Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 160(4)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38270239

RESUMEN

Polymer infiltrated nanoporous gold is prepared by infiltrating polymer melts into a bicontinuous, nanoporous gold (NPG) scaffold. Polystyrene (PS) films with molecular weights (Mw) from 424 to 1133 kDa are infiltrated into a NPG scaffold (∼120 nm), with a pore radius (Rp) and pore volume fraction of 37.5 nm and 50%, respectively. The confinement ratios (Γ=RgRp) range from 0.47 to 0.77, suggesting that the polymers inside the pores are moderately confined. The time for PS to achieve 80% infiltration (τ80%) is determined using in situ spectroscopic ellipsometry at 150 °C. The kinetics of infiltration scales weaker with Mw, τ80%∝Mw1.30±0.20, than expected from bulk viscosity Mw3.4. Furthermore, the effective viscosity of the PS melt inside NPG, inferred from the Lucas-Washburn model, is reduced by more than one order of magnitude compared to the bulk. Molecular dynamics simulation results are in good agreement with experiments predicting scaling as Mw1.4. The reduced dependence of Mw and the enhanced kinetics of infiltration are attributed to a reduction in chain entanglement density during infiltration and a reduction in polymer-wall friction with increasing polymer molecular weight. Compared to the traditional approach involving adding discrete particles into the polymer matrix, these studies show that nanocomposites with higher loading can be readily prepared, and that kinetics of infiltration are faster due to polymer confinement inside pores. These films have potential as actuators when filled with stimuli-responsive polymers as well as polymer electrolyte and fuel cell membranes.

2.
Microsc Microanal ; 29(5): 1557-1565, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37639375

RESUMEN

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a versatile surface-sensitive technique for characterizing both hard and soft matter. Its chemical and molecular specificity, high spatial resolution, and superior sensitivity make it an ideal method for depth profiling polymeric systems, including those comprised of both inorganic and organic constituents (i.e., polymer nanocomposites, PNCs). To best utilize ToF-SIMS for characterizing PNCs, experimental conditions must be optimized to minimize challenges such as the matrix effect and charge accumulation. Toward that end, we have successfully used ToF-SIMS with a Xe+ focused ion beam to depth profile silica nanoparticles grafted with poly(methyl methacrylate) (PMMA-NP) in a poly(styrene-ran-acrylonitrile) matrix film by selecting conditions that address charge compensation and the primary incident beam angles. By tracking the sputtered Si+ species and fitting the resultant concentration profile, the diffusion coefficient of PMMA-NP was determined to be D = 2.4 × 10-14 cm2/s. This value of D lies between that measured using Rutherford backscattering spectrometry (6.4 × 10-14 cm2/s) and the value predicted by the Stokes-Einstein model (2.5 × 10-15 cm2/s). With carefully tuned experimental parameters, ToF-SIMS holds great potential for quantitatively characterizing the nanoparticles at the surfaces and interfaces within PNC materials as well as soft matter in general.

3.
Biomacromolecules ; 23(6): 2697-2712, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35486708

RESUMEN

Biofouling is a major disruptive process affecting the fuel efficiency and durability of maritime vessel coatings. Previous research has shown that amphiphilic coatings consisting of a siloxane backbone functionalized with hydrophilic moieties are effective marine antifouling and fouling-release materials. Poly(ethylene glycol) (PEG) has been the primary hydrophilic component used in such systems. Recently, the morpholine group has emerged as a promising compact alternative in antifouling membranes but is yet to be studied against marine foulants. In this work, the use of morpholine moieties to generate amphiphilicity in a poly(dimethylsiloxane) (PDMS)-based antifouling and fouling-release coating was explored. Two separate coating sets were investigated. The first set examined the incorporation of an N-substituted morpholine amine, and while these coatings showed promising fouling-release properties for Ulva linza, they had unusually high settlement of spores compared to controls. Based on those results, a second set of materials was synthesized using an N-substituted morpholine amide to probe the source of the high settlement and was found to significantly improve antifouling performance. Both coating sets included PEG controls with varying lengths to compare the viability of the morpholine structures as alternative hydrophilic groups. Surfaces were evaluated through a combination of bubble contact angle goniometry, profilometry, X-ray photoelectron spectroscopy (XPS), and marine bioassays against two soft fouling species, U. linza and Navicula incerta, known to have different adhesion characteristics.


Asunto(s)
Incrustaciones Biológicas , Diatomeas , Ulva , Incrustaciones Biológicas/prevención & control , Morfolinas , Polietilenglicoles/química , Propiedades de Superficie
4.
J Contam Hydrol ; 261: 104290, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38176293

RESUMEN

Quantitative forecasts of acid mine drainage (AMD) production are important for remediation planning. Reactive transport simulations corresponding to a detailed sampling location at a covered legacy tailings impoundment in northern Ontario, Canada, were conducted to quantitatively assess the predominant hydrogeochemical reactions. The simulations span the period from the end of tailings deposition (circa 1970) to early 2020, 12 years after remediation by a five-layer composite cover. The conceptual model of uncovered tailings weathering and subsequent geochemistry of the covered tailings system was implemented in 1D using the multi-component reactive transport code MIN3P. Transient monthly infiltration, post-cover boundary condition changes, and a dynamic temperature regime were incorporated. The shrinking core model, including parallel O2(aq) and Fe3+ oxidation reactions for the waste rock in the cover and the underlying tailings, was implemented to simulate the oxidation of As-bearing pyrite, chalcopyrite, and sphalerite. Primary carbonate and aluminosilicate host minerals promoted acid-neutralization reactions. Precipitation of secondary phases and sorption/desorption of Cu, Zn, and arsenite were incorporated into the model. The overall agreement between key simulated and field-measured post-cover aqueous geochemical parameters suggests that the conceptual model captured the primary hydrogeochemical processes in the covered tailings. A lack of reliable data on initial tailings mineralogy and pre-cover hydrogeochemistry increased simulation uncertainty. Simulated reaction rates indicate that where intact, the cover decreased sulfide oxidation rates by both O2(aq) and Fe3+ and improved pore-water quality over time. Simulation results indicate that elevated concentrations of Zn and As are likely to persist in the tailings regardless of cover performance, whereas concentrations of Cu and Al are the parameters most sensitive to cover effectiveness.


Asunto(s)
Minerales , Sulfuros , Minerales/análisis , Oxidación-Reducción , Ontario
5.
ACS Appl Mater Interfaces ; 15(8): 10974-10985, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36802474

RESUMEN

Using a model system of poly(methyl methacrylate)-grafted silica nanoparticles (PMMA-NP) and poly(styrene-ran-acrylonitrile) (SAN), we generate unique polymer nanocomposite (PNC) morphologies by balancing the degree of surface enrichment, phase separation, and wetting within the films. Depending on the annealing temperature and time, thin films undergo different stages of phase evolution, resulting in homogeneously dispersed systems at low temperatures, enriched PMMA-NP layers at the PNC interfaces at intermediate temperatures, and three-dimensional bicontinuous structures of PMMA-NP pillars sandwiched between two PMMA-NP wetting layers at high temperatures. Using a combination of atomic force microscopy (AFM), AFM nanoindentation, contact angle goniometry, and optical microscopy, we show that these self-regulated structures lead to nanocomposites with increased elastic modulus, hardness, and thermal stability compared to analogous PMMA/SAN blends. These studies demonstrate the ability to reliably control the size and spatial correlations of both the surface-enriched and phase-separated nanocomposite microstructures, which have attractive technological applications where properties such as wettability, toughness, and wear resistance are important. In addition, these morphologies lend themselves to substantially broader applications, including: (1) structural color applications, (2) tuning optical adsorption, and (3) barrier coatings.

6.
J Colloid Interface Sci ; 614: 522-531, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35121510

RESUMEN

Polymer and small molecules are often used to modify the wettability of mineral surfaces which facilitates the separation of valuable minerals such as molybdenum disulfide (MoS2) from gangue material through the process of froth flotation. By design, traditional methods used in the field for evaluating the separation efficacy of these additives fail to give proper access to adsorption kinetics and molecule conformation, crucial aspects of flotation where contact times may not allow for full thermodynamic equilibrium. Thus, there is a need for alternative methods for evaluating additives that accurately capture these features during the adsorption of additives at the solid/liquid interface. Here, we present a novel method for preparing MoS2 films on quartz crystals used for Quartz Crystal Microbalance with Dissipation (QCM-D) measurements through an electrochemical deposition process. The resulting films exhibit well-controlled structure, composition, and thickness and therefore are ideal for quantifying polymer adsorption. After deposition, the sensors can be annealed without damaging the quartz crystal, resulting in a phase transition of the MoS2 from the as-deposited, amorphous phase to the 2H semiconducting phase. Furthermore, we demonstrate the application of these sensors to study the interactions of additives at the solid/liquid interface by investigating the adsorption of a model polymer, dextran, onto both the amorphous and crystalline MoS2 surfaces. We find that the adsorption rate of dextran onto the amorphous surface is approximately twice as fast as the adsorption onto the annealed surface. These studies demonstrate the ability to gain insight into the short-term kinetics of interaction between molecules and mineral surface, behavior that is key to designing additives with superior separation efficiency.

7.
ACS Appl Mater Interfaces ; 13(24): 28790-28801, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34105932

RESUMEN

The buildup of organic matter and organisms on surfaces exposed to marine environments, known as biofouling, is a disruptive and costly process affecting maritime operations. Previous research has identified some of the surface characteristics particularly suited to the creation of antifouling and fouling-release surfaces, but there remains room for improvement against both macrofouling and microfouling organisms. Characterization of their adhesives has shown that many rely on oxidative chemistries. In this work, we explore the incorporation of the stable radical 2,2,6,6-tetramethylpipiderin-1-oxyl (TEMPO) as a component in an amphiphilic block copolymer system to act as an inhibitor for marine cements, disrupting adhesion of macrofouling organisms. Using polystyrene-b-poly(dimethylsiloxane-r-vinylmethysiloxane) block copolymers, pendent vinyl groups were functionalized with TEMPO and poly(ethylene glycol) to construct an amphiphilic material with redox active character. The antifouling and fouling-release performance of these materials was investigated through settlement and removal assays of three model fouling organisms and correlated to surface structure and chemistry. Surfaces showed significant antifouling character and fouling-release performance was increased substantially toward barnacles by the incorporation of stable radicals, indicating their potential for marine antifouling applications.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Óxidos N-Cíclicos/química , Poliestirenos/química , Siliconas/química , Animales , Óxidos N-Cíclicos/síntesis química , Diatomeas/fisiología , Poliestirenos/síntesis química , Siliconas/síntesis química , Thoracica/fisiología , Ulva/fisiología , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA