RESUMEN
Enhancing the intrinsic stability of perovskite and through encapsulation to isolate water, oxygen, and UV-induced decomposition are currently common and most effective strategies in perovskite solar cells. Here, the atomic layer deposition process is employed to deposit a nanoscale (≈100 nm), uniform, and dense Al2O3 film on the front side of perovskite devices, effectively isolating them from the erosion caused by water and oxygen in the humid air. Simultaneously, nanoscale (≈100 nm) TiO2 films are also deposited on the glass surface to efficiently filter out the ultraviolet (UV) light in the light source, which induces degradation in perovskite. Ultimately, throughthe collaborative effects of both aspects, the stability of the devices is significantly improved under conditions of humid air and illumination. As a result, after storing the devices in ambient air for 1000 h, the efficiency only declines to 95%, and even after 662 h of UV exposure, the efficiency remains at 88%, far surpassing the performance of comparison devices. These results strongly indicate that the adopted Al2O3 and TiO2 thin films play a significant role in enhancing the stability of perovskite solar cells, demonstrating substantial potential for widespread industrial applications.
RESUMEN
The rapid oxidation of Sn2+ in tin-based perovskite solar cells (TPSCs) restricts their efficiency and stability have been main bottleneck towards further development. This study developed a novel strategy which utilizes thiosulfate ions (S2O32-) in the precursor solution to enable a dual-stage reduction process. In the solution stage, thiosulfate acted as an efficacious reducing agent to reduce Sn4+ to Sn2+, meanwhile, its oxidation products were able to reduce I2 to I- during the film stage. This dual reduction ability effectively inhibited the oxidation of Sn2+ and passivated defects, further promising an excellent stability of the perovskite devices. As a result, thiosulfate-incorporated devices achieved a high efficiency of 14.78% with open-circuit voltage reaching 0.96 V. The stability of the optimized devices achieved a remarkable improvement, maintaining 90% of their initial efficiencies after 628 hours at maximum-power-point (MPP). The findings provid research insights and experimental data support for the sustained dynamic reduction in TPSCs.
RESUMEN
Deep-blue perovskite light-emitting diodes (PeLEDs) based on quasi-two-dimensional (quasi-2D) systems exist heightened sensitivity to the domain distribution. The top-down crystallization mode will lead to a vertical gradient distribution of quantum well (QW) structure, which is unfavorable for deep-blue emission. Herein, a thermal gradient annealing treatment is proposed to address the polydispersity issue of vertical QWs in quasi-2D perovskites. The formation of large-n domains at the upper interface of the perovskite film can be effectively inhibited by introducing a low-temperature source in the annealing process. Combined with the utilization of NaBr to inhibit the undesirable n=1 domain, a vertically concentrated QW structure is ultimately attained. As a result, the fabricated device delivers a narrow and stable deep-blue emission at 458â nm with an impressive external quantum efficiency (EQE) of 5.82 %. Green and sky-blue PeLEDs with remarkable EQE of 21.83 % and 17.51 % are also successfully achieved, respectively, by using the same strategy. The findings provide a universal strategy across the entire quasi-2D perovskites, paving the way for future practical application of PeLEDs.
RESUMEN
The device performance of deep-blue perovskite light-emitting diodes (PeLEDs) is primarily constrained by low external quantum efficiency (EQE) especially poor operational stability. Herein, we develop a facile strategy to improve deep-blue emission through rational interface engineering. We innovatively reported the novel electron transport material, 4,6-Tris(4-(diphenylphosphoryl)phenyl)-1,3,5-triazine (P-POT2T), and utilized a sequential wet-dry deposition method to form homogenic gradient interface between electron transport layer (ETL) and perovskite surface. Unlike previous reports that achieved carrier injection balance by inserting new interlayers, our strategy not only passivated uncoordinated Pb in the perovskite via P=O functional groups but also reduced interfacial carrier recombination without introducing new interfaces. Additionally, this strategy enhanced the interface contact between the perovskite and ETL, significantly boosting device stability. Consequently, the fabricated deep-blue PeLEDs delivered an external quantum efficiency (EQE) exceeding 5% (@ 460 nm) with an exceptional halftime extended to 31.3 minutes. This straightforward approach offers a new strategy to realize highly efficient especially stable PeLEDs.
RESUMEN
Buried interface modification can effectively improve the compatibility between interfaces. Given the distinct interface selections in perovskite solar cells (PSCs), the applicability of a singular modification material remains limited. Consequently, in response to this challenge, we devised a tailored molecular strategy based on the electronic effects of specific functional groups. Therefore, we prepared three distinct silane coupling agents, and due to the varying inductive effects of these functional groups, the electronic distribution and molecular dipole moments of the coupling agents are correspondingly altered. Among them, trimethoxy (3,3,3-trifluoropropyl)-silane (F3 -TMOS), which possesses electron-withdrawing groups, generates a molecular dipole moment directed toward the hole transport layer (HTL). This approach changes the work function of the HTL, optimizes the energy level alignment, reduces the open-circuit voltage loss, and facilitates carrier transport. Furthermore, through the buffering effect of the coupling agent, the interface strain and lattice distortion caused by annealing the perovskite are reduced, enhancing the stability of the tin-based perovskite. Encouragingly, tin PSCs treated with F3 -TMOS achieved a champion efficiency of 14.67 %. This strategy provides an expedient avenue for the design of buried interface modification materials, enabling precise molecular adjustments in accordance with distinct interfacial contexts to ameliorate mismatched energetics and enhance carrier dynamics.
RESUMEN
Achieving high-efficiency perovskite solar cells (PSCs) hinges on the precise control of the perovskite film crystallization process, often improved by the inclusion of additives. While dimethyl sulfoxide (DMSO) is traditionally used to manage this process, its removal from the films is problematic. In this work, methyl phenyl sulfoxide (MPSO) was employed instead of DMSO to slow the crystallization rate, as MPSO is more easily removed from the perovskite structure. The electron delocalization associated with the benzene ring in MPSO decreases the electron density around the oxygen atom in the sulfoxide group, thus reducing its interaction with PbI2. This strategy not only sustains the formation of a crystallization-slowing intermediate phase but also simplifies the elimination of the additive. Consequently, the optimized PSCs achieved a leading power conversion efficiency (PCE) of 25.95% along with exceptional stability. This strategy provides a novel method for fine-tuning perovskite crystallization to enhance the overall performance of photovoltaic devices.
RESUMEN
Blue perovskite light-emitting diodes (PeLEDs) are crucial avenues for achieving full-color displays and lighting based on perovskite materials. However, the relatively low external quantum efficiency (EQE) has hindered their progression towards commercial applications. Quasi-two-dimensional (quasi-2D) perovskites stand out as promising candidates for blue PeLEDs, with optimized control over low-dimensional phases contributing to enhanced radiative properties of excitons. Herein, the impact of organic molecular dopants on the crystallization of various n-phase structures in quasi-2D perovskite films. The results reveal that the highly reactive bis(4-(trifluoromethyl)phenyl)phosphine oxide (BTF-PPO) molecule could effectively restrain the formation of organic spacer cation-ordered layered perovskite phases through chemical reactions, simultaneously passivate those uncoordinated Pb2+ defects. Consequently, the prepared PeLEDs exhibited a maximum EQE of 16.6 % (@ 490â nm). The finding provides a new route to design dopant molecules for phase modulation in quasi-2D PeLEDs.
RESUMEN
Owing to the merits of low cost and high power conversion efficiency (PCE), perovskite solar cells (PSCs) have become the best candidate to replace the commonly used silicon solar cells. However, PSCs have been slow to enter the market for a number of reasons, including poor stability, high toxicity, and rigorous preparation process. Passivation strategies including surface passivation and bulk passivation have been successfully applied to improve the device performance of PSCs. The passivation of the defects at the buried interface, which is regarded as a key strategy to breakthrough the device efficiency and stability of PSCs in the future, is ongoing with challenge. Herein, in detail the recent passivation of the buried interface is introduced from three aspects: perovskite layer, buried interlayer, and transport layer. The passivation effect of the buried interface is clearly demonstrated through three categories of salts, organics, and 2D materials. In addition, the transport layer is classified into electron transport layer (ETL) and hole transport layer (HTL). These classifications can help to have a clear understanding of substances which generate passivating effect and guide the continuous promotion of the follow-up buried interface passivating work.
RESUMEN
Due to their greater opt electric performance, perovskite photovoltaics (PVs) present huge potential to be commercialized. Perovskite PV's high theoretical efficiency expands the available development area. The passivation of defects in perovskite films is crucial for approaching the theoretical limit. In addition to creating efficient passivation techniques, it is essential to direct the passivation approach by getting precise and real-time information on the trap states through measurements. Therefore, it is necessary to establish quantitative characterization methods for the trap states in energy and 3D spaces. The authors cover the characterization of the spatial and energy distributions of trap states in this article with an eye toward high-efficiency perovskite photovoltaics. After going over the strategies that have been created for characterizing and evaluating trap states, the authors will concentrate on how to direct the creative development of characterization techniques for trap states assessment and highlight the opportunities and challenges of future development. The 3D space and energy distribution mappings of trap states are anticipated to be realized. The review will give key guiding importance for further approaching the theoretical efficiency of perovskite photovoltaics, offering some future research direction and technological assistance for the development of appropriate targeted passivation technologies.
RESUMEN
Organic-inorganic halide perovskites (OIHPs) obtained tremendous attention due to their low cost and excellent properties. However, the stability and toxicity of Pb-based OIHPs (POIHPs), as well as the weakness of efficiency and stability in Sn-based OIHPs (SOIHPs), are still serious issues for commercial application. Notably, composition engineering is an effective and direct strategy for improving these issues along with the control and modification of properties. Recently, the doping strategies for POIHPs and SOIHPs are booming. Based on the relationship between properties and composition, the doping strategies for POIHPs and SOIHPs, aiming to provide a comprehensive review and guidance for the research are systematically summarized. Moreover, the doping strategies for Pb-Sn mixed OIHPs are also discussed. Finally, a brief perspective and conclusion toward future possible doping schemes and properties designment of POIHPs and SOIHPs are offered.
RESUMEN
Organic frameworks (OFs) offer a novel strategy for assembling organic semiconductors into robust networks that facilitate transport, especially the covalent organic frameworks (COFs). However, poor electrical conductivity through covalent bonds and insolubility of COFs limit their practical applications in organic electronics. It is known that the two-dimensional intralayer πâââπ transfer dominates transport in organic semiconductors. However, because of extremely labile inherent features of noncovalent πâââπ interaction, direct construction of robust frameworks via noncovalent πâââπ interaction is a difficult task. Toward this goal, we report a robust noncovalent πâââπ interaction-stacked organic framework, namely πOF, consisting of a permanent three-dimensional porous structure that is held together by pure intralayer noncovalent πâââπ interactions. The elaborate porous structure, with a 1.69-nm supramaximal micropore, is composed of fully conjugated rigid aromatic tetragonal-disphenoid-shaped molecules with four identical platforms. πOF shows excellent thermostability and high recyclability and exhibits self-healing properties by which the parent porosity is recovered upon solvent annealing at room temperature. Taking advantage of the long-range πâââπ interaction, we demonstrate remarkable transport properties of πOF in an organic-field-effect transistor, and the mobility displays relative superiority over the traditional COFs. These promising results position πOF in a direction toward porous and yet conductive materials for high-performance organic electronics.
RESUMEN
Perovskite nanocrystals (PeNCs) deliver size- and composition-tunable luminescence of high efficiency and color purity in the visible range. However, attaining efficient electroluminescence (EL) in the near-infrared (NIR) region from PeNCs is challenging, limiting their potential applications. Here we demonstrate a highly efficient NIR light-emitting diode (LED) by doping ytterbium ions into a PeNCs host (Yb3+ : PeNCs), extending the EL wavelengths toward 1000â nm, which is achieved through a direct sensitization of Yb3+ ions by the PeNC host. Efficient quantum-cutting processes enable high photoluminescence quantum yields (PLQYs) of up to 126 % from the Yb3+ : PeNCs. Through halide-composition engineering and surface passivation to improve both PLQY and charge-transport balance, we demonstrate an efficient NIR LED with a peak external quantum efficiency of 7.7 % at a central wavelength of 990â nm, representing the most efficient perovskite-based LEDs with emission wavelengths beyond 850â nm.
RESUMEN
Achieving efficient blue electroluminescence (EL) remains the fundamental challenge that impedes perovskite light-emitting diodes (PeLEDs) towards commercial applications. The bottleneck accounting for the inefficient blue PeLEDs is broadly attributed to the poor-emissive blue perovskite emitters based on either mixed halide engineering or reduced-dimensional strategy. Herein, we report the high-performing sky-blue PeLEDs (490â nm) with the maximum EQE exceeding 15 % by incorporating a molecular modifier, namely 4,4'-Difluorophenone, for significantly suppressing the non-radiative recombination and tuning of the low-dimensional phase distribution of quasi-2D blue perovskites, which represents a remarkable paradigm for developing the new generation of blue lighting sources.
RESUMEN
Despite recent encouraging developments, achieving efficient blue perovskite light-emitting diodes (PeLEDs) have been widely considered a critical challenge. The efficiency breakthrough only occurred in the sky-blue region, and the device performance of pure-blue and deep-blue PeLEDs lags far behind those of their sky-blue counterparts. To avoid the negative effects associated with dimensionality reduction and excess chloride typically needed to achieve deep-blue emission, here we demonstrate guanidine (GA+)-induced deep-blue (â¼457 nm) perovskite emitters enabling spectrally stable PeLEDs with a record external quantum efficiency (EQE) over 3.41% through a combination of quasi-2D perovskites and halide engineering. Owing to the presence of GA+, even a small inclusion of chloride ions is sufficient for generating deep-blue electroluminescence (EL), in clear contrast to the previously reported deep-blue PeLEDs with significant chloride inclusion that negatively affects spectral stability. Based on the carrier dynamics analysis and theoretical calculation, GA+ is found to stabilize the low-dimensional species during annealing, retarding the cascade energy transfer and facilitating the deep-blue EL. Our findings open a potential third route to achieve deep-blue PeLEDs beyond the conventional methods of dimensionality reduction and excessive chloride incorporation.
RESUMEN
With the efforts of researchers from all over the world, metal halide perovskite solar cells (PSCs) have been booming rapidly in recent years. Generally, perovskite films are sensitive to surrounding conditions and will be changed under the action of physical fields, resulting in lattice distortion, degradation, ion migration, and so on. In this review, the progress of physical fields manipulation in PSCs, including the electric field, magnetic field, light field, stress field, and thermal field are reviewed. On this basis, the influences of these fields on PSCs are summarized and prospected. Finally, challenges and prospective research directions on how to make better use of external-fields while minimizing the unnecessary and disruptive impacts on commercial PSCs with high-efficiency and steady output are proposed.
RESUMEN
Defect states play an important role in the photovoltaic performance of metal halide perovskites. Particularly, the passivation of surface defects has made great contributions to high-performance perovskite photovoltaics. This highlights the importance of understanding the surface defects from a fundamental level by developing more accurate and operando characterization techniques. Herein, a strategy to enable the surface carriers and photocurrent distributions on perovskite films to be visualized in the horizontal direction is put forward. The visual image of photocurrent distribution is realized by combining the static local distribution of carriers provided by scanning near-field optical microscopy with the dynamic transporting of carriers achieved via a scanning photocurrent measurement system. Taking a surface passivated molecule as an example, a comprehensive defect scene including static and dynamic as well as local and entire conditions is obtained using this strategy. The comprehensive analysis of the trap states in perovskite films is pioneered vertically and horizontally, which will powerfully promote the deep understanding of defect mechanisms and carrier behavior for the goal of fabricating high-performance perovskite optoelectronic devices.
RESUMEN
The inorganic lead-free Cs2AgBiBr6 double perovskite structure is the promising development direction in perovskite solar cells (PSCs) to solve the problem of the instability of the APbX3 structure and lead toxicity. However, the low short-circuit current and power conversion efficiency (PCE) caused by the low crystallization of Cs2AgBiBr6 greatly limit the optoelectronic application. Herein, we adopt a simple strategy to dope single-layered MXene nanosheets into titania (Ti3C2Tx@TiO2) as a multifunctional electron transport layer for stable and efficient Cs2AgBiBr6 double PSCs. The single-layered MXene nanosheets significantly improve the electrical conductivity and electron extraction rate of TiO2; meanwhile, the single-layered MXene nanosheets change the surface wettability of the electron transport layer and promote the crystallization of the Cs2AgBiBr6 double perovskite in solar cell devices. Therefore, the PCE went up by more than 40% to 2.81% compared to that of a TiO2 based device, and the hysteresis was greatly suppressed. Furthermore, the device based on Ti3C2Tx@TiO2 showed the long-term operating stability. After storing the device for 15 days under ambient air conditions, the PCE still remained a retention rate of 93% of the initial one. Our finding demonstrates the potential of Ti3C2Tx@TiO2 in electron transfer material of high-performance double PSCs.
RESUMEN
Quasi-2D perovskites are enchanting alternative materials for solar cells due to their intrinsic stability. The manipulation of crystal orientation of quasi-2D perovskites is indispensable to target efficient devices, however, the origin of orientation during the film fabrication process still lacks in-depth understanding and convincing evidence yet, which hinders further boosting the performance of photovoltaic devices. Herein, the crystallizing processes during spin-coating and annealing are probed by in situ grazing-incidence wide-angle X-ray scattering (GIWAXS), and the incident-angle-dependent GIWAXS is conducted to unveil the phase distribution in the films. It is found that undesirable lead iodide sol-gel formed intermediate phase would disturb oriented crystalline growth, resulting in random crystal orientation in poor quasi-2D films. A general strategy is developed via simple additive agent incorporation to suppress the formation of the intermediate phase. Accordingly, highly oriented perovskite films with reduced trap density and higher carrier mobility are obtained, which enables the demonstration of optimized quasi-2D perovskite solar cells with a power conversion efficiency of 15.2% as well as improved stability. This work paves a promising way to manipulate the quasi-2D perovskites nucleation and crystallization processes via tuning nucleation stage.
RESUMEN
Bulk heterojunction (BHJ) structure based organic photovoltaics (OPVs) have recently showed great potential for achieving high power conversion efficiencies (PCEs). An ideal BHJ structure would feature large donor/acceptor interfacial areas for efficient exciton dissociation and gradient distributions with high donor and acceptor concentrations near the anode and cathode, respectively, for efficient charge extraction. However, the random mixing of donors and acceptors in the BHJ often suffers the severe charge recombination in the interface, resulting in poor charge extraction. Herein, we propose a new approach-treating the surface of the zinc oxide (ZnO) as an electron transport layer with potassium hydroxide-to induce vertical phase separation of an active layer incorporating the nonfullerene acceptor IT-4F. Density functional theory calculations suggested that the binding energy difference between IT-4F and the PBDB-T-2Cl, to the potassium (K)-presenting ZnO interface, is twice as strong as that for IT-4F and PBDB-T-2Cl to the untreated ZnO surface, such that it would induce more IT-4F moving toward the K-presenting ZnO interface than the untreated ZnO interface thermodynamically. Benefiting from efficient charge extraction, the best PCEs increased to 12.8% from 11.8% for PBDB-T-2Cl:IT-4F-based devices, to 12.6% from 11.6% for PBDB-T-2Cl:Y1-4F-based devices, to 13.5% from 12.2% for PBDB-T-2Cl:Y6-based devices, and to 15.7% from 15.1% for PM6:Y6-based devices.
RESUMEN
Halide perovskites are a strong candidate for the next generation of photovoltaics. Chemical doping of halide perovskites is an established strategy to prepare the highest efficiency and most stable perovskite-based solar cells. In this study, we unveil the doping mechanism of halide perovskites using a series of alkaline earth metals. We find that low doping levels enable the incorporation of the dopant within the perovskite lattice, whereas high doping concentrations induce surface segregation. The threshold from low to high doping regime correlates to the size of the doping element. We show that the low doping regime results in a more n-type material, while the high doping regime induces a less n-type doping character. Our work provides a comprehensive picture of the unique doping mechanism of halide perovskites, which differs from classical semiconductors. We proved the effectiveness of the low doping regime for the first time, demonstrating highly efficient methylammonium lead iodide based solar cells in both n-i-p and p-i-n architectures.