Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 23(1): 40-49, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937928

RESUMEN

SARS-CoV-2 infection is generally mild or asymptomatic in children but a biological basis for this outcome is unclear. Here we compare antibody and cellular immunity in children (aged 3-11 years) and adults. Antibody responses against spike protein were high in children and seroconversion boosted responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Neutralization of viral variants was comparable between children and adults. Spike-specific T cell responses were more than twice as high in children and were also detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses. Importantly, children retained antibody and cellular responses 6 months after infection, whereas relative waning occurred in adults. Spike-specific responses were also broadly stable beyond 12 months. Therefore, children generate robust, cross-reactive and sustained immune responses to SARS-CoV-2 with focused specificity for the spike protein. These findings provide insight into the relative clinical protection that occurs in most children and might help to guide the design of pediatric vaccination regimens.


Asunto(s)
Anticuerpos Antivirales/inmunología , Coronavirus Humano 229E/inmunología , Coronavirus Humano OC43/inmunología , Protección Cruzada/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Inmunidad Adaptativa/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Niño , Preescolar , Reacciones Cruzadas/inmunología , Humanos
2.
Emerg Infect Dis ; 30(4): 836-838, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526202

RESUMEN

We conducted a cross-sectional study of Crimean-Congo hemorrhagic fever virus (CCHFV) in northern Tanzania. CCHFV seroprevalence in humans and ruminant livestock was high, as were spatial heterogeneity levels. CCHFV could represent an unrecognized human health risk in this region and should be included as a differential diagnosis for febrile illness.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Humanos , Animales , Ganado , Estudios Transversales , Estudios Seroepidemiológicos , Tanzanía/epidemiología
3.
J Gen Virol ; 105(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38861287

RESUMEN

Increased human-to-human transmission of monkeypox virus (MPXV) is cause for concern, and antibodies directed against vaccinia virus (VACV) are known to confer cross-protection against Mpox. We used 430 serum samples derived from the Scottish patient population to investigate antibody-mediated cross-neutralization against MPXV. By combining electrochemiluminescence immunoassays with live-virus neutralization assays, we show that people born when smallpox vaccination was routinely offered in the United Kingdom have increased levels of antibodies that cross-neutralize MPXV. Our results suggest that age is a risk factor of Mpox infection, and people born after 1971 are at higher risk of infection upon exposure.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Monkeypox virus , Mpox , Vacuna contra Viruela , Humanos , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacuna contra Viruela/inmunología , Vacuna contra Viruela/administración & dosificación , Adulto , Persona de Mediana Edad , Monkeypox virus/inmunología , Adulto Joven , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Mpox/inmunología , Mpox/prevención & control , Femenino , Adolescente , Anciano , Masculino , Protección Cruzada/inmunología , Escocia , Factores de Edad , Pruebas de Neutralización , Niño , Vacunación , Viruela/prevención & control , Viruela/inmunología , Preescolar , Reacciones Cruzadas , Anciano de 80 o más Años
4.
Emerg Infect Dis ; 29(6): 1223-1227, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37141617

RESUMEN

Anthropogenic transmission of SARS-CoV-2 to pet cats highlights the importance of monitoring felids for exposure to circulating variants. We tested cats in the United Kingdom for SARS-CoV-2 antibodies; seroprevalence peaked during September 2021-February 2022. The variant-specific response in cats trailed circulating variants in humans, indicating multiple human-to-cat transmissions over a prolonged period.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Gatos , Animales , Estudios Seroepidemiológicos , COVID-19/epidemiología , COVID-19/veterinaria , Anticuerpos Antivirales , Reino Unido/epidemiología
5.
PLoS Pathog ; 17(12): e1010022, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34855916

RESUMEN

Vaccines are proving to be highly effective in controlling hospitalisation and deaths associated with SARS-CoV-2 infection but the emergence of viral variants with novel antigenic profiles threatens to diminish their efficacy. Assessment of the ability of sera from vaccine recipients to neutralise SARS-CoV-2 variants will inform the success of strategies for minimising COVID19 cases and the design of effective antigenic formulations. Here, we examine the sensitivity of variants of concern (VOCs) representative of the B.1.617.1 and B.1.617.2 (first associated with infections in India) and B.1.351 (first associated with infection in South Africa) lineages of SARS-CoV-2 to neutralisation by sera from individuals vaccinated with the BNT162b2 (Pfizer/BioNTech) and ChAdOx1 (Oxford/AstraZeneca) vaccines. Across all vaccinated individuals, the spike glycoproteins from B.1.617.1 and B.1.617.2 conferred reductions in neutralisation of 4.31 and 5.11-fold respectively. The reduction seen with the B.1.617.2 lineage approached that conferred by the glycoprotein from B.1.351 (South African) variant (6.29-fold reduction) that is known to be associated with reduced vaccine efficacy. Neutralising antibody titres elicited by vaccination with two doses of BNT162b2 were significantly higher than those elicited by vaccination with two doses of ChAdOx1. Fold decreases in the magnitude of neutralisation titre following two doses of BNT162b2, conferred reductions in titre of 7.77, 11.30 and 9.56-fold respectively to B.1.617.1, B.1.617.2 and B.1.351 pseudoviruses, the reduction in neutralisation of the delta variant B.1.617.2 surpassing that of B.1.351. Fold changes in those vaccinated with two doses of ChAdOx1 were 0.69, 4.01 and 1.48 respectively. The accumulation of mutations in these VOCs, and others, demonstrate the quantifiable risk of antigenic drift and subsequent reduction in vaccine efficacy. Accordingly, booster vaccines based on updated variants are likely to be required over time to prevent productive infection. This study also suggests that two dose regimes of vaccine are required for maximal BNT162b2 and ChAdOx1-induced immunity.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162 , COVID-19 , Inmunización Secundaria , SARS-CoV-2/inmunología , Eficacia de las Vacunas , Deriva y Cambio Antigénico/inmunología , Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/prevención & control , Células HEK293 , Humanos
6.
PLoS Pathog ; 17(9): e1009929, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34534263

RESUMEN

Remdesivir (RDV), a broadly acting nucleoside analogue, is the only FDA approved small molecule antiviral for the treatment of COVID-19 patients. To date, there are no reports identifying SARS-CoV-2 RDV resistance in patients, animal models or in vitro. Here, we selected drug-resistant viral populations by serially passaging SARS-CoV-2 in vitro in the presence of RDV. Using high throughput sequencing, we identified a single mutation in RNA-dependent RNA polymerase (NSP12) at a residue conserved among all coronaviruses in two independently evolved populations displaying decreased RDV sensitivity. Introduction of the NSP12 E802D mutation into our SARS-CoV-2 reverse genetics backbone confirmed its role in decreasing RDV sensitivity in vitro. Substitution of E802 did not affect viral replication or activity of an alternate nucleoside analogue (EIDD2801) but did affect virus fitness in a competition assay. Analysis of the globally circulating SARS-CoV-2 variants (>800,000 sequences) showed no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we observed an excess of substitutions in spike at corresponding sites identified in the emerging SARS-CoV-2 variants of concern (i.e., H69, E484, N501, H655) indicating that they can arise in vitro in the absence of immune selection. The identification and characterisation of a drug resistant signature within the SARS-CoV-2 genome has implications for clinical management and virus surveillance.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Farmacorresistencia Microbiana/genética , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/farmacología , Alanina/farmacología , Animales , Evolución Biológica , Chlorocebus aethiops , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
7.
Proc Natl Acad Sci U S A ; 117(50): 31954-31962, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33229566

RESUMEN

Canine distemper virus (CDV) has recently emerged as an extinction threat for the endangered Amur tiger (Panthera tigris altaica). CDV is vaccine-preventable, and control strategies could require vaccination of domestic dogs and/or wildlife populations. However, vaccination of endangered wildlife remains controversial, which has led to a focus on interventions in domestic dogs, often assumed to be the source of infection. Effective decision making requires an understanding of the true reservoir dynamics, which poses substantial challenges in remote areas with diverse host communities. We carried out serological, demographic, and phylogenetic studies of dog and wildlife populations in the Russian Far East to show that a number of wildlife species are more important than dogs, both in maintaining CDV and as sources of infection for tigers. Critically, therefore, because CDV circulates among multiple wildlife sources, dog vaccination alone would not be effective at protecting tigers. We show, however, that low-coverage vaccination of tigers themselves is feasible and would produce substantive reductions in extinction risks. Vaccination of endangered wildlife provides a valuable component of conservation strategies for endangered species.


Asunto(s)
Moquillo/prevención & control , Especies en Peligro de Extinción/economía , Tigres/virología , Vacunación/economía , Vacunas Virales/administración & dosificación , Animales , Animales Salvajes/virología , Toma de Decisiones en la Organización , Reservorios de Enfermedades/veterinaria , Reservorios de Enfermedades/virología , Moquillo/epidemiología , Moquillo/transmisión , Moquillo/virología , Virus del Moquillo Canino/genética , Virus del Moquillo Canino/inmunología , Perros/sangre , Perros/virología , Estudios de Factibilidad , Femenino , Masculino , Modelos Económicos , Filogenia , Estudios Seroepidemiológicos , Siberia , Tigres/sangre , Vacunación/métodos , Cobertura de Vacunación/economía , Cobertura de Vacunación/métodos , Cobertura de Vacunación/organización & administración , Vacunas Virales/economía
8.
J Virol ; 95(13): e0017821, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33762419

RESUMEN

As the hosts of lentiviruses, almost 40 species of felids (family Felidae) are distributed around the world, and more than 20 feline species test positive for feline immunodeficiency virus (FIV), a lineage of lentiviruses. These observations suggest that FIVs globally infected a variety of feline species through multiple cross-species transmission events during a million-year history. Cellular restriction factors potentially inhibit lentiviral replication and limit cross-species lentiviral transmission, and cellular APOBEC3 deaminases are known as a potent restriction factor. In contrast, lentiviruses have evolutionary-acquired viral infectivity factor (Vif) to neutralize the APOBEC3-mediated antiviral effect. Because the APOBEC3-Vif interaction is strictly specific for viruses and their hosts, a comprehensive investigation focusing on Vif-APOBEC3 interplay can provide clues that will elucidate the roles of this virus-host interplay on cross-species transmission of lentiviruses. Here, we performed a comprehensive investigation with 144 patterns of a round robin test using 18 feline APOBEC3Z3 genes, an antiviral APOBEC3 gene in felid, and 8 FIV Vifs and derived a matrix showing the interplay between feline APOBEC3Z3 and FIV Vif. We particularly focused on the interplay between the APOBEC3Z3 of three felids (domestic cat, ocelot, and Asian golden cat) and an FIV Vif (strain Petaluma), and revealed that residues 65 and 66 of the APOBEC3Z3 protein of multiple felids are responsible for the counteraction triggered by FIV Petaluma Vif. Altogether, our findings can be a clue to elucidate not only the scenarios of the cross-species transmissions of FIVs in felids but also the evolutionary interaction between mammals and lentiviruses. IMPORTANCE Most of the emergences of new virus infections originate from the cross-species transmission of viruses. The fact that some virus infections are strictly specific for the host species indicates that certain "species barriers" in the hosts restrict cross-species jump of viruses, while viruses have evolutionary acquired their own "arms" to overcome/antagonize/neutralize these hurdles. Therefore, understanding of the molecular mechanism leading to successful cross-species viral transmission is crucial for considering the menus of the emergence of novel pathogenic viruses. In the field of retrovirology, APOBEC3-Vif interaction is a well-studied example of the battles between hosts and viruses. Here, we determined the sequences of 11 novel feline APOBEC3Z3 genes and demonstrated that all 18 different feline APOBEC3Z3 proteins tested exhibit anti-feline immunodeficiency virus (FIV) activity. Our comprehensive investigation focusing on the interplay between feline APOBEC3 and FIV Vif can be a clue to elucidate the scenarios of the cross-species transmissions of FIVs in felids.


Asunto(s)
Desaminasas APOBEC-1/metabolismo , Productos del Gen vif/metabolismo , Virus de la Inmunodeficiencia Felina/metabolismo , Infecciones por Lentivirus/transmisión , Animales , Gatos , Línea Celular , Células HEK293 , Especificidad del Huésped/fisiología , Interacciones Huésped-Patógeno/fisiología , Humanos , Infecciones por Lentivirus/patología , Panthera , Replicación Viral/fisiología
9.
J Infect Dis ; 223(6): 971-980, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33367847

RESUMEN

Identifying drivers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure and quantifying population immunity is crucial to prepare for future epidemics. We performed a serial cross-sectional serosurvey throughout the first pandemic wave among patients from the largest health board in Scotland. Screening of 7480 patient serum samples showed a weekly seroprevalence ranging from 0.10% to 8.23% in primary and 0.21% to 17.44% in secondary care, respectively. Neutralization assays showed that highly neutralizing antibodies developed in about half of individuals who tested positive with enzyme-linked immunosorbent assay, mainly among secondary care patients. We estimated the individual probability of SARS-CoV-2 exposure and quantified associated risk factors. We show that secondary care patients, male patients, and 45-64-year-olds exhibit a higher probability of being seropositive. The identification of risk factors and the differences in virus neutralization activity between patient populations provided insights into the patterns of virus exposure during the first pandemic wave and shed light on what to expect in future waves.


Asunto(s)
COVID-19/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , COVID-19/epidemiología , Línea Celular , Estudios Transversales , Atención a la Salud , Demografía , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunidad , Masculino , Persona de Mediana Edad , Pandemias , Factores de Riesgo , Escocia/epidemiología , Estudios Seroepidemiológicos , Adulto Joven
11.
J Virol ; 92(23)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30232185

RESUMEN

Morbilliviruses infect a broad range of mammalian hosts, including ruminants, carnivores, and humans. The recent eradication of rinderpest virus (RPV) and the active campaigns for eradication of the human-specific measles virus (MeV) have raised significant concerns that the remaining morbilliviruses may emerge in so-called vacated ecological niches. Seeking to assess the zoonotic potential of nonhuman morbilliviruses within human populations, we found that peste des petits ruminants virus (PPRV)-the small-ruminant morbillivirus-is restricted at the point of entry into human cells due to deficient interactions with human SLAMF1-the immune cell receptor for morbilliviruses. Using a structure-guided approach, we characterized a single amino acid change, mapping to the receptor-binding domain in the PPRV hemagglutinin (H) protein, which overcomes this restriction. The same mutation allowed escape from some cross-protective, human patient, anti-MeV antibodies, raising concerns that PPRV is a pathogen with zoonotic potential. Analysis of natural variation within human and ovine SLAMF1 also identified polymorphisms that could correlate with disease resistance. Finally, the mechanistic nature of the PPRV restriction was also investigated, identifying charge incompatibility and steric hindrance between PPRV H and human SLAMF1 proteins. Importantly, this research was performed entirely using surrogate virus entry assays, negating the requirement for in situ derivation of a human-tropic PPRV and illustrating alternative strategies for identifying gain-of-function mutations in viral pathogens.IMPORTANCE A significant proportion of viral pandemics occur following zoonotic transmission events, where animal-associated viruses jump species into human populations. In order to provide forewarnings of the emergence of these viruses, it is necessary to develop a better understanding of what determines virus host range, often at the genetic and structural levels. In this study, we demonstrated that the small-ruminant morbillivirus, a close relative of measles, is unable to use human receptors to enter cells; however, a change of a single amino acid in the virus is sufficient to overcome this restriction. This information will be important for monitoring this virus's evolution in the field. Of note, this study was undertaken in vitro, without generation of a fully infectious virus with this phenotype.


Asunto(s)
Anticuerpos Antivirales/inmunología , Glicoproteínas/metabolismo , Mutación , Peste de los Pequeños Rumiantes/virología , Virus de la Peste de los Pequeños Rumiantes/patogenicidad , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Replicación Viral , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/inmunología , Humanos , Modelos Teóricos , Mutagénesis Sitio-Dirigida , Peste de los Pequeños Rumiantes/patología , Peste de los Pequeños Rumiantes/transmisión , Virus de la Peste de los Pequeños Rumiantes/genética , Virus de la Peste de los Pequeños Rumiantes/inmunología , Conformación Proteica , Homología de Secuencia , Ovinos , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/química , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/inmunología , Células Vero
12.
J Gen Virol ; 98(11): 2635-2644, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29022862

RESUMEN

Peste des petits ruminants virus (PPRV) is a significant pathogen of small ruminants and is prevalent in much of Africa, the Near and Middle East and Asia. Despite the availability of an efficacious and cheap live-attenuated vaccine, the virus has continued to spread, with its range stretching from Morocco in the west to China and Mongolia in the east. Some of the world's poorest communities rely on small ruminant farming for subsistence and the continued endemicity of PPRV is a constant threat to their livelihoods. Moreover, PPRV's effects on the world's population are felt broadly across many economic, agricultural and social situations. This far-reaching impact has prompted the Food and Agriculture Organization of the United Nations (FAO) and the World Organisation for Animal Health (OIE) to develop a global strategy for the eradication of this virus and its disease. PPRV is a morbillivirus and, given the experience of these organizations in eradicating the related rinderpest virus, the eradication of PPRV should be feasible. However, there are many critical areas where basic and applied virological research concerning PPRV is lacking. The purpose of this review is to highlight areas where new research could be performed in order to guide and facilitate the eradication programme. These areas include studies on disease transmission and epidemiology, the existence of wildlife reservoirs and the development of next-generation vaccines and diagnostics. With the support of the international virology community, the successful eradication of PPRV can be achieved.


Asunto(s)
Transmisión de Enfermedad Infecciosa/veterinaria , Peste de los Pequeños Rumiantes/epidemiología , Peste de los Pequeños Rumiantes/prevención & control , África/epidemiología , Animales , Asia/epidemiología , Erradicación de la Enfermedad/organización & administración , Transmisión de Enfermedad Infecciosa/prevención & control , Medio Oriente/epidemiología , Medicina Veterinaria/organización & administración , Organización Mundial de la Salud
13.
J Gen Virol ; 96(Pt 3): 671-680, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25395594

RESUMEN

Neutralizing antibodies (NAbs) are believed to comprise an essential component of the protective immune response induced by vaccines against feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) infections. However, relatively little is known about the role of NAbs in controlling FIV infection and subsequent disease progression. Here, we present studies where we examined the neutralization of HIV-luciferase pseudotypes bearing homologous and heterologous FIV envelope proteins (n = 278) by sequential plasma samples collected at 6 month intervals from naturally infected cats (n = 38) over a period of 18 months. We evaluated the breadth of the NAb response against non-recombinant homologous and heterologous clade A and clade B viral variants, as well as recombinants, and assessed the results, testing for evidence of an association between the potency of the NAb response and the duration of infection, CD4(+) T lymphocyte numbers, health status and survival times of the infected cats. Neutralization profiles varied significantly between FIV-infected cats and strong autologous neutralization, assessed using luciferase-based in vitro assays, did not correlate with the clinical outcome. No association was observed between strong NAb responses and either improved health status or increased survival time of infected animals, implying that other protective mechanisms were likely to be involved. Similarly, no correlation was observed between the development of autologous NAbs and the duration of infection. Furthermore, cross-neutralizing antibodies were evident in only a small proportion (13 %) of cats.


Asunto(s)
Anticuerpos Neutralizantes/fisiología , Especificidad de Anticuerpos , Virus de la Inmunodeficiencia Felina/inmunología , Infecciones por Lentivirus/veterinaria , Animales , Linfocitos T CD4-Positivos , Gatos , Clonación Molecular , Femenino , Regulación Viral de la Expresión Génica/fisiología , Productos del Gen env/genética , Productos del Gen env/metabolismo , Células HEK293 , Humanos , Infecciones por Lentivirus/inmunología , Infecciones por Lentivirus/virología , Masculino , Pruebas de Neutralización
14.
J Gen Virol ; 96(Pt 4): 893-903, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25535323

RESUMEN

Analysing the evolution of feline immunodeficiency virus (FIV) at the intra-host level is important in order to address whether the diversity and composition of viral quasispecies affect disease progression. We examined the intra-host diversity and the evolutionary rates of the entire env and structural fragments of the env sequences obtained from sequential blood samples in 43 naturally infected domestic cats that displayed different clinical outcomes. We observed in the majority of cats that FIV env showed very low levels of intra-host diversity. We estimated that env evolved at a rate of 1.16×10(-3) substitutions per site per year and demonstrated that recombinant sequences evolved faster than non-recombinant sequences. It was evident that the V3-V5 fragment of FIV env displayed higher evolutionary rates in healthy cats than in those with terminal illness. Our study provided the first evidence that the leader sequence of env, rather than the V3-V5 sequence, had the highest intra-host diversity and the highest evolutionary rate of all env fragments, consistent with this region being under a strong selective pressure for genetic variation. Overall, FIV env displayed relatively low intra-host diversity and evolved slowly in naturally infected cats. The maximum evolutionary rate was observed in the leader sequence of env. Although genetic stability is not necessarily a prerequisite for clinical stability, the higher genetic stability of FIV compared with human immunodeficiency virus might explain why many naturally infected cats do not progress rapidly to AIDS.


Asunto(s)
Productos del Gen env/genética , Genes env , Virus de la Inmunodeficiencia Felina/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Evolución Biológica , Gatos , Variación Genética , Datos de Secuencia Molecular , Filogenia
15.
J Virol ; 88(14): 7738-52, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24760893

RESUMEN

Myxovirus resistance 2 (Mx2/MxB) has recently been uncovered as an effector of the anti-HIV-1 activity of type I interferons (IFNs) that inhibits HIV-1 at an early stage postinfection, after reverse transcription but prior to proviral integration into host DNA. The mechanistic details of Mx2 antiviral activity are not yet understood, but a few substitutions in the HIV-1 capsid have been shown to confer resistance to Mx2. Through a combination of in vitro evolution and unbiased mutagenesis, we further map the determinants of sensitivity to Mx2 and reveal that multiple capsid (CA) surfaces define sensitivity to Mx2. Intriguingly, we reveal an unanticipated sensitivity determinant within the C-terminal domain of capsid. We also report that Mx2s derived from multiple primate species share the capacity to potently inhibit HIV-1, whereas selected nonprimate orthologs have no such activity. Like TRIM5α, another CA targeting antiretroviral protein, primate Mx2s exhibit species-dependent variation in antiviral specificity against at least one extant virus and multiple HIV-1 capsid mutants. Using a combination of chimeric Mx2 proteins and evolution-guided approaches, we reveal that a single residue close to the N terminus that has evolved under positive selection can determine antiviral specificity. Thus, the variable N-terminal region can define the spectrum of viruses inhibited by Mx2. Importance: Type I interferons (IFNs) inhibit the replication of most mammalian viruses. IFN stimulation upregulates hundreds of different IFN-stimulated genes (ISGs), but it is often unclear which ISGs are responsible for inhibition of a given virus. Recently, Mx2 was identified as an ISG that contributes to the inhibition of HIV-1 replication by type I IFN. Thus, Mx2 might inhibit HIV-1 replication in patients, and this inhibitory action might have therapeutic potential. The mechanistic details of how Mx2 inhibits HIV-1 are currently unclear, but the HIV-1 capsid protein is the likely viral target. Here, we determine the regions of capsid that specify sensitivity to Mx2. We demonstrate that Mx2 from multiple primates can inhibit HIV-1, whereas Mx2 from other mammals (dogs and sheep) cannot. We also show that primate variants of Mx2 differ in the spectrum of lentiviruses they inhibit and that a single residue in Mx2 can determine this antiviral specificity.


Asunto(s)
Proteína p24 del Núcleo del VIH/inmunología , VIH-1/inmunología , Proteínas de Resistencia a Mixovirus/inmunología , Animales , Análisis Mutacional de ADN , Evolución Molecular , Proteína p24 del Núcleo del VIH/genética , VIH-1/genética , Humanos , Mutagénesis
16.
Retrovirology ; 11: 95, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25430586

RESUMEN

BACKGROUND: Feline immunodeficiency virus (FIV) infection is mediated by sequential interactions with CD134 and CXCR4. Field strains of virus vary in their dependence on cysteine-rich domain 2 (CRD2) of CD134 for infection. FINDINGS: Here, we analyse the receptor usage of viral variants in the blood of 39 naturally infected cats, revealing that CRD2-dependent viral variants dominate in early infection, evolving towards CRD2-independence with disease progression. CONCLUSIONS: These findings are consistent with a shift in CRD2 of CD134 usage with disease progression.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida del Felino/etiología , Virus de la Inmunodeficiencia Felina/fisiología , Receptores OX40/fisiología , Animales , Gatos , Progresión de la Enfermedad , Síndrome de Inmunodeficiencia Adquirida del Felino/virología , Glicoproteínas/fisiología , Glicosilación , Estructura Terciaria de Proteína , Receptores OX40/química , Proteínas del Envoltorio Viral/fisiología , Tropismo Viral
17.
Retrovirology ; 11: 80, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25699660

RESUMEN

BACKGROUND: Recombination is a common feature of retroviral biology and one of the most important factors responsible for generating viral diversity at both the intra-host and the population levels. However, relatively little is known about rates and molecular processes of recombination for retroviruses other than HIV, including important model viruses such as feline immunodeficiency virus (FIV). RESULTS: We investigated recombination in complete FIV env gene sequences (n = 355) isolated from 43 naturally infected cats. We demonstrated that recombination is abundant in natural FIV infection, with over 41% of the cats being infected with viruses containing recombinant env genes. In addition, we identified shared recombination breakpoints; the most significant hotspot occurred between the leader/signal fragment and the remainder of env. CONCLUSIONS: Our results have identified the leader/signal fragment of env as an important site for recombination and highlight potential limitations of the current phylogenetic classification of FIV based on partial env sequences. Furthermore, the presence of abundant recombinant FIV in the USA poses a significant challenge for commercial diagnostic tests and should inform the development of the next generation of FIV vaccines.


Asunto(s)
Glicoproteínas/genética , Virus de la Inmunodeficiencia Felina/genética , Recombinación Genética , Proteínas del Envoltorio Viral/genética , Animales , Gatos , Virus de la Inmunodeficiencia Felina/clasificación , Filogenia
18.
J Gen Virol ; 94(Pt 5): 917-932, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23364195

RESUMEN

Almost 30 years after its initial discovery, infection with the human immunodeficiency virus-1 (HIV-1) remains incurable and the virus persists due to reservoirs of latently infected CD4(+) memory T-cells and sanctuary sites within the infected individual where drug penetration is poor. Reactivating latent viruses has been a key strategy to completely eliminate the virus from the host, but many difficulties and unanswered questions remain. In this review, the latest developments in HIV-persistence and latency research are presented.


Asunto(s)
Fármacos Anti-VIH/farmacocinética , Infecciones por VIH/virología , VIH-1/fisiología , Latencia del Virus , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Humanos , Modelos Biológicos , Activación Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos
19.
Viruses ; 15(8)2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-37632004

RESUMEN

Throughout the COVID-19 pandemic, SARS-CoV-2 infections in domestic cats have caused concern for both animal health and the potential for inter-species transmission. Cats are known to be susceptible to the Omicron variant and its descendants, however, the feline immune response to these variants is not well defined. We aimed to estimate the current seroprevalence of SARS-CoV-2 in UK pet cats, as well as characterise the neutralising antibody response to the Omicron (BA.1) variant. A neutralising seroprevalence of 4.4% and an overall seroprevalence of 13.9% was observed. Both purebred and male cats were found to have the highest levels of seroprevalence, as well as cats aged between two and five years. The Omicron variant was found to have a lower immunogenicity in cats than the B.1, Alpha and Delta variants, which reflects previous reports of immune and vaccine evasion in humans. These results further underline the importance of surveillance of SARS-CoV-2 infections in UK cats as the virus continues to evolve.


Asunto(s)
COVID-19 , SARS-CoV-2 , Gatos , Animales , Masculino , Humanos , Preescolar , SARS-CoV-2/genética , COVID-19/epidemiología , Pandemias , Estudios Seroepidemiológicos , Reino Unido/epidemiología
20.
Nat Rev Microbiol ; 21(2): 112-124, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36307535

RESUMEN

Monoclonal antibodies (mAbs) offer a treatment option for individuals with severe COVID-19 and are especially important in high-risk individuals where vaccination is not an option. Given the importance of understanding the evolution of resistance to mAbs by SARS-CoV-2, we reviewed the available in vitro neutralization data for mAbs against live variants and viral constructs containing spike mutations of interest. Unfortunately, evasion of mAb-induced protection is being reported with new SARS-CoV-2 variants. The magnitude of neutralization reduction varied greatly among mAb-variant pairs. For example, sotrovimab retained its neutralization capacity against Omicron BA.1 but showed reduced efficacy against BA.2, BA.4 and BA.5, and BA.2.12.1. At present, only bebtelovimab has been reported to retain its efficacy against all SARS-CoV-2 variants considered here. Resistance to mAb neutralization was dominated by the action of epitope single amino acid substitutions in the spike protein. Although not all observed epitope mutations result in increased mAb evasion, amino acid substitutions at non-epitope positions and combinations of mutations also contribute to evasion of neutralization. This Review highlights the implications for the rational design of viral genomic surveillance and factors to consider for the development of novel mAb therapies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticuerpos Monoclonales/farmacología , Sustitución de Aminoácidos , Anticuerpos Neutralizantes , Epítopos , Anticuerpos Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA