeding values, dominant deviations and variance components in a dataset that comprises data on purebred and crossbred individuals. These methods can be exploited to plan assortative mating in pig, maize or other species, in order to generate superior crossbred individuals in terms of performance.


Asunto(s)
Cruzamientos Genéticos , Genes Dominantes , Genómica , Modelos Genéticos , Selección Artificial , Sus scrofa/genética , Alelos , Animales , Femenino , Frecuencia de los Genes , Heterocigoto , Fenotipo , Polimorfismo de Nucleótido Simple
11.
Genet Sel Evol ; 47: 89, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26576649

RESUMEN

BACKGROUND: In pedigreed populations with a major gene segregating for a quantitative trait, it is not clear how to use pedigree, genotype and phenotype information when some individuals are not genotyped. We propose to consider gene content at the major gene as a second trait correlated to the quantitative trait, in a gene content multiple-trait best linear unbiased prediction (GCMTBLUP) method. RESULTS: The genetic covariance between the trait and gene content at the major gene is a function of the substitution effect of the gene. This genetic covariance can be written in a multiple-trait form that accommodates any pattern of missing values for either genotype or phenotype data. Effects of major gene alleles and the genetic covariance between genotype at the major gene and the phenotype can be estimated using standard EM-REML or Gibbs sampling. Prediction of breeding values with genotypes at the major gene can use multiple-trait BLUP software. Major genes with more than two alleles can be considered by including negative covariances between gene contents at each different allele. We simulated two scenarios: a selected and an unselected trait with heritabilities of 0.05 and 0.5, respectively. In both cases, the major gene explained half the genetic variation. Competing methods used imputed gene contents derived by the method of Gengler et al. or by iterative peeling. Imputed gene contents, in contrast to GCMTBLUP, do not consider information on the quantitative trait for genotype prediction. GCMTBLUP gave unbiased estimates of the gene effect, in contrast to the other methods, with less bias and better or equal accuracy of prediction. GCMTBLUP improved estimation of genotypes in non-genotyped individuals, in particular if these individuals had own phenotype records and the trait had a high heritability. Ignoring the major gene in genetic evaluation led to serious biases and decreased prediction accuracy. CONCLUSIONS: CGMTBLUP is the best linear predictor of additive genetic merit including pedigree, phenotype, and genotype information at major genes, since it considers missing genotypes. Simulations confirm that it is a simple, efficient and theoretically sound method for genetic evaluation of traits influenced by polygenic inheritance and one or several major genes.


Asunto(s)
Evolución Molecular , Estudios de Asociación Genética , Modelos Genéticos , Herencia Multifactorial , Carácter Cuantitativo Heredable , Selección Genética , Algoritmos , Animales , Cruzamiento , Simulación por Computador , Femenino , Genética de Población , Genotipo , Masculino , Linaje , Fenotipo , Cromosoma X
12.
Genet Sel Evol ; 46: 38, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24917150

RESUMEN

BACKGROUND: "Foie gras" is produced predominantly in France and about 90% of the commercialized product is obtained from male mule ducks. The melting rate (percentage of fat released during cooking) is the main criterion used to determine the quality of "foie gras". However, up to now the melting rate could not be predicted without causing liver damage, which means that selection programs could not use this criterion. METHODS: Fatty liver phenotypes were obtained for a population of over 1400 overfed male mule ducks. The phenotypes were based on two types of near-infrared spectra (on the liver surface and on ground liver) in order to predict the melting rate and liver composition (ash, dry matter, lipid and protein contents). Genetic parameters were computed in multiple traits with a "sire-dam" model and using a Gibbs sampling approach. RESULTS: The estimates for the genetic parameters show that the measured melting rate and the predicted melting rate obtained with two near-infrared spectrometer devices are genetically the same trait: genetic correlations are very high (ranging from +0.89 to +0.97 depending on the mule duck parental line and the spectrometer) and heritabilities are comparable. The predictions based on the spectra of ground liver samples using a laboratory spectrometer correlate with those based on the surface spectra using a portable spectrometer (from +0.83 to +0.95 for dry matter, lipid and protein content) and are particularly high for the melting rate (higher than +0.95). Although less accurate than the predictions obtained using the spectra of ground liver samples, the phenotypic prediction of the melting rate based on surface spectra is sufficiently accurate to be used by "foie gras" processors. CONCLUSIONS: Near-infrared spectrometry is an efficient tool to select liver quality in breeding programs because animals can be ranked according to their liver melting rate without damaging their livers. Thus, these original results will help breeders to select ducks based on the liver melting rate, a crucial criterion that defines the quality of the liver and for which there was previously no accurate predictor.


Asunto(s)
Patos/clasificación , Patos/genética , Hígado Graso/veterinaria , Calidad de los Alimentos , Espectroscopía Infrarroja Corta/veterinaria , Animales , Cruzamiento , Francia , Masculino , Fenotipo
13.
Genet Sel Evol ; 46: 40, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24962065

RESUMEN

BACKGROUND: Estimates of dominance variance in dairy cattle based on pedigree data vary considerably across traits and amount to up to 50% of the total genetic variance for conformation traits and up to 43% for milk production traits. Using bovine SNP (single nucleotide polymorphism) genotypes, dominance variance can be estimated both at the marker level and at the animal level using genomic dominance effect relationship matrices. Yield deviations of high-density genotyped Fleckvieh cows were used to assess cross-validation accuracy of genomic predictions with additive and dominance models. The potential use of dominance variance in planned matings was also investigated. RESULTS: Variance components of nine milk production and conformation traits were estimated with additive and dominance models using yield deviations of 1996 Fleckvieh cows and ranged from 3.3% to 50.5% of the total genetic variance. REML and Gibbs sampling estimates showed good concordance. Although standard errors of estimates of dominance variance were rather large, estimates of dominance variance for milk, fat and protein yields, somatic cell score and milkability were significantly different from 0. Cross-validation accuracy of predicted breeding values was higher with genomic models than with the pedigree model. Inclusion of dominance effects did not increase the accuracy of the predicted breeding and total genetic values. Additive and dominance SNP effects for milk yield and protein yield were estimated with a BLUP (best linear unbiased prediction) model and used to calculate expectations of breeding values and total genetic values for putative offspring. Selection on total genetic value instead of breeding value would result in a larger expected total genetic superiority in progeny, i.e. 14.8% for milk yield and 27.8% for protein yield and reduce the expected additive genetic gain only by 4.5% for milk yield and 2.6% for protein yield. CONCLUSIONS: Estimated dominance variance was substantial for most of the analyzed traits. Due to small dominance effect relationships between cows, predictions of individual dominance deviations were very inaccurate and including dominance in the model did not improve prediction accuracy in the cross-validation study. Exploitation of dominance variance in assortative matings was promising and did not appear to severely compromise additive genetic gain.


Asunto(s)
Bovinos/clasificación , Bovinos/genética , Lactancia/genética , Leche/metabolismo , Fenotipo , Alelos , Animales , Cruzamiento , Femenino , Frecuencia de los Genes , Sitios Genéticos , Genómica , Genotipo , Masculino , Modelos Genéticos , Linaje , Polimorfismo de Nucleótido Simple , Selección Genética
14.
Genetics ; 224(2)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37021800

RESUMEN

Interpopulation improvement for crosses of close populations in crops and livestock depends on the amount of heterosis and the amount of variance of dominance deviations in the hybrids. It has been intuited that the further the distance between populations, the lower the amount of dominance variation and the higher the heterosis. Although experience in speciation and interspecific crosses shows, however, that this is not the case when populations are so distant-here we confine ourselves to the case of not-too-distant populations typical in crops and livestock. We present equations that relate the distance between 2 populations, expressed as Nei's genetic distance or as correlation of allele frequencies, quadratically to the amount of dominance deviations across all possible crosses and linearly to the expected heterosis averaging all possible crosses. The amount of variation of dominance deviations decreases with genetic distance until the point where allele frequencies are uncorrelated, and then increases for negatively correlated frequencies. Heterosis always increases with Nei's genetic distance. These expressions match well and complete previous theoretical and empirical findings. In practice, and for close enough populations, they mean that unless frequencies are negatively correlated, selection for hybrids will be more efficient when populations are distant.


Asunto(s)
Vigor Híbrido , Frecuencia de los Genes , Cruzamientos Genéticos
15.
Genetics ; 225(1)2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37506255

RESUMEN

Genetic selection has been applied for many generations in animal, plant, and experimental populations. Selection changes the allelic architecture of traits to create genetic gain. It remains unknown whether the changes in allelic architecture are different for the recently introduced technique of genomic selection compared to traditional selection methods and whether they depend on the genetic architectures of traits. Here, we investigate the allele frequency changes of old and new causal loci under 50 generations of phenotypic, pedigree, and genomic selection, for a trait controlled by either additive, additive and dominance, or additive, dominance, and epistatic effects. Genomic selection resulted in slightly larger and faster changes in allele frequencies of causal loci than pedigree selection. For each locus, allele frequency change per generation was not only influenced by its statistical additive effect but also to a large extent by the linkage phase with other loci and its allele frequency. Selection fixed a large number of loci, and 5 times more unfavorable alleles became fixed with genomic and pedigree selection than with phenotypic selection. For pedigree selection, this was mainly a result of increased genetic drift, while genetic hitchhiking had a larger effect on genomic selection. When epistasis was present, the average allele frequency change was smaller (∼15% lower), and a lower number of loci became fixed for all selection methods. We conclude that for long-term genetic improvement using genomic selection, it is important to consider hitchhiking and to limit the loss of favorable alleles.


Asunto(s)
Genoma , Selección Genética , Animales , Frecuencia de los Genes , Genómica , Mutación , Modelos Genéticos
16.
Methods Mol Biol ; 2467: 219-243, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35451778

RESUMEN

The use of genomic information for prediction of future phenotypes or breeding values for the candidates to selection has become a standard over the last decade. However, most procedures for genomic prediction only consider the additive (or substitution) effects associated with polymorphic markers. Nevertheless, the implementation of models that consider nonadditive genetic variation may be interesting because they (1) may increase the ability of prediction, (2) can be used to define mate allocation procedures in plant and animal breeding schemes, and (3) can be used to benefit from nonadditive genetic variation in crossbreeding or purebred breeding schemes. This study reviews the available methods for incorporating nonadditive effects into genomic prediction procedures and their potential applications in predicting future phenotypic performance, mate allocation, and crossbred and purebred selection. Finally, a brief outline of some future research lines is also proposed.


Asunto(s)
Genoma , Modelos Genéticos , Animales , Genómica , Genotipo , Hibridación Genética , Fenotipo , Selección Genética
17.
J Anim Sci ; 99(11)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34648628

RESUMEN

Inbreeding depression reduces the mean phenotypic value of important traits in livestock populations. The goal of this work was to estimate the level of inbreeding and inbreeding depression for growth and reproductive traits in Argentinean Brangus cattle, in order to obtain a diagnosis and monitor breed management. Data comprised 359,257 (from which 1,990 were genotyped for 40,678 single nucleotide polymorphisms [SNPs]) animals with phenotypic records for at least one of three growth traits: birth weight (BW), weaning weight (WW), and finishing weight (FW). For scrotal circumference (SC), 52,399 phenotypic records (of which 256 had genotype) were available. There were 530,938 animals in pedigree. Three methods to estimate inbreeding coefficients were used. Pedigree-based inbreeding coefficients were estimated accounting for missing parents. Inbreeding coefficients combining genotyped and nongenotyped animal information were also computed from matrix H of the single-step approach. Genomic inbreeding coefficients were estimated using homozygous segments obtained from a Hidden Markov model (HMM) approach. Inbreeding depression was estimated from the regression of the phenotype on inbreeding coefficients in a multiple-trait mixed model framework, either for the whole dataset or for the dataset of genotyped animals. All traits were unfavorably affected by inbreeding depression. A 10% increase in pedigree-based or combined inbreeding would result in a reduction of 0.34 to 0.39 kg in BW, 2.77 to 3.28 kg in WW, and 0.23 cm in SC. For FW, a 10% increase in pedigree-based, genomic, or combined inbreeding would result in a decrease of 8.05 to 11.57 kg. Genomic inbreeding based on the HMM was able to capture inbreeding depression, even in such a compressed genotyped dataset.


Asunto(s)
Depresión Endogámica , Animales , Bovinos/genética , Genómica , Genotipo , Endogamia , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple
18.
Genetics ; 219(4)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34718531

RESUMEN

Allele substitution effects at quantitative trait loci (QTL) are part of the basis of quantitative genetics theory and applications such as association analysis and genomic prediction. In the presence of nonadditive functional gene action, substitution effects are not constant across populations. We develop an original approach to model the difference in substitution effects across populations as a first order Taylor series expansion from a "focal" population. This expansion involves the difference in allele frequencies and second-order statistical effects (additive by additive and dominance). The change in allele frequencies is a function of relationships (or genetic distances) across populations. As a result, it is possible to estimate the correlation of substitution effects across two populations using three elements: magnitudes of additive, dominance, and additive by additive variances; relationships (Nei's minimum distances or Fst indexes); and assumed heterozygosities. Similarly, the theory applies as well to distinct generations in a population, in which case the distance across generations is a function of increase of inbreeding. Simulation results confirmed our derivations. Slight biases were observed, depending on the nonadditive mechanism and the reference allele. Our derivations are useful to understand and forecast the possibility of prediction across populations and the similarity of GWAS effects.


Asunto(s)
Alelos , Frecuencia de los Genes , Genética de Población , Modelos Genéticos , Mutagénesis , Animales , Simulación por Computador , Genes/fisiología , Variación Genética , Genética de Población/métodos , Genotipo , Humanos , Modelos Estadísticos
19.
Genetics ; 218(1)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33864072

RESUMEN

We revisited, in a genomic context, the theory of hybrid genetic evaluation models of hybrid crosses of pure lines, as the current practice is largely based on infinitesimal model assumptions. Expressions for covariances between hybrids due to additive substitution effects and dominance and epistatic deviations were analytically derived. Using dense markers in a GBLUP analysis, it is possible to split specific combining ability into dominance and across-groups epistatic deviations, and to split general combining ability (GCA) into within-line additive effects and within-line additive by additive (and higher order) epistatic deviations. We analyzed a publicly available maize data set of Dent × Flint hybrids using our new model (called GCA-model) up to additive by additive epistasis. To model higher order interactions within GCAs, we also fitted "residual genetic" line effects. Our new GCA-model was compared with another genomic model which assumes a uniquely defined effect of genes across origins. Most variation in hybrids is accounted by GCA. Variances due to dominance and epistasis have similar magnitudes. Models based on defining effects either differently or identically across heterotic groups resulted in similar predictive abilities for hybrids. The currently used model inflates the estimated additive genetic variance. This is not important for hybrid predictions but has consequences for the breeding scheme-e.g. overestimation of the genetic gain within heterotic group. Therefore, we recommend using GCA-model, which is appropriate for genomic prediction and variance component estimation in hybrid crops using genomic data, and whose results can be practically interpreted and used for breeding purposes.


Asunto(s)
Productos Agrícolas/genética , Quimera , Epistasis Genética , Predicción , Variación Genética , Genómica/métodos , Hibridación Genética , Endogamia , Desequilibrio de Ligamiento , Modelos Genéticos , Fitomejoramiento , Plantas/genética
20.
G3 (Bethesda) ; 10(8): 2829-2841, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32554752

RESUMEN

We investigated the effectiveness of mate allocation strategies accounting for non-additive genetic effects to improve crossbred performance in a two-way crossbreeding scheme. We did this by computer simulation of 10 generations of evaluation and selection. QTL effects were simulated as correlated across purebreds and crossbreds, and (positive) heterosis was simulated as directional dominance. The purebred-crossbred correlation was 0.30 or 0.68 depending on the genetic variance component used. Dominance and additive marker effects were estimated simultaneously for purebreds and crossbreds by multiple trait genomic BLUP. Four scenarios that differ in the sources of information (only purebred data, or purebred and crossbred data) and mate allocation strategies (mating at random, minimizing expected future inbreeding, or maximizing the expected total genetic value of crossbred animals) were evaluated under different cases of genetic variance components. Selecting purebred animals for purebred performance yielded a response of 0.2 genetic standard deviations of the trait "crossbred performance" per generation, whereas selecting purebred animals for crossbred performance doubled the genetic response. Mate allocation strategy to maximize the expected total genetic value of crossbred descendants resulted in a slight increase (0.8%, 4% and 0.5% depending on the genetic variance components) of the crossbred performance. Purebred populations increased homozygosity, but the heterozygosity of the crossbreds remained constant. When purebred-crossbred genetic correlation is low, selecting purebred animals for crossbred performance using crossbred information is a more efficient strategy to exploit heterosis and increase performance at the crossbred commercial level, whereas mate allocation did not improve crossbred performance.


Asunto(s)
Hibridación Genética , Modelos Genéticos , Animales , Simulación por Computador , Cruzamientos Genéticos , Genómica , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA