Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
EMBO J ; 41(6): e108544, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34850409

RESUMEN

Since numerous RNAs and RBPs prevalently localize to active chromatin regions, many RNA-binding proteins (RBPs) may be potential transcriptional regulators. RBPs are generally thought to regulate transcription via noncoding RNAs. Here, we describe a distinct, dual mechanism of transcriptional regulation by the previously uncharacterized tRNA-modifying enzyme, hTrmt13. On one hand, hTrmt13 acts in the cytoplasm to catalyze 2'-O-methylation of tRNAs, thus regulating translation in a manner depending on its tRNA-modification activity. On the other hand, nucleus-localized hTrmt13 directly binds DNA as a transcriptional co-activator of key epithelial-mesenchymal transition factors, thereby promoting cell migration independent of tRNA-modification activity. These dual functions of hTrmt13 are mutually exclusive, as it can bind either DNA or tRNA through its CHHC zinc finger domain. Finally, we find that hTrmt13 expression is tightly associated with poor prognosis and survival in diverse cancer patients. Our discovery of the noncatalytic roles of an RNA-modifying enzyme provides a new perspective for understanding epitranscriptomic regulation.


Asunto(s)
ARN de Transferencia , ARNt Metiltransferasas , Humanos , Metilación , ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3804-3817, 2024 Jul.
Artículo en Zh | MEDLINE | ID: mdl-39099354

RESUMEN

The chemical composition of Ganoderma lucidum ethanol extracts was systematically analyzed and identified by ultra-high performance liquid chromatography-quadrupole electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Orbitrap-HRMS). The fragmentation pattern of the representative chemical compounds was summarized, and the potential anti-liver fibrosis active compounds of G. lucidum acting on the farnesoid X receptor(FXR) target were studied to elucidate its pharmacodynamic substance basis. Preliminarily, 95 chemical constituents of G. lucidum ethanol extracts were identified, including 24 ganoderic acids, 9 ganoderenic acids, 13 lucidenic acids, 3 ganolucidic acids, 1 ganoderma lactone, 40 other triterpenoids, 4 fatty acids, and 1 other constituent. In addition, the fragmentation patterns of the representative compounds were also analyzed. The structural characteristics of ganoderic acids and ganoderenic acids were the C30 skeleton, containing free-COOH and-OH groups, which could easily lose H_2O and CO_2 to form fragment ions. The D-ring was mostly a five-membered ring, which was prone to breakage. Lucidenic acids were the lanosterolane-type of the C27 skeleton, and the side-chain structure became shorter and contained the same free-COOH and-OH compared with ganoderic acids, which had been reduced from 8 to 5 cartons and prone to lose H_2O and CO_2. Then, six reported FXR receptor agonists were selected to form a training set for establishing a pharmacophore model based on FXR ligands. The 95 identified chemical constituents of G. lucidum were matched with the pharmacophore, and the optimal pharmacophore model 02(sensitivity=0.750 00, specificity=0.555 56, ROC=0.750) was selected for the virtual screening of the G. lucidum compound library through the validation of the test set. Finally, 31 potential G. lucidum active constituents were screened and chosen to activate the FXRs. The ADMET results showed that ganoderic acid H and lucidenic acid J had less than 90% plasma protein binding rate and no hepatotoxicity, which could be used as FXR activators for developing clinical drugs for the treatment of liver fibrosis, either alone or in combination.


Asunto(s)
Medicamentos Herbarios Chinos , Cirrosis Hepática , Receptores Citoplasmáticos y Nucleares , Reishi , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Humanos , Reishi/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Espectrometría de Masas/métodos , Estructura Molecular , Simulación del Acoplamiento Molecular
3.
Nucleic Acids Res ; 49(22): 13045-13061, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34871455

RESUMEN

Dnmt2, a member of the DNA methyltransferase superfamily, catalyzes the formation of 5-methylcytosine at position 38 in the anticodon loop of tRNAs. Dnmt2 regulates many cellular biological processes, especially the production of tRNA-derived fragments and intergenerational transmission of paternal metabolic disorders to offspring. Moreover, Dnmt2 is closely related to human cancers. The tRNA substrates of mammalian Dnmt2s are mainly detected using bisulfite sequencing; however, we lack supporting biochemical data concerning their substrate specificity or recognition mechanism. Here, we deciphered the tRNA substrates of human DNMT2 (hDNMT2) as tRNAAsp(GUC), tRNAGly(GCC) and tRNAVal(AAC). Intriguingly, for tRNAAsp(GUC) and tRNAGly(GCC), G34 is the discriminator element; whereas for tRNAVal(AAC), the inosine modification at position 34 (I34), which is formed by the ADAT2/3 complex, is the prerequisite for hDNMT2 recognition. We showed that the C32U33(G/I)34N35 (C/U)36A37C38 motif in the anticodon loop, U11:A24 in the D stem, and the correct size of the variable loop are required for Dnmt2 recognition of substrate tRNAs. Furthermore, mammalian Dnmt2s possess a conserved tRNA recognition mechanism.


Asunto(s)
5-Metilcitosina/metabolismo , Anticodón/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ARN de Transferencia/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Anticodón/genética , Secuencia de Bases , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , Células HEK293 , Células HeLa , Humanos , Inosina/metabolismo , Ratones , Modelos Moleculares , Células 3T3 NIH , Conformación de Ácido Nucleico , Unión Proteica , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia de Aspártico/química , ARN de Transferencia de Aspártico/genética , ARN de Transferencia de Aspártico/metabolismo , ARN de Transferencia de Glicerina/química , ARN de Transferencia de Glicerina/genética , ARN de Transferencia de Glicerina/metabolismo , ARN de Transferencia de Valina/química , ARN de Transferencia de Valina/genética , ARN de Transferencia de Valina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Especificidad por Sustrato
4.
Nucleic Acids Res ; 49(20): 11900-11919, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34669960

RESUMEN

Post-transcriptional modifications affect tRNA biology and are closely associated with human diseases. However, progress on the functional analysis of tRNA modifications in metazoans has been slow because of the difficulty in identifying modifying enzymes. For example, the biogenesis and function of the prevalent N2-methylguanosine (m2G) at the sixth position of tRNAs in eukaryotes has long remained enigmatic. Herein, using a reverse genetics approach coupled with RNA-mass spectrometry, we identified that THUMP domain-containing protein 3 (THUMPD3) is responsible for tRNA: m2G6 formation in human cells. However, THUMPD3 alone could not modify tRNAs. Instead, multifunctional methyltransferase subunit TRM112-like protein (TRMT112) interacts with THUMPD3 to activate its methyltransferase activity. In the in vitro enzymatic assay system, THUMPD3-TRMT112 could methylate all the 26 tested G6-containing human cytoplasmic tRNAs by recognizing the characteristic 3'-CCA of mature tRNAs. We also showed that m2G7 of tRNATrp was introduced by THUMPD3-TRMT112. Furthermore, THUMPD3 is widely expressed in mouse tissues, with an extremely high level in the testis. THUMPD3-knockout cells exhibited impaired global protein synthesis and reduced growth. Our data highlight the significance of the tRNA: m2G6/7 modification and pave a way for further studies of the role of m2G in sperm tRNA derived fragments.


Asunto(s)
Metiltransferasas/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/metabolismo , ARNt Metiltransferasas/metabolismo , Células HEK293 , Células HeLa , Humanos , Metilación , Metiltransferasas/genética , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/genética , Especificidad por Sustrato , ARNt Metiltransferasas/genética
5.
Altern Ther Health Med ; 29(5): 54-64, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37052968

RESUMEN

Context: Danggui Buxue Tang (DBT) is a classical Chinese medicine that practitioners have used for thousands of years. Historically, those practitioners have used 16 prescriptions of DBT but currently are using only three prescriptions. Objective: The review intended to summarize pharmacological profiles of DBT and also clarify the major active chemicals found within it to provide a better understanding of the significance of DBT clinically. Design: The research team performed a narrative review by searching Pubmed databases. The search used the keywords Danggui Buxue Tang, bioactive chemcials, pharmacological functions. Setting: The databases setting were done by Gong Guowei and Zhou Xuan in the Zunyi Medical University, Zhuhai campus. Results: There are multiple results related to the crude fractions isolated from Danggui Buxue Tang, and also included the clinical trails. Conclusions: Thousands of years of clinical experience have ensured the efficacy of TCM treatments, which can determine the direction of basic research. That research can modify formulas at the molecular level to improve targeting and specificity in the treatment of specific diseases. As a result, the discovery and identification of new compounds within the herbal complex can provide useful research ideas and ensure the viability of new drug development.


Asunto(s)
Medicamentos Herbarios Chinos , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
6.
Phytother Res ; 37(7): 2864-2876, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36810895

RESUMEN

Danggui Buxue Tang (DBT) is a well-known Chinese herbal recipe often prescribed in clinical treatment for menopausal and cardiovascular symptoms. 5-Fluorouracil (5-FU) is a chemotherapy drug that treats several cancers; however, it causes severe adverse effects and multidrug resistance. Combining natural medications can reduce the side effects of 5-FU use. Hence, we aimed to determine the role of DBT in strengthening the anticancer capabilities of 5-FU in a cultured colorectal adenocarcinoma cell line (HT-29 cell) and xenograft nude mice. HT-29 cells cultured with DBT did not exhibit cytotoxicity. However, co-administration of DBT with 5-FU significantly increased apoptosis and the expression of apoptotic markers. The inhibition of proliferation induced by DBT and 5-FU was shown to be mediated by c-Jun N-terminal kinase signaling. In addition, the potentiation effect of 5-FU and DBT was demonstrated in reducing tumor size, expressions of Ki67 and CD34 in HT-29 xenograft mice. This finding suggests that DBT can work with 5-FU as a novel chemotherapeutic strategy for treating colon cancer.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Medicamentos Herbarios Chinos , Humanos , Ratones , Animales , Fluorouracilo/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos , Ratones Desnudos , Medicamentos Herbarios Chinos/farmacología , Adenocarcinoma/tratamiento farmacológico
7.
Biomacromolecules ; 22(6): 2451-2459, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34024108

RESUMEN

The present study aimed to purify, structurally characterize, and evaluate the anti-inflammatory activity of the polysaccharide extracted from Typha angustifolia. Two purified polysaccharides (PTA-1 and PTA-2) were obtained via DEAE-52 cellulose chromatography. Their structural characterizations and antioxidant activity were in vitro analyzed. To evaluate the anti-inflammatory activity of PTA-2, the levels of inflammatory cytokines, intracellular ROS production, and the inhibitory effects of the transcriptional activation of the nuclear factor kappa B (NF-κB) signaling pathway were determined. PTA-1 comprises glucose (100%) with α-(1 → 3) glycosidic bonds, and PTA-2 comprises glucose (66.7%) and rhamnose (33.3%) formed by ß-(1 → 3) glycosidic bonds. PTA-1 and PTA-2 showed strong antioxidant activity in vitro. Moreover, PTA-2 intervention (50, 100, and 200 µg/mL) suppressed the production of inflammatory cytokines, the activation of NF-κB signaling, and reactive oxygen species production significantly. The results identified PTA-2 as a natural product that could be applied in anti-inflammatory drugs.


Asunto(s)
Typhaceae , Antiinflamatorios/farmacología , Citocinas , Lipopolisacáridos/farmacología , FN-kappa B/genética , FN-kappa B/metabolismo , Polisacáridos/farmacología , Especies Reactivas de Oxígeno , Transducción de Señal , Typhaceae/metabolismo
8.
Pharmacol Res ; 163: 105316, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33248198

RESUMEN

Fibrosis is the excessive deposition of extracellular matrix components, which results in disruption of tissue architecture and loss of organ function. Fibrosis leads to high morbidity and mortality worldwide, mainly due to the lack of effective therapeutic strategies against fibrosis. It is generally accepted that fibrosis occurs during an aberrant wound healing process and shares a common pathogenesis across different organs such as the heart, liver, kidney, and lung. A better understanding of the fibrosis-related cellular and molecular mechanisms will be helpful for development of targeted drug therapies. Extensive studies revealed that numerous mediators contributed to fibrogenesis, suggesting that targeting these mediators may be an effective therapeutic strategy for antifibrosis. In this review, we describe a number of mediators involved in tissue fibrosis, including aryl hydrocarbon receptor, Yes-associated protein, cannabinoid receptors, angiopoietin-like protein 2, high mobility group box 1, angiotensin-converting enzyme 2, sphingosine 1-phosphate receptor-1, SH2 domain-containing phosphatase-2, and long non-coding RNAs, with the goal that drugs targeting these important mediators might exhibit a beneficial effect on antifibrosis. In addition, these mediators show profibrotic effects on multiple tissues, suggesting that targeting these mediators will exert antifibrotic effects on different organs. Furthermore, we present a variety of compounds that exhibit therapeutic effects against fibrosis. This review suggests therapeutic avenues for targeting organ fibrosis and concurrently identifies challenges and opportunities for designing new therapeutic strategies against fibrosis.


Asunto(s)
Fibrosis/tratamiento farmacológico , Animales , Productos Biológicos/uso terapéutico , Fibrosis/genética , Fibrosis/metabolismo , Humanos , Transducción de Señal
9.
FASEB J ; 33(1): 532-544, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29989844

RESUMEN

Polydatin, also called piceid, is a stilbenoid glucoside of a resveratrol derivative. It derives mainly from the root and rhizome of Polygonum cuspidatum Sieb. et Zucc. Although the role of P. cuspidatum root in angiogenesis has been reported, the active chemical or chemicals responsible for such function is not known. Here, polydatin was proposed to bind VEGF, which therefore altered the functions of VEGF in angiogenesis. Several lines of evidence supported the pharmaceutical effects of polydatin in VEGF-induced angiogenesis. In human umbilical vein endothelial cells, polydatin inhibited VEGF-stimulated cell proliferation, cell migration, and tube formation. Moreover, polydatin showed suppressive effects on the subintestinal vessel formation in zebrafish embryos. In signaling cascades, polydatin application attenuated VEGF-induced phosphorylations of VEGF receptor 2 and JNK. Moreover, the VEGF-induced phosphorylations of Akt, eNOS, and Erk were significantly decreased in the presence of polydatin. In parallel, the formation of reactive oxygen species, triggered by VEGF, was markedly decreased under polydatin application. Thus, our results supported the angiogenic roles of polydatin, as well as its signaling mechanism in blocking VEGF-mediated responses. The current study provides support for the possible development of polydatin as a potential therapeutic agent for treatment and prevention of angiogenesis-related diseases.-Hu, W.-H., Wang, H.-Y., Kong, X.-P., Xiong, Q.-P., Poon, K. K.-M., Xu, L., Duan, R., Chan, G. K.-L., Dong, T. T.-X., Tsim, K. W.-K. Polydatin suppresses VEGF-induced angiogenesis through binding with VEGF and inhibiting its receptor signaling.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Movimiento Celular , Proliferación Celular , Glucósidos/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Estilbenos/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Células Endoteliales de la Vena Umbilical Humana , Humanos , Fosforilación , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
10.
Crit Rev Food Sci Nutr ; 60(1): 48-63, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30285473

RESUMEN

The further development of fishery resources is a hotspot in the development of the fishery industry. However, how to develop aquatic animal resources deeply is a key point to be solved in the fishery industry. Over the past decades, numerous aquatic animals have gained great attention in the development and utilization of their bioactive molecules which are of therapeutic applications as nutraceuticals and pharmaceuticals. Recent research revealed that aquatic animals are composed of many vital moieties, such as polysaccharides and proteins, which provide health benefits beyond basic nutrition. In particular, aquatic animal polysaccharides are gaining worldwide popularity owing to their high content, ease of extraction, specific structure, few side effects, prominent therapeutic potential and incorporation in functional foods and dietary supplements. Thus, tremendous research on the isolation, identification and bioactivities of polysaccharides has been carried out. This review presents comprehensive viewpoints on extraction, separation, purification, structural characterization and bioactivity of various polysaccharides from aquatic animals, such as sea cucumber, abalone, oyster and mussels. In addition, this review profiled a brief knowledge on both current challenges and future scope in aquatic animal polysaccharides field. The review will be a direction of deep processing in fishery resources, which is a hotspot, but technical bottleneck. Furthermore, the review could be served as a useful reference material for further investigation, production and application of polysaccharides from aquatic animals in functional foods and therapeutic agents.


Asunto(s)
Polisacáridos/aislamiento & purificación , Alimentos Marinos/análisis , Animales , Bivalvos , Suplementos Dietéticos , Alimentos Funcionales , Gastrópodos , Ostreidae , Polisacáridos/química , Polisacáridos/farmacología , Pepinos de Mar
11.
Pharmacol Res ; 148: 104417, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31473343

RESUMEN

Intact epithelial barrier and mucosal immune system are crucial for maintaining intestinal homeostasis. Previous study indicated that Dendrobium officinale polysaccharides (DOPS) can regulate immune responses and inflammation to alleviate experimental colitis. However, it remains largely unknown whether DOPS can suppress AOM/DSS-induced colorectal cancer (CRC) model through its direct impact on intestinal barrier function and intestinal mucosal immunity. Here, we demonstrated the therapeutic action of DOPS for CRC model and further illustrated its underlying mechanisms. Treatment with 5-aminosalicylic acid (5-ASA) and DOPS significantly improved the clinical signs and symptoms of chronic colitis, relieve colon damage, suppress the formation and growth of colon tumor in CRC mice. Moreover, administration of DOPS effectively preserved the intestinal barrier function via reducing the loss of zonula occludens-1 (ZO-1) and occludin in adjacent tissues and carcinomatous tissues. Further studies demonstrated that DOPS improved the metabolic ability of tumor infiltrated CD8+ cytotoxic T lymphocytes (CTLs) and reduced the expression of PD-1 on CTLs to enhance the anti-tumor immune response in the tumor microenvironments (TME). Together, the conclusions indicated that DOPS restore intestinal barrier function and enhance intestinal anti-tumor immune response to suppress CRC, which may be a novel strategy for the prevention and treatment of CRC.


Asunto(s)
Antineoplásicos/farmacología , Carcinogénesis/efectos de los fármacos , Colon/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Dendrobium/química , Mucosa Intestinal/efectos de los fármacos , Polisacáridos/farmacología , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/metabolismo , Neoplasias Colorrectales/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Mesalamina/farmacología , Ratones , Ratones Endogámicos BALB C , Ocludina/metabolismo , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Proteína de la Zonula Occludens-1/metabolismo
12.
Compr Rev Food Sci Food Saf ; 15(2): 237-250, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33371599

RESUMEN

Polysaccharides are ideal natural resources for supplements and pharmaceuticals that have received more and more attention over the years. Natural polysaccharides have been shown to have fewer side effects, but because of their inherently physicochemical properties, their bioactivities were difficult to compare with those of synthetic drugs. Thus, researchers have modified the structures and properties of natural polysaccharides based on structure-activity relationships and have obtained better functionally improved polysaccharides. This review focuses on the major modification methods of polysaccharides, and discusses the effect of molecular modification on their physicochemical properties and bioactivities. Molecular modification methods mainly include chemical, physical, and biological changes. Chemical modification is the most widely used method; it can significantly increase the water solubility and bioactivities of polysaccharides by grafting onto other groups. Physical and biological modifications only change the molecular weight of a polysaccharide, and thereby change its physicochemical properties and bioactivities. Most of the molecular modifications bring about an increase in the antioxidant activity of polysaccharides, and among these, sulfated and acetylated modifications are very common. Furthermore, phosphorylation modification is the most common application to increase antitumor activity, and modified polysaccharides have been shown to have anti-HIV activity as the result of sulfated modification.

13.
Heliyon ; 10(5): e26129, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38434258

RESUMEN

Background: Yi-Qi-Jian-Pi Formula (YQJPF) is a herbal medicine that is used to treat patients with liver failure. However, scientific evidence supporting the treatment of hepatic fibrosis with YQJPF has not been forthcoming. The present study aimed to determine the mechanisms underlying the anti-fibrotic effects of YQJPF in mouse models of hepatic fibrosis. Methods: Mice were randomly assigned to control, hepatic fibrosis model, silymarin (positive treated), and low-, medium- and high-dose YQJPF (7.5, 15, and 30 g/kg, respectively) groups. Liver function, inflammatory cytokines, and oxygen stress were analyzed using ELISA kits. Sections were histopathologically stained with hematoxylin-eosin, Masson trichrome, and Sirius red. Macrophage polarization was measured by flow cytometry and immunofluorescence. Potential targets of YQJPF against hepatic fibrosis were analyzed by network pharmacology of Chinese herbal compound and the effects of YQJPF on the transforming growth factor-beta (TGF-ß)/Suppressor of Mothers against Decapentaplegic family member 3 (Smad3) signaling pathway were assessed using qRT-PCR and immunohistochemical staining. Finally, metagenomics and LC-MS/MS were used to detect the intestinal flora and metabolites of the mice, and an in-depth correlation analysis was performed by spearman correlation analysis. The data were compared by one-way ANOVA and least significant differences (LSDs) or ANOVA-Dunnett's T3 method used when no homogeneity was detected. Results: We induced hepatic fibrosis using CCl4 to establish mouse models and found that YQJPF dose-dependently increased body weight, improved liver function, and reversed hepatic fibrosis. Elevated levels of the pro-inflammatory factors IL-1ß, IL-6, and TNF-α in the model mice were substantially decreased by YQJPF, particularly at the highest dose. Levels of serum malondialdehyde and superoxide dismutase (SOD) activity were elevated and reduced, respectively. The malondialdehyde concentration decreased and SOD activity increased in the high-dose group. M1 polarized macrophages (CD86) in the mouse models were significantly decreased and M2 polarization was mildly decreased without significance. However, high-dose YQJPF increased the numbers of M2 macrophages and inhibited TGF-ß/Smad3 signaling. Metagenomic and non-targeted metabolomics detection results showed that YQJPF could regulate intestinal homeostasis, and Spearman correlation analysis showed that the abundance of Calditerrivibrio_nitroreducens was significantly negatively correlated with 18ß-glycyrrhetinic acid. It is suggested that Calditerrivibrio_nitroreducens may reduce the anti-fibrosis effect of licorice and other Chinese herbs by digesting 18ß-glycyrrhetinic acid. Conclusions: YQJPF can reverse liver fibrosis by inhibiting inflammation, suppressing oxidative stress, regulating the immunological response initiated by macrophages, inhibiting TGF-ß/Smad3 signaling and regulating intestinal flora homeostasis. Therefore, YQJPF may be included in clinical regimens to treat hepatic fibrosis.

14.
J Med Chem ; 67(10): 8020-8042, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38727048

RESUMEN

Promising targeted therapy options to overcome drug resistance and side effects caused by platinum(II) drugs for treatment in hepatocellular carcinoma are urgently needed. Herein, six novel multifunctional platinum(IV) complexes through linking platinum(II) agents and glycyrrhetinic acid (GA) were designed and synthesized. Among them, complex 20 showed superior antitumor activity against tested cancer cells including cisplatin resistance cells than cisplatin and simultaneously displayed good liver-targeting ability. Moreover, complex 20 can significantly cause DNA damage and mitochondrial dysfunction, promote reactive oxygen species generation, activate endoplasmic reticulum stress, and eventually induce apoptosis. Additionally, complex 20 can effectively inhibit cell migration and invasion and trigger autophagy and ferroptosis in HepG-2 cells. More importantly, complex 20 demonstrated stronger tumor inhibition ability than cisplatin or the combo of cisplatin/GA with almost no systemic toxicity in HepG-2 or A549 xenograft models. Collectively, complex 20 could be developed as a potential anti-HCC agent for cancer treatment.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Ácido Glicirretínico , Neoplasias Hepáticas , Humanos , Ácido Glicirretínico/farmacología , Ácido Glicirretínico/química , Ácido Glicirretínico/síntesis química , Ácido Glicirretínico/análogos & derivados , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Animales , Ratones , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Ligandos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Ratones Desnudos , Apoptosis/efectos de los fármacos , Células Hep G2 , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Cisplatino/farmacología , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/química , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/uso terapéutico , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Cancers (Basel) ; 15(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36765716

RESUMEN

Osteosarcoma is a common malignancy of the bone. Due to its high metastatic properties, osteosarcoma becomes the leading cause of cancer death worldwide. Ononin is an isoflavone glycoside known to have various pharmacological properties, including antioxidant and anti-inflammatory activities. In the present study, we aimed to investigate the efficacy of ononin on osteosarcoma cell migration, invasion, and the underlying mechanisms. The in vitro anti-tumorigenic and anti-migratory properties of ononin were determined by MTT, colony formation, invasion, and migration in MG-63 and U2OS osteosarcoma cell lines. The results were compared with the standard chemotherapeutic drug, doxorubicin (DOX), as a positive control. The dose-dependent manners of ononin treatment increased the expression of apoptosis and inhibition of cell proliferation through the EGFR-Erk1/2 signaling pathways. Additionally, ononin significantly inhibited the invasion and migration of human osteosarcoma cells. For consistency, we used the MG-63-xenograft mice model to confirm the in vivo anti-tumorigenic and anti-migratory efficacy of ononin by inhibiting the protein expressions of EGFR-Erk1/2 and MMP2/9. According to the histological study, ononin had no adverse effect on the liver and kidney. Overall, our findings suggested that ononin could be a potentially effective agent against the development and metastasis of osteosarcoma.

16.
Int J Biol Macromol ; 247: 125727, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37429347

RESUMEN

Drug delivery systems have emerged as a prominent research focus in the field of drug development, offering enhanced stability and improved bioavailability. Among them, protein (silk, gelatin and whey) or polysaccharide (alginate, chitosan, cellulose, starch, pectin and carrageenan) aerogels derived from natural sources have gained increasing popularity due to their unique advantages, such as cost-effectiveness, flexible preparation, bioactivity, biocompatibility, and biodegradability. However, despite their growing significance, there remains a lack of comprehensive information and ongoing confusion regarding the application of protein/polysaccharide aerogels in drug delivery system. Hence, the objective of this review was to provide a comprehensive review of the research progress in protein/polysaccharide aerogels for drug delivery systems from the perspective of aerogels category, synthesis strategy, drug-loading method, performance characteristic and release mechanism. Furthermore, by consolidating the existing information, we aimed to present our own perspectives and insights on the future development of protein/polysaccharide aerogels in drug delivery system. In conclusion, this comprehensive review served as a valuable resource for researchers and scholars, addressing the current gaps in knowledge and clarifying the complex landscape of protein/polysaccharide aerogels in drug delivery system.


Asunto(s)
Sistemas de Liberación de Medicamentos , Polisacáridos , Geles , Celulosa , Alginatos
17.
Biochem Pharmacol ; 211: 115541, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37030661

RESUMEN

Elevated circulating proprotein convertase subtilisin/kexin 9 (PCSK9) levels are an important contributor to postmenopausal atherosclerosis (AS). We have previously reported that resveratrol (RSV), as a phytoestrogen, reduces hepatocyte steatosis and PCSK9 expression in L02 cells. This study aimed to investigate how RSV reduces PCSK9 expression to inhibit postmenopausal AS progression. Here, we found that treatment of Ovx/ApoE -/- mice with RSV significantly reduced dyslipidemia, plasma PCSK9 concentration and aortic plaque area. In addition, RSV significantly inhibited liver fat accumulation and improved the hepatocyte ultrastructure. Further studies showed that RSV upregulated estrogen receptor α (ERα) expression, while reduced the liver X receptor α (LXRα) expression and sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity. In vitro, RSV inhibited insulin-induced elevated intracellular/extracellular PCSK9 levels, enhanced receptor-mediated uptake of low-density lipoproteins in HepG2 cells. Furthermore, RSV attenuated the activity of the SRE-dependent PCSK9 promoter. However, these effects can be partially reversed by the antiestrogen ICI 182,780. Attenuation of these changes with ERα inhibition suggest that RSV may prevent the progression of postmenopausal AS by reducing PCSK9 expression in hepatocytes through ERα-mediated signaling.


Asunto(s)
Aterosclerosis , Proproteína Convertasa 9 , Ratones , Animales , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Resveratrol/farmacología , Subtilisina/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Posmenopausia , Ratones Noqueados para ApoE , Proproteína Convertasas/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Transducción de Señal , Receptores de LDL/genética , Receptores de LDL/metabolismo
18.
Int J Biol Macromol ; 253(Pt 3): 126920, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37717864

RESUMEN

Dendrobium officinale polysaccharides (DOP) has been reported to possess remarkable effects on improving renal function, oxidative stress damage and fibrotic diseases. However, the role and mechanism of DOP in preventing and treating renal fibrosis remain unclear. The purpose of this paper was to explore the therapeutic effects and underlying mechanisms of DOP on renal fibrosis. Firstly, renal fibrosis model was induced by unilateral ureteral obstruction operation (UUO) in male BALB/c mice. Subsequently, the anti-renal fibrosis effect of DOP was evaluated. It turned out that DOP significantly attenuated UUO induced renal fibrosis. The beneficial effects of DOP on renal fibrosis were concretely manifested in the relief of clinical symptoms, improvement of renal function, reduction of extracellular matrix collagen aggregation, attenuation of structural damage and inflammation, and decrement of profibrotic factors secretion. Meanwhile, DOP could also alleviate oxidative stress injury and inhibit the AhR/NOX4 pathway proteins expression. Furthermore, multivariate statistical analysis, AhR interference and overexpression experiments showed that the effect of DOP on alleviating renal fibrosis was closely related to the improvement of oxidative stress injury mediated by the AhR/NOX4 pathway. Overall, the data in the present paper indicated that DOP could alleviate renal fibrosis through improving AhR/NOX4 mediated oxidative stress injury.


Asunto(s)
Dendrobium , Enfermedades Renales , Obstrucción Ureteral , Masculino , Ratones , Animales , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/cirugía , Dendrobium/química , Estrés Oxidativo , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Fibrosis , Polisacáridos/farmacología , Polisacáridos/uso terapéutico
19.
Int J Biol Macromol ; 248: 125951, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499724

RESUMEN

Coriolus versicolor, a popular traditional Chinese medicinal herb, is widely used in China to treat spleen and liver diseases; however, the beneficial effects of C. versicolor polysaccharides (CVPs) on nonalcoholic fatty liver disease (NAFLD) remain elusive. Herein we isolated and purified a novel CVP (molecular weight, 17,478 Da) from fermented mycelium powder. This CVP was composed of mannose, galacturonic acid, glucose, galactose, xylose, and fucose at a molar ratio of 22:1:8:15:10:3. Methylation, gas chromatography-mass spectrometry, and nuclear magnetic resonance analyses indicated that the CVP backbone consisted of →1)-ß-D-Man-(6,4→1)-α-D-Gal-(3→1)-α-D-Man-(4→1)-α-D-Gal-(6→, with branches of →1)-α-D-Glc-(6→1)-α-D-Man-(4,3→1)-ß-D-Xyl-(2→1)-ß-D-Glc on the O-6 position of →1)-ß-D-Man-(6,4→ of the main chain. The secondary branches linked to the O-4 position of →1)-α-D-Man-(4,3→ with the chain of →1)-α-D-Fuc-(4→1)-α-D-Man. Further, CVP treatment alleviated the symptoms of NAFLD in an HFD-induced mice model. CVP altered gut microbiota, predominantly suppressing microbes associated with bile acids both in the serum and cecal contents. In vitro data showed that CVP reduced HFD-induced hyperlipidemia via farnesoid X receptor. Our results improve our understanding of the mechanisms underlying the cholesterol- and lipid-lowering effects of CVP and indicate that CVP is a promising candidate for NAFLD therapy.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Polyporaceae , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química , Micelio/química
20.
Front Mol Biosci ; 10: 1277830, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37942289

RESUMEN

Background: Abelson interactor Family Member 3 (ABI3) encodes protein that not only suppresses the ectopic metastasis of tumor cells but also hinders their migration. Although ABI3 had been found to modulate the advancement of diverse neoplasms, there is no comprehensive pan-cancer analysis of its effects. Methods: The transcriptomics data of neoplasm and normal tissues were retrieved from the Genomic Data Commons (GDC) data portal, and UCSC XENA database. To gather protein information for ABI3, Human Protein Atlas (HPA) and GeneMANIA websites were utilized. Additionally, Tumor Immune Single-cell Hub (TISCH) database was consulted to determine the primary cell types expressing ABI3 in cancer microenvironments. Univariate Cox regression approach was leveraged to evaluate ABI3's prognostic role across cancers. The Cbioportal and Gene Set Cancer Analysis (GSCA) website were leveraged to scrutinize the genomic landscape information across cancers. TIMER2.0 was leveraged to probe the immune cell infiltrations associated with ABI3 across cancers. The associations of ABI3 with immune-related genes were analyzed through Spearman correlation method. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were utilized to search associated biological pathways. The CellMiner database and molecular docking were implemented to identify potential interactions between the ABI3 protein and specific anticarcinogen. Findings: ABI3 expression and its ability to predict prognosis varied distinct tumor, with particularly high expression observed in Tprolif cells and monocytes/macrophages. Copy number variation (CNV) and methylation negatively correlated with ABI3 expression in the majority of malignancies. Corresponding mutation survival analysis indicated that the mutation status of ABI3 was strongly connected to the prognosis of LGG patients. ABI3 expression was linked to immunotherapeutic biomarkers and response in cancers. ESTIMATE and immune infiltrations analyses presented ABI3 association with immunosuppression. ABI3 was significantly correlated with immunoregulators and immune-related pathways. Lastly, prospective ABI3-targeted drugs were filtered and docked to ABI3 protein. Interpretation: Our study reveals that ABI3 acts as a robust tumor biomarker. Its functions are vital that could inhibit ectopic metastasis of tumor cells and modulate cellular adhesion and migration. The discoveries presented here may have noteworthy consequences for the creation of fresh anticancer suppressors, especially those targeting BRCA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA