Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Alzheimers Dement ; 16(8): 1134-1145, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32573913

RESUMEN

INTRODUCTION: Variability exists in the disease trajectories of Alzheimer's disease (AD) patients. We performed a genome-wide association study to examine rate of cognitive decline (ROD) in patients with AD. METHODS: We tested for interactions between genetic variants and time since diagnosis to predict the ROD of a composite cognitive score in 3946 AD cases and performed pathway analysis on the top genes. RESULTS: Suggestive associations (P < 1.0 × 10-6 ) were observed on chromosome 15 in DNA polymerase-γ (rs3176205, P = 1.11 × 10-7 ), chromosome 7 (rs60465337,P = 4.06 × 10-7 ) in contactin-associated protein-2, in RP11-384F7.1 on chromosome 3 (rs28853947, P = 5.93 × 10-7 ), family with sequence similarity 214 member-A on chromosome 15 (rs2899492, P = 5.94 × 10-7 ), and intergenic regions on chromosomes 16 (rs4949142, P = 4.02 × 10-7 ) and 4 (rs1304013, P = 7.73 × 10-7 ). Significant pathways involving neuronal development and function, apoptosis, memory, and inflammation were identified. DISCUSSION: Pathways related to AD, intelligence, and neurological function determine AD progression, while previously identified AD risk variants, including the apolipoprotein (APOE) ε4 and ε2 variants, do not have a major impact.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Disfunción Cognitiva/etiología , Disfunción Cognitiva/genética , Anciano , Anciano de 80 o más Años , Progresión de la Enfermedad , Femenino , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino
2.
Physiol Rev ; 90(4): 1383-435, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20959619

RESUMEN

(Macro)autophagy is a bulk degradation process that mediates the clearance of long-lived proteins and organelles. Autophagy is initiated by double-membraned structures, which engulf portions of cytoplasm. The resulting autophagosomes ultimately fuse with lysosomes, where their contents are degraded. Although the term autophagy was first used in 1963, the field has witnessed dramatic growth in the last 5 years, partly as a consequence of the discovery of key components of its cellular machinery. In this review we focus on mammalian autophagy, and we give an overview of the understanding of its machinery and the signaling cascades that regulate it. As recent studies have also shown that autophagy is critical in a range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including neurodegeneration, lysosomal storage diseases, cancers, and Crohn's disease, we discuss the roles of autophagy in health and disease, while trying to critically evaluate if the coincidence between autophagy and these conditions is causal or an epiphenomenon. Finally, we consider the possibility of autophagy upregulation as a therapeutic approach for various conditions.


Asunto(s)
Autofagia/fisiología , Células Eucariotas/metabolismo , Mamíferos/fisiología , Animales , Células Eucariotas/patología , Humanos , Fagosomas/metabolismo , Transducción de Señal , Estrés Fisiológico
3.
Alzheimers Dement ; 13(7): 727-738, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28183528

RESUMEN

INTRODUCTION: Genetic loci for Alzheimer's disease (AD) have been identified in whites of European ancestry, but the genetic architecture of AD among other populations is less understood. METHODS: We conducted a transethnic genome-wide association study (GWAS) for late-onset AD in Stage 1 sample including whites of European Ancestry, African-Americans, Japanese, and Israeli-Arabs assembled by the Alzheimer's Disease Genetics Consortium. Suggestive results from Stage 1 from novel loci were followed up using summarized results in the International Genomics Alzheimer's Project GWAS dataset. RESULTS: Genome-wide significant (GWS) associations in single-nucleotide polymorphism (SNP)-based tests (P < 5 × 10-8) were identified for SNPs in PFDN1/HBEGF, USP6NL/ECHDC3, and BZRAP1-AS1 and for the interaction of the (apolipoprotein E) APOE ε4 allele with NFIC SNP. We also obtained GWS evidence (P < 2.7 × 10-6) for gene-based association in the total sample with a novel locus, TPBG (P = 1.8 × 10-6). DISCUSSION: Our findings highlight the value of transethnic studies for identifying novel AD susceptibility loci.


Asunto(s)
Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Proteínas Adaptadoras Transductoras de Señales/genética , Apolipoproteína E4/genética , Proteínas Activadoras de GTPasa/genética , Predisposición Genética a la Enfermedad , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Humanos , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Factores de Transcripción NFI/genética , Enzima Bifuncional Peroxisomal/genética , Receptores de GABA/genética
4.
Brain ; 137(Pt 7): 1958-70, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24860142

RESUMEN

A growing number of PSEN1 mutations have been associated with dementia with Lewy bodies and familial Alzheimer's disease with concomitant α-synuclein pathology. The objective of this study was to determine if PSEN1 plays a direct role in the development of α-synuclein pathology in these diseases. Using mass spectrometry, immunoelectron microscopy and fluorescence lifetime image microscopy based on Forster resonance energy transfer (FLIM-FRET) we identified α-synuclein as a novel interactor of PSEN1 in wild-type mouse brain tissue. The interaction of α-synuclein with PSEN1 was detected in post-mortem brain tissue from cognitively normal cases and was significantly increased in tissue from cases with dementia with Lewy bodies and familial Alzheimer's disease associated with known PSEN1 mutations. We confirmed an increased interaction of PSEN1 and α-synuclein in cell lines expressing well characterized familial Alzheimer's disease PSEN1 mutations, L166P and delta exon 9, and demonstrated that PSEN1 mutations associate with increased membrane association and accumulation of α-synuclein. Our data provides evidence of a molecular interaction of PSEN1 and α-synuclein that may explain the clinical and pathophysiological overlap seen in synucleinopathies, including Parkinson's disease, dementia with Lewy bodies, and some forms of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Presenilina-1/metabolismo , alfa-Sinucleína/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Encéfalo/patología , Encéfalo/ultraestructura , Células CHO , Células Cultivadas , Corteza Cerebral , Cricetulus , Femenino , Glutatión Transferasa/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Microscopía Inmunoelectrónica , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Presenilina-1/deficiencia , Presenilina-1/genética
5.
J Cell Sci ; 124(Pt 3): 469-82, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21242315

RESUMEN

Autophagy is a lysosome-dependent cellular catabolic mechanism that mediates the turnover of intracellular organelles and long-lived proteins. Reduced autophagic activity has been shown to lead to the accumulation of misfolded proteins in neurons and might be involved in chronic neurodegenerative diseases. Here, we uncover an essential role for the syntaxin-5 SNARE complex in autophagy. Using genetic knockdown, we show that the syntaxin-5 SNARE complex regulates the later stages of autophagy after the initial formation of autophagosomes. This SNARE complex acts on autophagy by regulating ER-to-Golgi transport through the secretory pathway, which is essential for the activity of lysosomal proteases such as cathepsins. Depletion of syntaxin-5 complex components results in the accumulation of autophagosomes as a result of lysosomal dysfunction, leading to decreased degradation of autophagic substrates. Our findings provide a novel link between a fundamental process such as intracellular trafficking and human diseases that might be affected by defective biogenesis and/or homeostasis of the autophagosome-lysosome degradation system.


Asunto(s)
Autofagia/fisiología , Lisosomas/enzimología , Proteínas Qa-SNARE/fisiología , Proteínas Adaptadoras del Transporte Vesicular , Transporte Biológico/fisiología , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas R-SNARE/fisiología , Proteínas de Transporte Vesicular/fisiología
6.
Biochim Biophys Acta ; 1782(12): 723-9, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18644437

RESUMEN

Efficient protein turnover is essential for the maintenance of cellular health. Here we review how autophagy has fundamental functions in cellular homeostasis and possible uses as a therapeutic strategy for neurodegenerative diseases associated with intracytosolic aggregate formation, like Huntington's disease (HD). Drugs like rapamycin, that induce autophagy, increase the clearance of mutant huntingtin fragments and ameliorate the pathology in cell and animal models of HD and related conditions. In Drosophila, the beneficial effects of rapamycin in diseases related to HD are autophagy-dependent. We will also discuss the importance of autophagy in early stages of development and its possible contribution as a secondary disease mechanism in forms of fronto-temporal dementias, motor neuron disease, and lysosomal storage disorders.


Asunto(s)
Autofagia/fisiología , Degeneración Nerviosa/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Humanos , Enfermedades Neurodegenerativas/terapia
7.
Sci Rep ; 8(1): 12992, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154511

RESUMEN

Through a targeted recruitment 23andMe has collected DNA and patient-reported symptoms from more than 10,000 subjects reporting a physician-verified diagnosis of PD. This study evaluated the potential of self-report, web-based questionnaires to rapidly assess disease natural history and symptomology in genetically-defined PD populations. While average age-at-diagnosis was significantly lower in GBA mutation carriers compared to idiopathic PD, or iPD (idiopathic PD, defined as no GBA mutations and no LRRK2 G2019S mutation), there were no significant differences in symptoms. Conversely, LRRK2 G2019S carrier status significantly associated with reporting of milder daily symptoms of lightheadedness and several differences were observed at a false discovery rate < 0.1, including increased reporting of changes in walking as an initial symptom of disease, decreased reporting of lightheadedness upon standing, and milder symptoms related to daily functioning. The subclinical differences in symptoms reported by LRRK2 G2019S carriers suggest differences in underlying pathophysiology and/or disease progression in LRRK2 carriers compared to iPD. Importantly, we confirm previous findings in PD genetic subsets where disease characteristics were ascertained through clinical exam. Overall, these data support the effective use of self-report and genetic data to rapidly analyze information from a large disease population or difficult to identify genetic subgroups.


Asunto(s)
Glucosilceramidasa/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación Missense , Enfermedad de Parkinson , Autoinforme , Actividades Cotidianas , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Encuestas y Cuestionarios
8.
Nat Genet ; 48(9): 1031-6, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27479909

RESUMEN

Despite strong evidence supporting the heritability of major depressive disorder (MDD), previous genome-wide studies were unable to identify risk loci among individuals of European descent. We used self-report data from 75,607 individuals reporting clinical diagnosis of depression and 231,747 individuals reporting no history of depression through 23andMe and carried out meta-analysis of these results with published MDD genome-wide association study results. We identified five independent variants from four regions associated with self-report of clinical diagnosis or treatment for depression. Loci with a P value <1.0 × 10(-5) in the meta-analysis were further analyzed in a replication data set (45,773 cases and 106,354 controls) from 23andMe. A total of 17 independent SNPs from 15 regions reached genome-wide significance after joint analysis over all three data sets. Some of these loci were also implicated in genome-wide association studies of related psychiatric traits. These studies provide evidence for large-scale consumer genomic data as a powerful and efficient complement to data collected from traditional means of ascertainment for neuropsychiatric disease genomics.


Asunto(s)
Trastorno Depresivo Mayor/genética , Sitios Genéticos/genética , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética , Adulto , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Metaanálisis como Asunto , Persona de Mediana Edad , Fenotipo , Factores de Riesgo
9.
Integr Biol (Camb) ; 7(7): 758-75, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26065845

RESUMEN

Neurodegenerative diseases (NDs) collectively afflict more than 40 million people worldwide. The majority of these diseases lack therapies to slow or stop progression due in large part to the challenge of disentangling the simultaneous presentation of broad, multifaceted pathophysiologic changes. Present technologies and computational capabilities suggest an optimistic future for deconvolving these changes to identify novel mechanisms driving ND onset and progression. In particular, integration of highly multi-dimensional omic analytical techniques (e.g., microarray, mass spectrometry) with computational systems biology approaches provides a systematic methodology to elucidate new mechanisms driving NDs. In this review, we begin by summarizing the complex pathophysiology of NDs associated with protein aggregation, emphasizing the shared complex dysregulation found in all of these diseases, and discuss available experimental ND models. Next, we provide an overview of technological and computational techniques used in systems biology that are applicable to studying NDs. We conclude by reviewing prior studies that have applied these approaches to NDs and comment on the necessity of combining analysis from both human tissues and model systems to identify driving mechanisms. We envision that the integration of computational approaches with multiple omic analyses of human tissues, and mouse and in vitro models, will enable the discovery of new therapeutic strategies for these devastating diseases.


Asunto(s)
Encéfalo/metabolismo , Modelos Neurológicos , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Proteoma/metabolismo , Animales , Simulación por Computador , Humanos , Transducción de Señal , Biología de Sistemas/métodos
10.
Sci Rep ; 5: 16622, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26564777

RESUMEN

Alzheimer's disease (AD) therapeutics based on the amyloid hypothesis have shown minimal efficacy in patients, suggesting that the activity of amyloid beta (Aß) represents only one aspect of AD pathogenesis. Since neuroinflammation is thought to play an important role in AD, we hypothesized that cytokines may play a direct role in promoting neuronal death. Here, we profiled cytokine expression in a small cohort of human AD and control brain tissues. We identified AD-associated cytokines using partial least squares regression to correlate cytokine expression with quantified pathologic disease state and then used neuron cultures to test whether cytokines up-regulated in AD tissues could affect neuronal viability. This analysis identified cytokines that were associated with the pathological severity. Of the top correlates, only TNF-α reduced viability in neuron culture when applied alone. VEGF also reduced viability when applied together with Aß, which was surprising because VEGF has been viewed as a neuro-protective protein. We found that this synthetic pro-death effect of VEGF in the context of Aß was commensurate with VEGFR-dependent changes in multiple signaling pathways that govern cell fate. Our findings suggest that profiling of tissues combined with a culture-based screening approach can successfully identify new mechanisms driving neuronal death.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Neuronas/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Encéfalo/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Citocinas/genética , Citocinas/farmacología , Femenino , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/genética , Humanos , Mediadores de Inflamación/farmacología , Interleucina-5/genética , Interleucina-5/metabolismo , Interleucina-5/farmacología , Análisis de los Mínimos Cuadrados , Masculino , Persona de Mediana Edad , Análisis Multivariante , Neuronas/efectos de los fármacos , Análisis de Regresión , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología
11.
PLoS One ; 8(1): e48814, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23382797

RESUMEN

Exosomes are cellular secretory vesicles containing microRNAs (miRNAs). Once secreted, exosomes are able to attach to recipient cells and release miRNAs potentially modulating the function of the recipient cell. We hypothesized that exosomal miRNA expression in brains of patients diagnosed with schizophrenia (SZ) and bipolar disorder (BD) might differ from controls, reflecting either disease-specific or common aberrations in SZ and BD patients. The sources of the analyzed samples included McLean 66 Cohort Collection (Harvard Brain Tissue Resource Center), BrainNet Europe II (BNE, a consortium of 18 brain banks across Europe) and Boston Medical Center (BMC). Exosomal miRNAs from frozen postmortem prefrontal cortices with well-preserved RNA were isolated and submitted to profiling by Luminex FLEXMAP 3D microfluidic device. Multiple statistical analyses of microarray data suggested that certain exosomal miRNAs were differentially expressed in SZ and BD subjects in comparison to controls. RT-PCR validation confirmed that two miRNAs, miR-497 in SZ samples and miR-29c in BD samples, have significantly increased expression when compared to control samples. These results warrant future studies to evaluate the potential of exosome-derived miRNAs to serve as biomarkers of SZ and BD.


Asunto(s)
Trastorno Bipolar/genética , MicroARNs/genética , Corteza Prefrontal/metabolismo , Esquizofrenia/genética , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Trastorno Bipolar/metabolismo , Exosomas/genética , Exosomas/metabolismo , Regulación de la Expresión Génica , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Esquizofrenia/metabolismo
12.
Mol Neurodegener ; 7: 42, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22920859

RESUMEN

BACKGROUND: Aggregation of alpha-synuclein (αsyn) and resulting cytotoxicity is a hallmark of sporadic and familial Parkinson's disease (PD) as well as dementia with Lewy bodies, with recent evidence implicating oligomeric and pre-fibrillar forms of αsyn as the pathogenic species. Recent in vitro studies support the idea of transcellular spread of extracellular, secreted αsyn across membranes. The aim of this study is to characterize the transcellular spread of αsyn oligomers and determine their extracellular location. RESULTS: Using a novel protein fragment complementation assay where αsyn is fused to non-bioluminescent amino-or carboxy-terminus fragments of humanized Gaussia Luciferase we demonstrate here that αsyn oligomers can be found in at least two extracellular fractions: either associated with exosomes or free. Exosome-associated αsyn oligomers are more likely to be taken up by recipient cells and can induce more toxicity compared to free αsyn oligomers. Specifically, we determine that αsyn oligomers are present on both the outside as well as inside of exosomes. Notably, the pathway of secretion of αsyn oligomers is strongly influenced by autophagic activity. CONCLUSIONS: Our data suggest that αsyn may be secreted via different secretory pathways. We hypothesize that exosome-mediated release of αsyn oligomers is a mechanism whereby cells clear toxic αsyn oligomers when autophagic mechanisms fail to be sufficient. Preventing the early events in αsyn exosomal release and uptake by inducing autophagy may be a novel approach to halt disease spreading in PD and other synucleinopathies.


Asunto(s)
Comunicación Celular/fisiología , Exosomas/metabolismo , Neuronas/metabolismo , alfa-Sinucleína/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Immunoblotting , Oligopéptidos/metabolismo , Transfección
13.
Autophagy ; 7(4): 429-31, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21157184

RESUMEN

Parkinson disease (PD) is the most common movement disorder affecting people. It is characterized by the accumulation of the protein α-synuclein in Lewy body inclusions in vulnerable neurons. α-Synuclein overexpression caused by gene multiplications is sufficient to cause this disease, suggesting that α-synuclein accumulation is toxic. Here we review our recent study showing that α-synuclein inhibits autophagy. We discuss our mechanistic understanding of this phenomenon and also speculate how a deficiency in autophagy may contribute to a range of pleiotropic features of PD biology.


Asunto(s)
Autofagia , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animales , Proteínas Relacionadas con la Autofagia , Regulación de la Expresión Génica , Aparato de Golgi/metabolismo , Humanos , Cuerpos de Lewy/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Fagosomas/metabolismo , Proteínas de Unión al GTP rab1/metabolismo
14.
J Cell Biol ; 190(6): 1023-37, 2010 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-20855506

RESUMEN

Parkinson's disease (PD) is characterized pathologically by intraneuronal inclusions called Lewy bodies, largely comprised of α-synuclein. Multiplication of the α-synuclein gene locus increases α-synuclein expression and causes PD. Thus, overexpression of wild-type α-synuclein is toxic. In this study, we demonstrate that α-synuclein overexpression impairs macroautophagy in mammalian cells and in transgenic mice. Our data show that α-synuclein compromises autophagy via Rab1a inhibition and Rab1a overexpression rescues the autophagy defect caused by α-synuclein. Inhibition of autophagy by α-synuclein overexpression or Rab1a knockdown causes mislocalization of the autophagy protein, Atg9, and decreases omegasome formation. Rab1a, α-synuclein, and Atg9 all regulate formation of the omegasome, which marks autophagosome precursors.


Asunto(s)
Autofagia , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Animales , Línea Celular Tumoral , Drosophila melanogaster/metabolismo , Técnicas de Silenciamiento del Gen , Aparato de Golgi/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Fagosomas/metabolismo , Transporte de Proteínas , Vesículas Secretoras/metabolismo , Proteínas de Unión al GTP rab1/metabolismo
15.
Autophagy ; 5(3): 307-13, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19182529

RESUMEN

Autophagy has been implicated in various physiological and disease conditions in recent years. A number of small molecule modulators have been identified, both as tools and as potential therapeutics. Despite extensive characterization of autophagy in yeast, mammalian autophagy pathways are not fully understood. Recently, calcium phosphate precipitates (CPP), which are used to transfect DNA into cells, were reported to induce autophagy, when assayed up to 6 h after treatment. Because of the widespread use of this reagent, we attempted to confirm these findings. Consistent with the previous study, we showed that CPP induces autophagosome synthesis at early time points, such as 4 h and 6 h. However, at 24 h after treatment, we were surprised to see that autophagy flux was reduced, due to impaired autophagosome-lysosome fusion. At this time point, there was an accumulation of autophagy substrates and the formation of abnormally large autophagosomes. Thus, one may need to consider assaying autophagy modulators at different time points with a range of assays in order to understand their effects. Finally, the complex consequences of CPP on autophagy suggest that it is best avoided as a transfection reagent in studies aiming to analyze autophagy itself, or processes that are modulated by autophagy, like apoptosis.


Asunto(s)
Autofagia/genética , Fosfatos de Calcio/metabolismo , Técnicas Citológicas , Animales , Apoptosis , Línea Celular , Células HeLa , Humanos , Proteína Huntingtina , Ratones , Microscopía Fluorescente/métodos , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fagosomas/metabolismo , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA