Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(17): 3124-3137.e15, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35944541

RESUMEN

During development, melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) become light sensitive much earlier than rods and cones. IpRGCs project to many subcortical areas, whereas physiological functions of these projections are yet to be fully elucidated. Here, we found that ipRGC-mediated light sensation promotes synaptogenesis of pyramidal neurons in various cortices and the hippocampus. This phenomenon depends on activation of ipRGCs and is mediated by the release of oxytocin from the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) into cerebral-spinal fluid. We further characterized a direct connection between ipRGCs and oxytocin neurons in the SON and mutual projections between oxytocin neurons in the SON and PVN. Moreover, we showed that the lack of ipRGC-mediated, light-promoted early cortical synaptogenesis compromised learning ability in adult mice. Our results highlight the importance of light sensation early in life on the development of learning ability and therefore call attention to suitable light environment for infant care.


Asunto(s)
Oxitocina , Células Ganglionares de la Retina , Animales , Encéfalo/metabolismo , Humanos , Ratones , Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/metabolismo
2.
Nature ; 581(7807): 204-208, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32405000

RESUMEN

It has been speculated that brain activities might directly control adaptive immune responses in lymphoid organs, although there is little evidence for this. Here we show that splenic denervation in mice specifically compromises the formation of plasma cells during a T cell-dependent but not T cell-independent immune response. Splenic nerve activity enhances plasma cell production in a manner that requires B-cell responsiveness to acetylcholine mediated by the α9 nicotinic receptor, and T cells that express choline acetyl transferase1,2 probably act as a relay between the noradrenergic nerve and acetylcholine-responding B cells. We show that neurons in the central nucleus of the amygdala (CeA) and the paraventricular nucleus (PVN) that express corticotropin-releasing hormone (CRH) are connected to the splenic nerve; ablation or pharmacogenetic inhibition of these neurons reduces plasma cell formation, whereas pharmacogenetic activation of these neurons increases plasma cell abundance after immunization. In a newly developed behaviour regimen, mice are made to stand on an elevated platform, leading to activation of CeA and PVN CRH neurons and increased plasma cell formation. In immunized mice, the elevated platform regimen induces an increase in antigen-specific IgG antibodies in a manner that depends on CRH neurons in the CeA and PVN, an intact splenic nerve, and B cell expression of the α9 acetylcholine receptor. By identifying a specific brain-spleen neural connection that autonomically enhances humoral responses and demonstrating immune stimulation by a bodily behaviour, our study reveals brain control of adaptive immunity and suggests the possibility to enhance immunocompetency by behavioural intervention.


Asunto(s)
Conducta Animal/fisiología , Encéfalo/fisiología , Inmunidad Humoral/inmunología , Bazo/inmunología , Bazo/inervación , Acetilcolina/metabolismo , Acetilcolina/farmacología , Neuronas Adrenérgicas/metabolismo , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Colina O-Acetiltransferasa/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Hemocianinas/inmunología , Inmunoglobulina G/inmunología , Activación de Linfocitos , Masculino , Ratones , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Células Plasmáticas/citología , Células Plasmáticas/efectos de los fármacos , Células Plasmáticas/inmunología , Receptores Nicotínicos/deficiencia , Receptores Nicotínicos/metabolismo , Bazo/citología , Bazo/efectos de los fármacos , Estrés Psicológico/inmunología , Estrés Psicológico/metabolismo , Linfocitos T/inmunología
3.
Proc Natl Acad Sci U S A ; 119(33): e2118501119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35943985

RESUMEN

Pain and itch are distinct sensations arousing evasion and compulsive desire for scratching, respectively. It's unclear whether they could invoke different neural networks in the brain. Here, we use the type 1 herpes simplex virus H129 strain to trace the neural networks derived from two types of dorsal root ganglia (DRG) neurons: one kind of polymodal nociceptors containing galanin (Gal) and one type of pruriceptors expressing neurotensin (Nts). The DRG microinjection and immunosuppression were performed in transgenic mice to achieve a successful tracing from specific types of DRG neurons to the primary sensory cortex. About one-third of nuclei in the brain were labeled. More than half of them were differentially labeled in two networks. For the ascending pathways, the spinothalamic tract was absent in the network derived from Nts-expressing pruriceptors, and the two networks shared the spinobulbar projections but occupied different subnuclei. As to the motor systems, more neurons in the primary motor cortex and red nucleus of the somatic motor system participated in the Gal-containing nociceptor-derived network, while more neurons in the nucleus of the solitary tract (NST) and the dorsal motor nucleus of vagus nerve (DMX) of the emotional motor system was found in the Nts-expressing pruriceptor-derived network. Functional validation of differentially labeled nuclei by c-Fos test and chemogenetic inhibition suggested the red nucleus in facilitating the response to noxious heat and the NST/DMX in regulating the histamine-induced scratching. Thus, we reveal the organization of neural networks in a DRG neuron type-dependent manner for processing pain and itch.


Asunto(s)
Galanina , Ganglios Espinales , Red Nerviosa , Neurotensina , Nociceptores , Dolor , Prurito , Animales , Galanina/metabolismo , Ganglios Espinales/ultraestructura , Herpesvirus Humano 1 , Ratones , Ratones Transgénicos , Red Nerviosa/ultraestructura , Neurotensina/metabolismo , Nociceptores/metabolismo , Dolor/fisiopatología , Prurito/fisiopatología , Núcleo Solitario/ultraestructura
4.
Neuroimage ; 289: 120549, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382864

RESUMEN

The directional organization of multiple nociceptive regions, particularly within obscure operculoinsular areas, underlying multidimensional pain processing remains elusive. This study aims to establish the fundamental organization between somatosensory and insular cortices in routing nociceptive information. By employing an integrated multimodal approach of high-field fMRI, intracranial electrophysiology, and transsynaptic viral tracing in rats, we observed a hierarchically organized connection of S1/S2 → posterior insula → anterior insula in routing nociceptive information. The directional nociceptive pathway determined by early fMRI responses was consistent with that examined by early evoked LFP, intrinsic effective connectivity, and anatomical projection, suggesting fMRI could provide a valuable facility to discern directional neural circuits in animals and humans non-invasively. Moreover, our knowledge of the nociceptive hierarchical organization of somatosensory and insular cortices and the interface role of the posterior insula may have implications for the development of targeted pain therapies.


Asunto(s)
Corteza Insular , Imagen por Resonancia Magnética , Humanos , Ratas , Animales , Imagen por Resonancia Magnética/métodos , Nocicepción/fisiología , Corteza Somatosensorial/diagnóstico por imagen , Corteza Somatosensorial/fisiología , Mapeo Encefálico , Dolor
5.
Insect Mol Biol ; 33(3): 270-282, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38329162

RESUMEN

Insects rely on their innate immune system to eliminate pathogenic microbes. As a system component, cytokines transmit intercellular signals to control immune responses. Growth-blocking peptide (GBP) is a member of the stress-responsive peptide family of cytokines found in several orders of insects, including Drosophila. However, the physiological role of GBP in defence against pathogens is not thoroughly understood. In this study, we explored the functions of GBP in a lepidopteran pest, Ostrinia furnacalis. Injection of recombinant O. furnacalis GBP (OfGBP) precursor (proGBP) and chemically synthesised GBP significantly induced the transcription of antimicrobial peptides (AMPs) and other immunity-related genes including immune deficiency (IMD) and Dorsal. The level of OfGBP mRNA was upregulated after bacterial infection. Knockdown of OfGBP expression led to a decrease in IMD, Relish, MyD88 and Dorsal mRNA levels. OfGBP induced phenoloxidase activity and affected hemocyte behaviours in O. furnacalis larvae. In summary, GBP is a potent cytokine, effectively regulating AMP synthesis, melanization response and cellular immunity to eliminate invading pathogens.


Asunto(s)
Proteínas de Insectos , Larva , Mariposas Nocturnas , Animales , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/genética , Mariposas Nocturnas/crecimiento & desarrollo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Larva/crecimiento & desarrollo , Larva/inmunología , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/metabolismo , Hemocitos/metabolismo , Inmunidad Innata
6.
Arch Insect Biochem Physiol ; 115(1): e22077, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288489

RESUMEN

The extracellular signal-regulated kinase (ERK) pathway, a critical genetic determinant, controls diverse physiological functions, including innate immunity, development, and stress response. In the current study, a full-length cDNA (1592bp) encoding the ERK gene (OfERK) was cloned from Ostrinia furnacalis Guenée (GenBank accession number: MF797866). The open reading frame of the OfERK gene encoded 364 amino acids and shared 96.43%-98.08% amino acid identities with other insect mitogen-activated protein kinases. For spatiotemporal analysis of the expression pattern, OfERK exhibited a significant peak expression on the 3rd day of the pupa stage and showed the highest expression in hemocytes specifically. Indirect immunofluorescence assays and immuno-electron microscopy revealed a wide distribution of the OfERK protein in hemocytes and epidermis. Moreover, the results demonstrated that the Bt Cry1Ab-activated toxin significantly induces the expression of OfERK. Other genes related to immune response, development, and stress response exhibited dynamic changes in expression after Cry1Ab oral treatment. The expression of OfERK was downregulated through RNA interference, and the correlation of its expression with other related genes was verified using quantitative real-time polymerase chain reaction. Our study provides valuable insights into the regulatory mechanism of ERK in insects for future studies.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Mariposas Nocturnas , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Mariposas Nocturnas/metabolismo , Inmunidad Innata
7.
J Neurochem ; 164(5): 684-699, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36445101

RESUMEN

The mechanism of propofol-anesthesia-induced loss of consciousness (LOC) remains largely unknown. We speculated that the adenosine A2A receptor serves as a vital molecular target in regulating LOC states under propofol anesthesia. c-Fos staining helped observe the changes in the neuronal activity in the nucleus accumbens (NAc). Initially, the adenosine signals in the NAc were measured under propofol anesthesia using fiber photometry recordings. Then, behavior tests and electrophysiological recordings were used to verify the effect of systemic A2A R agonist or antagonist treatment on propofol anesthesia. Next, the microinjection technique was used to clarify the role of the NAc A2A R under propofol anesthesia. Fiber photometry recordings were applied to assess the effect of A2A R agonist or antagonist systemic treatment on adenosine signal alterations in the NAc during propofol anesthesia. Then, as the GABAergic neurons are the main neurons in the NAc, we further measured the neuronal activity of GABAergic neurons. In our study, propofol anesthesia enhanced the neuronal activity in the NAc, and the adenosine signals were increased in the NAc. SCH58261 reduced the LOC time and sedative depth, while CGS21680 increased those via intraperitoneal injection. Additionally, CGS21680 increased the changes in delta, theta, alpha, beta, and low-gamma oscillations in the NAc. Moreover, microinjection of SCH58261 significantly shortened the LOC time, whereas microinjection of CGS21680 into the NAc significantly prolonged the LOC duration. The results illustrated that after A2A R agonist administration, the level of extracellular adenosine signals in the NAc was decreased and the neuronal activity of GABAergic neurons was enhanced, whereas after A2A R antagonist administration via intraperitoneal injection, the opposite occurred. This study reveals the vital role of the A2A R in propofol-induced LOC and that the A2A R could affect the maintenance of propofol anesthesia.


Asunto(s)
Inconsciencia , Masculino , Animales , Ratones , Inconsciencia/inducido químicamente , Inconsciencia/metabolismo , Propofol/toxicidad , Anestesia , Ratones Endogámicos C57BL , Núcleo Accumbens/metabolismo , Espacio Extracelular/metabolismo , Antagonistas del Receptor de Adenosina A2/farmacología , Agonistas del Receptor de Adenosina A2/farmacología
8.
J Transl Med ; 21(1): 543, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580725

RESUMEN

BACKGROUND: The ventral tegmental area (VTA) contains heterogeneous cell populations. The dopaminergic neurons in VTA play a central role in reward and cognition, while CamKIIα-positive neurons, composed mainly of glutamatergic and some dopaminergic neurons, participate in the reward learning and locomotor activity behaviors. The differences in brain-wide functional and structural networks between these two neuronal subtypes were comparatively elucidated. METHODS: In this study, we applied a method combining Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and fMRI to assess the cell type-specific modulation of whole-brain neural networks. rAAV encoding the cre-dependent hM3D was injected into the right VTA of DAT-cre or CamKIIα-cre transgenic rats. The global brain activities elicited by DREADD stimulation were then detected using BOLD-fMRI. Furthermore, the cre-dependent antegrade transsynaptic viral tracer H129ΔTK-TT was applied to label the outputs of VTA neurons. RESULTS: We found that DREADD stimulation of dopaminergic neurons induced significant BOLD signal changes in the VTA and several VTA-related regions including mPFC, Cg and Septum. More regions responded to selective activation of VTA CamKIIα-positive neurons, resulting in increased BOLD signals in VTA, Insula, mPFC, MC_R (Right), Cg, Septum, Hipp, TH_R, PtA_R, and ViC_R. Along with DREADD-BOLD analysis, further neuronal tracing identified multiple cortical (MC, mPFC) and subcortical (Hipp, TH) brain regions that are structurally and functionally connected by VTA dopaminergic and CamKIIα-positive neurons. CONCLUSIONS: Our study dissects brain-wide structural and functional networks of two neuronal subtypes in VTA and advances our understanding of VTA functions.


Asunto(s)
Imagen por Resonancia Magnética , Área Tegmental Ventral , Ratas , Animales , Área Tegmental Ventral/diagnóstico por imagen , Área Tegmental Ventral/fisiología , Imagen por Resonancia Magnética/métodos , Encéfalo , Neuronas Dopaminérgicas/fisiología
9.
BMC Cancer ; 23(1): 1052, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37914994

RESUMEN

OBJECTIVE: To detect the HPV genotype and integration sites in patients with high-risk HPV infection at different stages of photodynamic therapy using nanopore technology and to evaluate the treatment effect. METHODS: Four patients with HPV infection were selected and subjected to photodynamic therapy, and cervical exfoliated cell was sampled at before treatment, after three courses of treatment and six courses of treatment, their viral abundance and insertion sites were analyzed by nanopore technology, and pathological examinations were performed before and after treatment. In this study, we developed a novel assay that combined viral sequence enrichment and Nanopore sequencing for identification of HPV genotype and integration sites at once. The assay has obvious advantages over qPCR or NGS-based methods, as it has better sensitivity after viral sequences enrichment and can generate long-reads (kb to Mb) for better detection rate of structure variations, moreover, fast turn-around time for real-time viral sequencing and analysis. RESULTS: The pathological grade was reduced in all four patients after photodynamic therapy. Virus has been cleared in two cases after treatment, the virus amount reduced after treatment but not completely cleared in one case, and two type viruses were cleared and one type virus persisted after treatment in the last patient with multiple infection. Viral abundance and the number of integration sites were positively correlated. Gene enrichment analysis showed complete viral clearance in 1 patient and 3 patients required follow-up. CONCLUSION: Nanopore sequencing can effectively monitor the abundance of HPV viruses and integration sites to show the presence status of viruses, and combined with the results of gene enrichment analysis, the treatment effect can be dynamically assessed.


Asunto(s)
Secuenciación de Nanoporos , Infecciones por Papillomavirus , Fotoquimioterapia , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/patología , ADN Viral/genética , ADN Viral/análisis , Integración Viral/genética
10.
Mol Psychiatry ; 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484244

RESUMEN

Astrocytes constitute a major part of the central nervous system and the delineation of their activity patterns is conducive to a better understanding of brain network dynamics. This study aimed to develop a magnetic resonance imaging (MRI)-based method in order to monitor the brain-wide or region-specific astrocytes in live animals. Adeno-associated virus (AAVs) vectors carrying the human glial fibrillary acidic protein (GFAP) promoter driving the EGFP-AQP1 (Aquaporin-1, an MRI reporter) fusion gene were employed. The following steps were included: constructing recombinant AAV vectors for astrocyte-specific expression, detecting MRI reporters in cell culture, brain regions, or whole brain following cell transduction, stereotactic injection, or tail vein injection. The astrocytes were detected by both fluorescent imaging and Diffusion-weighted MRI. The novel AAV mutation (Site-directed mutagenesis of surface-exposed tyrosine (Y) residues on the AAV5 capsid) significantly increased fluorescence intensity (p < 0.01) compared with the AAV5 wild type. Transduction of the rAAV2/5 carrying AQP1 induced the titer-dependent changes in MRI contrast in cell cultures (p < 0.05) and caudate-putamen (CPu) in the brain (p < 0.05). Furthermore, the MRI revealed a good brain-wide alignment between AQP1 levels and ADC signals, which increased over time in most of the transduced brain regions. In addition, the rAAV2/PHP.eB serotype efficiently introduced AOP1 expression in the whole brain via tail vein injection. This study provides an MRI-based approach to detect dynamic changes in astrocytes in live animals. The novel in vivo tool could help us to understand the complexity of neuronal and glial networks in different pathophysiological conditions.

11.
Br J Anaesth ; 131(3): 531-541, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543435

RESUMEN

BACKGROUND: Sleep disorders can profoundly affect neurological function. We investigated changes in social and anxiety-related brain functional connectivity induced by sleep deprivation, and the potential therapeutic effects of the general anaesthetics propofol and sevoflurane in rats. METHODS: Twelve-week-old male Sprague-Dawley rats were subjected to sleep deprivation for 20 h per day (from 14:00 to 10:00 the next day) for 4 consecutive weeks. They were free from sleep deprivation for the remaining 4 h during which they received propofol (40 mg kg-1 i.p.) or sevoflurane (2% for 2 h) per day or no treatment. These cohorts were instrumented for EEG/EMG recordings on days 2, 14, and 28. Different cohorts were used for open field and three-chambered social behavioural tests, functional MRI, nuclear magnetic resonance spectroscopy, and positron emission tomography imaging 48 h after 4 weeks of sleep deprivation. RESULTS: Propofol protected against sleep deprivation-induced anxiety behaviours with more time (44.7 [8.9] s vs 24.2 [4.1] s for the sleep-deprivation controls; P<0.001) spent in the central area of the open field test and improved social preference index by 30% (all P<0.01). Compared with the sleep-deprived rats, propofol treatment enhanced overall functional connectivity by 74% (P<0.05) and overall glucose metabolism by 30% (P<0.01), and improved glutamate kinetics by 20% (P<0.05). In contrast, these effects were not found after sevoflurane treatment. CONCLUSIONS: Unlike sevoflurane, propofol reduced sleep deprivation-induced social and anxiety-related behaviours. Propofol might be superior to sevoflurane for patients with sleep disorders who receive anaesthesia, which should be studied in clinical studies.


Asunto(s)
Anestésicos por Inhalación , Ansiedad , Éteres Metílicos , Propofol , Privación de Sueño , Animales , Masculino , Ratas , Anestésicos por Inhalación/farmacología , Anestésicos Intravenosos/farmacología , Éteres Metílicos/farmacología , Propofol/farmacología , Ratas Sprague-Dawley , Sevoflurano/farmacología , Sueño , Conducta Social
12.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36902010

RESUMEN

Centrifugal projections in the olfactory system are critical to both olfactory processing and behavior. The olfactory bulb (OB), the first relay station in odor processing, receives a substantial number of centrifugal inputs from the central brain regions. However, the anatomical organization of these centrifugal connections has not been fully elucidated, especially for the excitatory projection neurons of the OB, the mitral/tufted cells (M/TCs). Using rabies virus-mediated retrograde monosynaptic tracing in Thy1-Cre mice, we identified that the three most prominent inputs of the M/TCs came from the anterior olfactory nucleus (AON), the piriform cortex (PC), and the basal forebrain (BF), similar to the granule cells (GCs), the most abundant population of inhibitory interneurons in the OB. However, M/TCs received proportionally less input from the primary olfactory cortical areas, including the AON and PC, but more input from the BF and contralateral brain regions than GCs. Unlike organizationally distinct inputs from the primary olfactory cortical areas to these two types of OB neurons, inputs from the BF were organized similarly. Furthermore, individual BF cholinergic neurons innervated multiple layers of the OB, forming synapses on both M/TCs and GCs. Taken together, our results indicate that the centrifugal projections to different types of OB neurons may provide complementary and coordinated strategies in olfactory processing and behavior.


Asunto(s)
Prosencéfalo Basal , Corteza Olfatoria , Ratones , Animales , Bulbo Olfatorio/fisiología , Vías Olfatorias , Olfato/fisiología
13.
Neuroimage ; 258: 119402, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35732245

RESUMEN

A mammalian brain contains numerous neurons with distinct cell types for complex neural circuits. Virus-based circuit tracing tools are powerful in tracking the interaction among the different brain regions. However, detecting brain-wide neural networks in vivo remains challenging since most viral tracing systems rely on postmortem optical imaging. We developed a novel approach that enables in vivo detection of brain-wide neural connections based on metal-free magnetic resonance imaging (MRI). The recombinant adeno-associated virus (rAAV) with retrograde ability, the rAAV2-retro, encoding the human water channel aquaporin 1 (AQP1) MRI reporter gene was generated to label neural connections. The mouse was micro-injected with the virus at the Caudate Putamen (CPU) region and subjected to detection with Diffusion-weighted MRI (DWI). The prominent structure of the CPU-connected network was clearly defined. In combination with a Cre-loxP system, rAAV2-retro expressing Cre-dependent AQP1 provides a CPU-connected network of specific type neurons. Here, we established a sensitive, metal-free MRI-based strategy for in vivo detection of cell type-specific neural connections in the whole brain, which could visualize the dynamic changes of neural networks in rodents and potentially in non-human primates.


Asunto(s)
Acuaporina 1 , Dependovirus , Animales , Acuaporina 1/genética , Acuaporina 1/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Imagen por Resonancia Magnética , Mamíferos/metabolismo , Ratones , Tecnología
14.
Exp Eye Res ; 218: 109009, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35276185

RESUMEN

Accumulated clinical evidence has shown that Posner-Schlossman syndrome (PSS) is most likely the result of recurrent human cytomegalovirus (HCMV) infection in the anterior chamber (AC). Establishing an animal model is necessary to investigate the pathogenesis of PSS. In this study, we constructed a mouse model of (PSS) by injecting murine cytomegalovirus (MCMV) into the AC of BALB/c mice. Twenty-five BALB/c mice were divided into 5 groups. Smith strain MCMV expressing enhanced green fluorescent protein (EGFP) was passaged with mouse embryonic fibroblast (MEF). Right eyes in the 4 experiment groups received AC injection of 1 µL of virus solution with concentrations of 103,104,105,106 pfu/mL respectively, and the control group received only PBS. PSS-like signs (mutton-fat keratic precipitates (KP), pupil dilation, IOP elevation and corneal edema) were recorded 0-28 days post-injection (DPI). Sections of eyeballs from another 9 mice harvested on 0,10 and 28 DPI were examined to locate KP and the fluorescence signal of the virus. Reversible PSS-like signs except KP were observed in 20% and 60% mice of 104 and 105 groups while no PSS-like signs in the control and 103 group; 80% in the 106 group with partially unreversible signs till 28DPI. Much More fluorescent signals of virus in the iris and KP were found on 10DPI than 28 DPI, while no fluorescent signals and KP on 0DPI. The extent of PSS-like signs (pupil dilation, IOP elevation and corneal edema) was virus concentration-dependent (Spearman correlation coefficient, r = 0.830, = 0.475, = 0.662, p < 0.0001, <0.05, <0.001, respectively, n = 25). Success rate of PSS model (mice with PSS-like signs) was also virus concentration-dependent (Chi-square trend test, χ2 = 6.828, df = 1, p < 0.01, n = 25). Our results indicate that AC injection of 1 µL MEF passaged MCMV (Smith strain) of 104-106 pfu/mL in BALB/c mice can be used to construct a mouse model of PSS. MCMV can infect iris tissue and replicate in it and then establish latency. This might account for the recurrent and self-limited nature of PSS.


Asunto(s)
Edema Corneal , Infecciones por Citomegalovirus , Glaucoma de Ángulo Abierto , Muromegalovirus , Animales , Cámara Anterior/patología , Citomegalovirus , Modelos Animales de Enfermedad , Fibroblastos/patología , Ratones , Ratones Endogámicos BALB C
15.
Mol Psychiatry ; 26(9): 4719-4741, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32555286

RESUMEN

The prevailing view is that parvalbumin (PV) interneurons play modulatory roles in emotional response through local medium spiny projection neurons (MSNs). Here, we show that PV activity within the nucleus accumbens shell (sNAc) is required for producing anxiety-like avoidance when mice are under anxiogenic situations. Firing rates of sNAcPV neurons were negatively correlated to exploration time in open arms (threatening environment). In addition, sNAcPV neurons exhibited high excitability in a chronic stress mouse model, which generated excessive maladaptive avoidance behavior in an anxiogenic context. We also discovered a novel GABAergic pathway from the anterior dorsal bed nuclei of stria terminalis (adBNST) to sNAcPV neurons. Optogenetic activation of these afferent terminals in sNAc produced an anxiolytic effect via GABA transmission. Next, we further demonstrated that chronic stressors attenuated the inhibitory synaptic transmission at adBNSTGABA → sNAcPV synapses, which in turn explains the hyperexcitability of sNAc PV neurons on stressed models. Therefore, activation of these GABAergic afferents in sNAc rescued the excessive avoidance behavior related to an anxious state. Finally, we identified that the majority GABAergic input neurons, which innervate sNAcPV cells, were expressing somatostatin (SOM), and also revealed that coordination between SOM- and PV- cells functioning in the BNST → NAc circuit has an inhibitory influence on anxiety-like responses. Our findings provide a potentially neurobiological basis for therapeutic interventions in pathological anxiety.


Asunto(s)
Interneuronas , Parvalbúminas , Animales , Ansiedad , Neuronas GABAérgicas , Ratones , Somatostatina
16.
Proc Natl Acad Sci U S A ; 116(13): 6397-6406, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850520

RESUMEN

Memory is stored in neural networks via changes in synaptic strength mediated in part by NMDA receptor (NMDAR)-dependent long-term potentiation (LTP). Here we show that a cholecystokinin (CCK)-B receptor (CCKBR) antagonist blocks high-frequency stimulation-induced neocortical LTP, whereas local infusion of CCK induces LTP. CCK-/- mice lacked neocortical LTP and showed deficits in a cue-cue associative learning paradigm; and administration of CCK rescued associative learning deficits. High-frequency stimulation-induced neocortical LTP was completely blocked by either the NMDAR antagonist or the CCKBR antagonist, while application of either NMDA or CCK induced LTP after low-frequency stimulation. In the presence of CCK, LTP was still induced even after blockade of NMDARs. Local application of NMDA induced the release of CCK in the neocortex. These findings suggest that NMDARs control the release of CCK, which enables neocortical LTP and the formation of cue-cue associative memory.


Asunto(s)
Colecistoquinina/metabolismo , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Corteza Auditiva/metabolismo , Conducta Animal , Colecistoquinina/genética , Estimulación Eléctrica , Corteza Entorrinal/metabolismo , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , N-Metilaspartato/metabolismo , Neocórtex/metabolismo , Neuronas/metabolismo , Ratas Sprague-Dawley , Receptor de Colecistoquinina B/efectos de los fármacos , Receptor de Colecistoquinina B/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Sinapsis/metabolismo
17.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35955605

RESUMEN

The basal forebrain, an anatomically heterogeneous brain area containing multiple distinct subregions and neuronal populations, innervates many brain regions including the hippocampus (HIP), a key brain region responsible for learning and memory. Although recent studies have revealed that basal forebrain cholinergic neurons (BFCNs) are involved in olfactory associative learning and memory, the potential neural circuit is not clearly dissected yet. Here, using an anterograde monosynaptic tracing strategy, we revealed that BFCNs in different subregions projected to many brain areas, but with significant differentiations. Our rabies virus retrograde tracing results found that the dorsal HIP (dHIP) received heavy projections from the cholinergic neurons in the nucleus of the horizontal limb of the diagonal band (HDB), magnocellular preoptic nucleus (MCPO), and substantia innominate (SI) brain regions, which are known as the HMS complex (HMSc). Functionally, fiber photometry showed that cholinergic neurons in the HMSc were significantly activated in odor-cued go/no-go discrimination tasks. Moreover, specific depletion of the HMSc cholinergic neurons innervating the dHIP significantly decreased the performance accuracies in odor-cued go/no-go discrimination tasks. Taken together, these studies provided detailed information about the projections of different BFCN subpopulations and revealed that the HMSc-dHIP cholinergic circuit plays a crucial role in regulating olfactory associative learning.


Asunto(s)
Prosencéfalo Basal , Prosencéfalo Basal/metabolismo , Colina O-Acetiltransferasa/metabolismo , Colinérgicos , Neuronas Colinérgicas/metabolismo , Hipocampo/metabolismo , Olfato/fisiología
18.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361595

RESUMEN

As powerful tools for local gene delivery, adeno-associated viruses (AAVs) are widely used for neural circuit studies and therapeutical purposes. However, most of them have the characteristics of large diffusion range and retrograde labeling, which may result in off-target transduction during in vivo application. Here, in order to achieve precise gene delivery, we screened AAV serotypes that have not been commonly used as gene vectors and found that AAV13 can precisely transduce local neurons in the brain, with a smaller diffusion range than AAV2 and rigorous anterograde labeling. Then, AAV13-based single-viral and dual-viral strategies for sparse labeling of local neurons in the brains of C57BL/6 or Cre transgenic mice were developed. Additionally, through the neurobehavioral test in the ventral tegmental area, we demonstrated that AAV13 was validated for functional monitoring by means of carrying Cre recombinase to drive the expression of Cre-dependent calcium-sensitive indicator. In summary, our study provides AAV13-based toolkits for precise local gene delivery, which can be used for in situ small nuclei targeting, sparse labeling and functional monitoring.


Asunto(s)
Dependovirus , Vectores Genéticos , Animales , Ratones , Ratones Endogámicos C57BL , Dependovirus/metabolismo , Vectores Genéticos/genética , Técnicas de Transferencia de Gen , Ratones Transgénicos , Transducción Genética
19.
J Neurosci ; 40(10): 2025-2037, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31980587

RESUMEN

Plastic change in neuronal connectivity is the foundation of memory encoding. It is not clear whether the changes during anesthesia can alter subsequent behavior. Here, we demonstrated that in male rodents under anesthesia, a visual stimulus (VS) was associated with electrical stimulation of the auditory cortex or natural auditory stimulus in the presence of cholecystokinin (CCK), which guided the animals' behavior in a two-choice auditory task. Auditory neurons became responsive to the VS after the pairings. Moreover, high-frequency stimulation of axon terminals of entorhinal CCK neurons in the auditory cortex enabled LTP of the visual response in the auditory cortex. Such pairing during anesthesia also generated VS-induced freezing in an auditory fear conditioning task. Finally, we verified that direct inputs from the entorhinal CCK neurons and the visual cortex enabled the above neural plasticity in the auditory cortex. Our findings suggest that CCK-enabled visuoauditory association during anesthesia can be translated to the subsequent behavior action.SIGNIFICANCE STATEMENT Our study provides strong evidence for the hypothesis that cholecystokinin plays an essential role in the formation of cross-modal associative memory. Moreover, we demonstrated that an entorhinal-neocortical circuit underlies such neural plasticity, which will be helpful to understand the mechanisms of memory formation and retrieval in the brain.


Asunto(s)
Colecistoquinina/metabolismo , Corteza Entorrinal/fisiología , Memoria/fisiología , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Estimulación Acústica , Anestesia , Animales , Aprendizaje por Asociación/fisiología , Corteza Auditiva/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Estimulación Luminosa , Ratas , Ratas Sprague-Dawley , Corteza Visual/fisiología
20.
J Neurochem ; 156(6): 1020-1032, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32785947

RESUMEN

Propofol is the most common intravenous anesthetic agent for induction and maintenance of anesthesia, and has been used clinically for more than 30 years. However, the mechanism by which propofol induces loss of consciousness (LOC) remains largely unknown. The adenosine A2A receptor (A2A R) has been extensively proven to have an effect on physiological sleep. It is, therefore, important to investigate the role of A2A R in the induction of LOC using propofol. In the present study, the administration of the highly selective A2A R agonist (CGS21680) and antagonist (SCH58261) was utilized to investigate the function of A2A R under general anesthesia induced by propofol by means of animal behavior studies, resting-state magnetic resonance imaging and c-Fos immunofluorescence staining approaches. Our results show that CGS21680 significantly prolonged the duration of LOC induced by propofol, increased the c-Fos expression in nucleus accumbens (NAc) and suppressed the functional connectivity of NAc-dorsal raphe nucleus (DR) and NAc-cingulate cortex (CG). However, SCH58261 significantly shortened the duration of LOC induced by propofol, decreased the c-Fos expression in NAc, increased the c-Fos expression in DR, and elevated the functional connectivity of NAc-DR and NAc-CG. Collectively, our findings demonstrate the important roles played by A2A R in the LOC induced by propofol and suggest that the neural circuit between NAc-DR maybe controlled by A2A R in the mechanism of anesthesia induced by propofol.


Asunto(s)
Anestesia General , Anestésicos Intravenosos/farmacología , Propofol/farmacología , Receptor de Adenosina A2A/efectos de los fármacos , Inconsciencia/diagnóstico por imagen , Agonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/farmacología , Animales , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Genes fos/efectos de los fármacos , Giro del Cíngulo/efectos de los fármacos , Imagen por Resonancia Magnética , Núcleo Accumbens/efectos de los fármacos , Núcleos del Rafe/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Inconsciencia/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA