Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Small ; 19(28): e2301685, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37010021

RESUMEN

Li-CO2 batteries have attracted considerable attention for their advantages of CO2 fixation and high energy density. However, the sluggish dynamics of CO2 reduction/evolution reactions restrict the practical application of Li-CO2 batteries. Herein, a dual-functional Mo2 N-ZrO2 heterostructure engineering in conductive freestanding carbon nanofibers (Mo2 N-ZrO2 @NCNF) is reported. The integration of Mo2 N-ZrO2 heterostructure in porous carbons provides the opportunity to simultaneously accelerate electron transport, boost CO2 conversion, and stabilize intermediate discharge product Li2 C2 O4 . Benefiting from the synchronous advantages, the Mo2 N-ZrO2 @NCNF catalyst endows the Li-CO2 batteries with excellent cycle stability, good rate capability, and high energy efficiency even under high current densities. The designed cathodes exhibit an ultrahigh energy efficiency of 89.8% and a low charging voltage below 3.3 V with a potential gap of 0.32 V. Remarkably, stable operation over 400 cycles can be achieved even at high current densities of 50 µA cm-2 . This work provides valuable guidance for developing multifunctional heterostructured catalysts to upgrade longevity and energy efficiency of Li-CO2 batteries.

2.
Acc Chem Res ; 55(24): 3752-3766, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36454588

RESUMEN

Hydrogen-bonded organic framework (HOF) materials have provided a new dimension and bright promise as a new platform for developing multifunctional materials. They can be readily self-assembled from their corresponding organic molecules with diverse functional sites such as carboxylic acid and amine groups for their hydrogen bonding and aromatic ones for their weak π···π interactions to stabilize the frameworks. Compared with those established porous materials such as zeolites, metal-organic frameworks (MOFs), and covalent-organic frameworks (COFs), it is much more difficult to stabilize HOFs and thus establish their permanent porosities given the fact that hydrogen bonds are typically weaker than ionic, coordination, and covalent bonds. But it provides the uniqueness of HOF materials in which they can be easily recovered and regenerated through simple recrystallization. HOF materials can also be easily and straightforwardly processed and very compatible with the biomolecules, making them potentially very useful materials for industrial and biomedical applications. The reversible and weak bonding nature of the hydrogen bonds can be readily utilized to construct flexible porous HOF materials in which we can tune the temperature and pressure to control their porosities and, thus, their diverse applications, for example, on gas separations, gas storage, drug delivery, and sensing. Some specific organic functional groups are quite directional for the hydrogen bond formations; for example, carboxylic acid prefers to form a directional dimer, which has enabled us to readily construct reticular porous HOF materials whose pores can be systematically tuned. In this Account, we outline our journey of exploring this new type of porous material by establishing one of the first porous HOFs in 2011 and thus developing its diverse applications. We have been able to use organic molecules with different functional sites, including 2,4-diaminotriazine (DAT), carboxylic acid (COOH), aldehyde (CHO), and cyano (CN), to construct porous HOFs. Through tuning the pore sizes, introducing specific binding sites, and making use of the framework flexibility, we have realized a series of HOF materials for the gas separations of C2H2/C2H4, C2H4/C2H6, C3H6/C3H8, C2H2/CO2, CO2/N2, and Xe/Kr and enantioselective separation of alcohols. To make use of optically active organic molecules, we have developed HOF materials for their luminescent sensing and optical lasing. Our research endeavors on multifunctional HOF materials have initiated extensive research in this emerging research topic among chemistry and materials sciences communities. We foresee that not only many more HOF materials will be developed but novel functions will be fulfilled beyond our imaginations soon.


Asunto(s)
Dióxido de Carbono , Estructuras Metalorgánicas , Enlace de Hidrógeno , Aldehídos , Ácidos Carboxílicos , Hidrógeno
3.
Chemistry ; 29(22): e202204045, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36705000

RESUMEN

Hydrogen-bonded organic frameworks (HOFs) have shown great potential in separation, sensing and host-guest chemistry, however, the pre-design of HOFs remains challenging due to the uncertainty of solvents' participation in framework formation. Herein, the polarity-evolution-controlled framework/luminescence regulation is demonstrated based on multiple-site hydrogen-bonded organic frameworks. Several distinct HOFs were prepared by changing bonding modes of building units via the evolution of electrostatic forces induced by various solvent polarities. High-polar solvents with strong electrostatic attraction to surrounding units showed the tendency to form cage structures, while low-polar solvents with weak electrostatic attraction only occupy hydrogen-bond sites, conducive to the channel formation. Furthermore, the conformation of optical building unit can be adjusted by affecting the solvent polarity, generating different luminescence outputs. These results pave the way for the rational design of ideal HOFs with on-demand framework regulation and luminescence properties.

4.
Angew Chem Int Ed Engl ; 62(52): e202315987, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37961032

RESUMEN

Hydrogen-bonded organic frameworks (HOFs) have been emerging as a new type of very promising microporous materials for gas separation and purification, but few HOFs structures constructed through hydrogen-bonding tetramers have been explored in this field. Herein, we report the first microporous HOF (termed as HOF-FJU-46) afforded by hydrogen-bonding tetramers with 4-fold interpenetrated diamond networks, which shows excellent chemical and thermal stability. What's more, activated HOF-FJU-46 exhibits the highest xenon (Xe) uptake of 2.51 mmol g-1 and xenon/krypton (Kr) selectivity of 19.9 at the ambient condition among the reported HOFs up to date. Dynamic breakthrough tests confirmed the excellent Xe/Kr separation of HOF-FJU-46a, showing high Kr productivity (110 mL g-1 ) and Xe uptake (1.29 mmol g-1 ), as well as good recyclability. The single crystal X-ray diffraction and the molecular simulations revealed that the abundant accessible aromatic and pyrazole rings in the pore channels of HOF-FJU-46a can provide the multiple strong C-H⋅⋅⋅Xe interactions with Xe atoms.

5.
Angew Chem Int Ed Engl ; 62(34): e202308418, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37401627

RESUMEN

Rational design of crystalline porous materials with coupled proton-electron transfer has not yet been reported to date. Herein, we report a donor-acceptor (D-A) π-π stacking hydrogen-bonded organic framework (HOF; HOF-FJU-36) with zwitterionic 1,1'-bis(3-carboxybenzyl)-4,4'-bipyridinium (H2 L2+ ) as acceptor and 2,7-naphthalene disulfonate (NDS2- ) as donor to form a two-dimensional (2D) layer. Three water molecules were situated in the channels to connect with acidic species through hydrogen bonding interactions to give a 3D framework. The continuous π-π interactions along the a axis and the smooth H-bonding chain along the b axis provide the electron and proton transfer pathways, respectively. After 405 nm light irradiation, the photogenerated radicals could simultaneously endow HOF-FJU-36 with photoswitchable electron and proton conductivity due to coupled electron-proton transfer. By single-crystal X-ray diffraction (SCXRD) analyses, X-ray photoelectron spectroscopy (XPS), transient absorption spectra and density functional theory (DFT) calculations, the mechanism of the switchable conductivity upon irradiation has been demonstrated.

6.
Angew Chem Int Ed Engl ; 62(39): e202311419, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37563095

RESUMEN

The separation of acetylene (C2 H2 ) from carbon dioxide (CO2 ) is a very important but challenging task due to their similar molecular dimensions and physical properties. In terms of porous adsorbents for this separation, the CO2 -selective porous materials are superior to the C2 H2 -selective ones because of the cost- and energy-efficiency but have been rarely achieved. Herein we report our unexpected discovery of the first hydrogen bonded organic framework (HOF) constructed from a simple organic linker 2,4,6-tri(1H-pyrazol-4-yl)pyridine (PYTPZ) (termed as HOF-FJU-88) as the highly CO2 -selective porous material. HOF-FJU-88 is a two-dimensional HOFs with a pore pocket of about 7.6 Å. The activated HOF-FJU-88 takes up a high amount of CO2 (59.6 cm3 g-1 ) at ambient conditions with the record IAST selectivity of 1894. Its high performance for the CO2 /C2 H2 separation has been further confirmed through breakthrough experiments, in situ diffuse reflectance infrared spectroscopy and molecular simulations.

7.
Angew Chem Int Ed Engl ; 62(10): e202216710, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36597172

RESUMEN

High-purity ethanol is a promising renewable energy resource, however separating ethanol from trace amount of water is extremely challenging. Herein, two ultramicroporous MOFs (UTSA-280 and Co-squarate) were used as adsorbents. A prominent water adsorption and a negligible ethanol adsorption identify perfect sieving effect on both MOFs. Co-squarate exhibits a surprising water adsorption capacity at low pressure that surpassing the reported MOFs. Single crystal X-ray diffraction and theoretical calculations reveal that such prominent performance of Co-squarate derives from the optimized sieving effect through pore structure adjustment. Co-squarate with larger rhombohedral channel is suitable for zigzag water location, resulting in reinforced guest-guest and guest-framework interactions. Ultrapure ethanol (99.9 %) can be obtained directly by ethanol/water mixed vapor breaking through the columns packed with Co-squarate, contributing to a potential for fuel-grade ethanol purification.

8.
Angew Chem Int Ed Engl ; 62(45): e202311480, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37725404

RESUMEN

Elaborately designed multifunctional electrocatalysts capable of promoting Li+ and CO2 transport are essential for upgrading the cycling stability and rate capability of Li-CO2 batteries. Hydrogen-bonded organic frameworks (HOFs) with open channels and easily functionalized surfaces hold great potential for applications in efficient cathodes of Li-CO2 batteries. Herein, a robust HOFS (HOF-FJU-1) is introduced for the first time as a co-catalyst in the cathode material of Li-CO2 batteries. HOF-FJU-1 with cyano groups located periodically in the pore can induce homogeneous deposition of discharge products and accommodate volumetric expansion of discharge products during cycling. Besides, HOF-FJU-1 enables effective interaction between Ru0 nanoparticles and cyano groups, thus forming efficient and uniform catalytic sites for CRR/CER. Moreover, HOF-FJU-1 with regularly arranged open channels are beneficial for CO2 and Li+ transport, enabling rapid redox kinetic conversion of CO2 . Therefore, the HOF-based Li-CO2 batteries are capable of stable operation at 400 mA g-1 for 1800 h and maintain a low overpotential of 1.96 V even at high current densities up to 5 A g-1 . This work provides valuable guidance for developing multifunctional HOF-based catalysts to upgrade the longevity and rate capability of Li-CO2 batteries.

9.
Angew Chem Int Ed Engl ; 62(13): e202300638, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36726350

RESUMEN

Rational design of high nuclear copper cluster-based metal-organic frameworks has not been established yet. Herein, we report a novel MOF (FJU-112) with the ten-connected tetranuclear copper cluster [Cu4 (PO3 )2 (µ2 -H2 O)2 (CO2 )4 ] as the node which was capped by the deprotonated organic ligand of H4 L (3,5-Dicarboxyphenylphosphonic acid). With BPE (1,2-Bis(4-pyridyl)ethane) as the pore partitioner, the pore spaces in the structure of FJU-112 were divided into several smaller cages and smaller windows for efficient gas adsorption and separation. FJU-112 exhibits a high separation performance for the C2 H2 /CO2 separation, which were established by the temperature-dependent sorption isotherms and further confirmed by the lab-scale dynamic breakthrough experiments. The grand canonical Monte Carlo simulations (GCMC) studies show that its high C2 H2 /CO2 separation performance is contributed to the strong π-complexation interactions between the C2 H2 molecules and framework pore surfaces, leading to its more C2 H2 uptakes over CO2 molecules.

10.
J Am Chem Soc ; 144(37): 17033-17040, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36069372

RESUMEN

Propane/propylene separation is one of the most challenging and energy-consuming but most important tasks in the petrochemical industry. Herein, a stable hydrogen-bonded organic framework (HOF-FJU-1) was tailor-made for highly efficient propylene separation from binary C3H6/C3H8 and even seven component CH4/C2H4/C2H6/C3H6/C3H8/CO2/H2 mixtures. The temperature-controllable diffusion channels in HOF-FJU-1 have enabled the porous material to completely exclude propane to reach high-performance propylene purification under energy-efficient operation conditions. Single-crystal structural analysis revealed that the well-matched pore aperture of HOF-FJU-1 can exactly accommodate propylene molecules via multiple intermolecular interactions, exhibiting a very high propylene/propane selectivity of 616 at 333 K. The propylene purity and productivity are over 99.5% and 30.2 L kg-1 from the binary C3H6/C3H8 (50/50) mixture at 333 K. Through a follow-up column separation of C3H6/C2H4 at 353 K, not only high-purity propylene (99.5%) but also ethylene (98.3%) can be readily collected from the seven component CH4/C2H4/C2H6/C3H6/C3H8/CO2/H2 (31/10/25/10/10/1/13) cracking gas mixtures. The great potential of HOF-FJU-1 for the industrial propylene separation process has been further supported by the high stability of this porous material under different environments and straightforward processibility and regeneration feasibility.


Asunto(s)
Dióxido de Carbono , Propano , Alquenos , Etilenos , Hidrógeno , Propano/química
11.
Acc Chem Res ; 54(17): 3362-3376, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34399577

RESUMEN

Achieving high performance functional materials has been a long-term goal for scientists and engineers that can significantly promote science and technology development and thus benefit our society and human beings. As well-known porous materials, metal-organic frameworks (MOFs) are crystalline open frameworks made up of molecular building blocks linked by strong coordination bonds, affording pore space for storing and trapping guest molecules. In terms of porosity, MOFs outperform traditional porous materials including zeolites and activated carbon, showing exceptional porosity with internal surface area up to thousands of square meters per gram of sample and with periodic pore sizes ranging from sub-nanometer to nanometers. Numerous MOFs have been synthesized with potential applications ranging from storing gaseous fuels to separating intractable industrial gas mixtures, sensing physical and chemical stimulus, and transmitting protons for conduction. Compared to traditional porous materials, MOFs are distinguished for their exceptional capability for pore adjustment and interior modification through pore engineering, which have made them a preeminent platform for exploring functional materials with high performance.Rational combinations of rigid building units of different geometry and multibranched organic linkers have provided MOFs with diverse pore structures, ranging from spherical to cylindrical, slit, and tubular ones isolating or interconnecting in different directions, which can be optimized for high-capacity gas storage. Based on the isoreticular principle and building blocks approach in MOF chemistry, the pore adjustment of porous materials can be performed with exquisite precision, making them suitable to address industrially important gas separation. The large pore cavities in MOFs are readily available for encapsulation of different functional guest species, resulting in novel MOF composite materials with various functions.In this Account, we summarize our recent research progress on pore engineering to achieve high-performance MOF materials. We have been able to tune and optimize pore structures, immobilize specific functional sites, and incorporate guest species into target MOF materials for hydrogen storage, methane storage, light-hydrocarbon purification, and proton conduction, especially for various industrially important gas separations including acetylene removal and ethylene and propylene purification. By engineering the porosity and pore chemistry that endows MOFs with multiple functionalities, our research endeavors have brought about the customization of high-performance MOF materials for corresponding application scenarios.

12.
Chemistry ; 28(42): e202200422, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35413155

RESUMEN

The construction of hydrogen-bonded organic framework materials by intermolecular hydrogen bonding forces has been rapidly developed in the last decade, among which, the strong intermolecular hydrogen bonding and functional binding sites exhibited by nitrogen-containing functional groups have made them favorites for designing organic components to customize functionalized porous materials. This review systematically introduces the types of nitrogen-containing monomers used to prepare porous hydrogen-bonded organic backbones and the principles of their construction, summarizes the design advantages of crystalline materials from an elemental perspective, and presents the applications of such HOFs in the fields of gas adsorption/separation, molecular recognition, plasmonic conductivity, biomedical, and luminescent materials, etc. Finally, the prospects for the development of such materials are discussed and potential directions for future work are analyzed.


Asunto(s)
Hidrógeno , Nitrógeno , Adsorción , Hidrógeno/química , Enlace de Hidrógeno , Luminiscencia
13.
Inorg Chem ; 61(46): 18789-18794, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36350982

RESUMEN

Developing smart stimuli-responsive metal-organic frameworks (MOFs) with diversified induced readable signals is highly desirable; however, reported multimode responsive MOFs are always achieved under strong environmental stimulations, making it difficult to keep MOF structures stable for practical applications. Herein, we reported a hydration-facilitated coordination tuning strategy to achieve the dual-mode water response in fluorescence and proton conduction from a single MOF. The designed MOF permitted reversible single-crystal transformation via the controllable hydration effect on metal nodes. The change in coordination modes leads to the regulation on conformations of optical ligands, contributing to the switch of fluorescence emissions. Moreover, the hydration effect adds additional hydrogen-bond sites in channels and optimizes hydrogen-bond networks, abruptly enhancing the proton conductivity by ∼20 times. These results pave new avenues for the exploitation of smart MOFs with multimode responsive behavior for on-demand sensing/detection applications.

14.
Angew Chem Int Ed Engl ; 61(43): e202207579, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-35833470

RESUMEN

The separation of C2 H2 /CO2 is not only industrially important for acetylene purification but also great scientific challenge due to their very similar molecular size and physical properties. To address this difficulty, herein, we present an ultramicroporous hydrogen-bonded organic framework (HOF-FJU-1) from tetracyano bicarbazole to separate C2 H2 from CO2 by taking advantage of differences in their electrostatic potential distribution. This material possesses a suitable pore environment and electrostatic potential distribution fitting well to C2 H2 , thus showing extra strong affinity to C2 H2 (46.73 kJ mol-1 ) and the highest IAST selectivity of 6675 for C2 H2 /CO2 separation among the adsorbents reported. The single crystal X-ray diffraction reveals that the suitable pore environment in HOF-FJU-1 provides multiple C-H⋅⋅⋅π and hydrogen-bonded interactions N⋅⋅⋅H-C with C2 H2 molecules. Dynamic breakthrough experiments demonstrate its outstanding separation performance to C2 H2 /CO2 mixtures.

15.
Angew Chem Int Ed Engl ; 61(51): e202213959, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36259375

RESUMEN

Rational design of hydrogen-bonded organic frameworks (HOFs) with multiple functionalities is highly sought after but challenging. Herein, we report a multifunctional HOF (HOF-FJU-2) built from 4,4',4'',4'''-(9H-carbazole-1,3,6,8-tetrayl)tetrabenzaldehyde molecule with tetrabenzaldeyde for their H bonding interactions and carbazole N-H site for its specific recognition of small molecules. The Lewis acid N-H sites allow HOF-FJU-2 facilely separate acetone from its mixture with another solvent like methanol with smaller pKa value. The donor (D)-π-acceptor (A) aromatic nature of the organic building molecule endows this HOF with solvent dependent luminescent/chromic properties, so the column acetone/methanol separation on HOF-FJU-2 can be readily visualized.


Asunto(s)
Acetona , Metanol , Sitios de Unión , Solventes , Hidrógeno
16.
Chemistry ; 27(10): 3297-3301, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33283908

RESUMEN

MOF-based one-dimensional materials have received increasing attention in the nanophotonics field, but it is still difficult in the flexible shape evolution of MOF micro/nanocrystals for desired optical functionalities due to the susceptible solvothermal growth process. Herein, we report on the well-controlled shape evolution of pure-MOF microcrystals with optical waveguide and lasing performances based on a bottom-up and top-down synergistic method. The MOF microcrystals from solvothermal synthesis (bottom-up) enable the evolution from microrods via microtubes to nanowires through a chelating agent-assisted etching process (top-down). The three types of MOF 1D-microstructures with high crystallinity and smooth surfaces all exhibit efficient optical waveguide performance. Furthermore, MOF nanowire with lowest propagation loss served as low-threshold pure-MOF nanolasers with Fabry-Pérot resonance. These results advance the fundamental understanding on the controlled MOF evolution mechanism, and offer a valuable route for the development of pure-MOF-based photonic components with desired functionalities.

17.
Nano Lett ; 20(3): 2020-2025, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32083875

RESUMEN

Metal-organic frameworks (MOFs) are an emerging kind of laser material, yet they remain a challenge in the controlled fabrication of crystal nanostructures with desired morphology for tuning their optical microcavities. Herein, the shape-engineering of pure MOF microlasers was demonstrated based on the coordination-mode-tailored method. The one-dimensional (1D) microwires and 2D microplates were selectively fabricated through changing the HCl concentration to tailor the coordination modes. Both the single-crystalline microwires and microplates with strong optical confinement functioned as low-threshold MOF microlasers. Moreover, distinct lasing behaviors of 1D and 2D MOF microcrystals confirm a typical shape-dependent microcavity effect: 1D microwires serve as Fabry-Pérot (FP) resonators, and 2D microplates lead to the whispering-gallery-mode (WGM) microcavities. These results provide a special pathway for the exploitation of MOF-based micro/nanolasers with on-demand functions.

18.
Angew Chem Int Ed Engl ; 60(23): 12949-12954, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33759317

RESUMEN

Ag nanoclusters have received increasing attention due to their atomically precise and diverse structures and intriguing optical properties. Nevertheless, the inherent instability of Ag nanoclusters has seriously hindered their practical application. In this work, for the first time, Ag clusters are collaboratively protected by hydrophobic Ti-oxo clusters and alkyne ligands. Initially, a pyramidal Ag5 cluster terminated with t BuC≡C- and CH3 CN was inserted into the cavity of a Ti8 -oxo nanoring to form Ag5 @Ti8 . To overcome the instability of acetonitrile-terminated silver site, such two Ag5 @Ti8 clusters could sandwich an Ag4 unit to form Ag14 -nanorod@Ti16 -oxo-nanoring (Ag14 @Ti16 ), which is peripherally protected by fluorophenyl groups and alkyne caps. This threefold protected (hydrophobic fluorinated organic layer, Ti-O shell, and terminal alkyne ligands) Ag14 @Ti16 exhibits superhydrophobicity and excellent ambient stability, endowing it with solid-state optical limiting characteristics.

19.
J Am Chem Soc ; 142(34): 14399-14416, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32786796

RESUMEN

As a novel class of porous crystalline materials, hydrogen-bonded organic frameworks (HOFs), self-assembled from organic or metal-organic building blocks through intermolecular hydrogen-bonding interactions, have attracted more and more attention. Over the past decade, a number of porous HOFs have been constructed through judicious selection of H-bonding motifs, which are further enforced by other weak intermolecular interactions such as π-π stacking and van der Waals forces and framework interpenetration. Since the H-bonds are weaker than coordinate and covalent bonds used for the construction of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), HOFs have some unique features such as mild synthesis condition, solution processability, easy healing, and regeneration. These features enable HOFs to be a tunable platform for the construction of functional materials. Here, we review the H-bonding motifs used for constructing porous HOFs and highlight some of their applications, including gas separation and storage, chiral separation and structure determination, fluorescent sensing, heterogeneous catalysis, biological applications, proton conduction, photoluminescent materials, and membrane-based applications.

20.
J Am Chem Soc ; 142(20): 9258-9266, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32336085

RESUMEN

Introducing multiclusters and multiligands (mm) in a well-defined array will greatly increase the diversity of metal-organic frameworks (MOFs). Here, a series of porous mm-MOFs constructed from a pillared-layer and pore-space partition (PL-PSP) have been achieved. FJU-6 with {Co3}-cluster-based sheets and {Co6}-cluster-based pillars exhibits new (3,9,12)-connected llz topology. By using the substituted analogues of the ligands and metal ions, seven isoreticular mm-MOFs (FJU-6-X, X = PTB, TATB, Me-INA, F-INA, NDC, BrBDC, Ni) have been synthesized with the adjustable BET surface areas ranging from 731 to 1306 m2/g as well as the adsorption capacity of CO2 increasing by 77%. The C2H2/CO2 mixture can be effectively separated in the breakthrough experiments in the fixed bed filled with solid FJU-6-TATB at ambient temperature. In all, integrating pillared-layer strategy and pore-space partitioning is effective at constructing mm-MOFs with multivariate environments for the optimization of gas adsorption and separation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA