Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Genes Dev ; 31(6): 537-552, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28404629

RESUMEN

Rapid advances in genetics are linking mutations on genes to diseases at an exponential rate, yet characterizing the gene-mutation-cell-behavior relationships essential for precision medicine remains a daunting task. More than 350 mutations on small GTPase BRaf are associated with various tumors, and ∼40 mutations are associated with the neurodevelopmental disorder cardio-facio-cutaneous syndrome (CFC). We developed a fast cost-effective lentivirus-based rapid gene replacement method to interrogate the physiopathology of BRaf and ∼50 disease-linked BRaf mutants, including all CFC-linked mutants. Analysis of simultaneous multiple patch-clamp recordings from 6068 pairs of rat neurons with validation in additional mouse and human neurons and multiple learning tests from 1486 rats identified BRaf as the key missing signaling effector in the common synaptic NMDA-R-CaMKII-SynGap-Ras-BRaf-MEK-ERK transduction cascade. Moreover, the analysis creates the original big data unveiling three general features of BRaf signaling. This study establishes the first efficient procedure that permits large-scale functional analysis of human disease-linked mutations essential for precision medicine.


Asunto(s)
Sistema de Señalización de MAP Quinasas/genética , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Transmisión Sináptica/genética , Animales , Células Cultivadas , Enfermedad/genética , Femenino , Técnicas de Transferencia de Gen , Humanos , Lentivirus/genética , Masculino , Ratones Endogámicos C57BL , Neuronas/fisiología , Ratas Sprague-Dawley , Técnicas de Cultivo de Tejidos
2.
Genes Dev ; 29(14): 1535-51, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26220996

RESUMEN

CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.2 channels control NMDA-sensitive glutamatergic receptor (NMDA-R)-mediated transmission and subsequent NMDA-R-dependent plasticity of AMPA-R-mediated transmission at rat central synapses. Interestingly, functional CaV3.2 channels primarily incorporate into synapses, replace existing CaV3.2 channels, and can induce local calcium influx to control NMDA transmission strength in an activity-dependent manner. Moreover, human childhood absence epilepsy (CAE)-linked hCaV3.2(C456S) mutant channels have a higher channel open probability, induce more calcium influx, and enhance glutamatergic transmission. Remarkably, cortical expression of hCaV3.2(C456S) channels in rats induces 2- to 4-Hz spike and wave discharges and absence-like epilepsy characteristic of CAE patients, which can be suppressed by AMPA-R and NMDA-R antagonists but not T-type calcium channel antagonists. These results reveal an unexpected role of CaV3.2 channels in regulating NMDA-R-mediated transmission and a novel epileptogenic mechanism for human CAE.


Asunto(s)
Canales de Calcio/genética , Canales de Calcio/metabolismo , Epilepsia Tipo Ausencia/fisiopatología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Epilepsia Tipo Ausencia/genética , Regulación de la Expresión Génica , Humanos , Mutación , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Sinapsis/metabolismo
3.
J Neurosci ; 41(11): 2318-2328, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33627325

RESUMEN

Neuromodulatory communication among various neurons and non-neuronal cells mediates myriad physiological and pathologic processes, yet defining regulatory and functional features of neuromodulatory transmission remains challenging because of limitations of available monitoring tools. Recently developed genetically encoded neuromodulatory transmitter sensors, when combined with superresolution and/or deconvolution microscopy, allow the first visualization of neuromodulatory transmission with nanoscale or microscale spatiotemporal resolution. In vitro and in vivo experiments have validated several high-performing sensors to have the qualities necessary for demarcating fundamental synaptic properties of neuromodulatory transmission, and initial analysis has unveiled unexpected fine control and precision of neuromodulation. These new findings underscore the importance of synaptic dynamics in synapse-, subcellular-, and circuit-specific neuromodulation, as well as the prospect of genetically encoded transmitter sensors in expanding our knowledge of various behaviors and diseases, including Alzheimer's disease, sleeping disorders, tumorigenesis, and many others.


Asunto(s)
Acetilcolina/fisiología , Monoaminas Biogénicas/fisiología , Comunicación Celular/genética , Neuronas/fisiología , Neurotransmisores/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Humanos
4.
Mol Psychiatry ; 26(2): 443-455, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33277628

RESUMEN

Neural communication orchestrates a variety of behaviors, yet despite impressive effort, delineating transmission properties of neuromodulatory communication remains a daunting task due to limitations of available monitoring tools. Recently developed genetically encoded neurotransmitter sensors, when combined with superresolution and deconvolution microscopic techniques, enable the first micro- and nano-scopic visualization of neuromodulatory transmission. Here we introduce this image analysis method by presenting its biophysical foundation, practical solutions, biological validation, and broad applicability. The presentation illustrates how the method resolves fundamental synaptic properties of neuromodulatory transmission, and the new data unveil unexpected fine control and precision of rodent and human neuromodulation. The findings raise the prospect of rapid advances in the understanding of neuromodulatory transmission essential for resolving the physiology or pathogenesis of various behaviors and diseases.


Asunto(s)
Encéfalo , Neurotransmisores
5.
Genes Dev ; 28(3): 273-89, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24493647

RESUMEN

Fragile X syndrome, caused by the loss of Fmr1 gene function, is the most common form of inherited mental retardation, with no effective treatment. Using a tractable animal model, we investigated mechanisms of action of a few FDA-approved psychoactive drugs that modestly benefit the cognitive performance in fragile X patients. Here we report that compounds activating serotonin (5HT) subtype 2B receptors (5HT2B-Rs) or dopamine (DA) subtype 1-like receptors (D1-Rs) and/or those inhibiting 5HT2A-Rs or D2-Rs moderately enhance Ras-PI3K/PKB signaling input, GluA1-dependent synaptic plasticity, and learning in Fmr1 knockout mice. Unexpectedly, combinations of these 5HT and DA compounds at low doses synergistically stimulate Ras-PI3K/PKB signal transduction and GluA1-dependent synaptic plasticity and remarkably restore normal learning in Fmr1 knockout mice without causing anxiety-related side effects. These findings suggest that properly dosed and combined FDA-approved psychoactive drugs may effectively treat the cognitive impairment associated with fragile X syndrome.


Asunto(s)
Dopaminérgicos , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Aprendizaje/efectos de los fármacos , Serotoninérgicos , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Proteínas ras/metabolismo , Animales , Modelos Animales de Enfermedad , Dopaminérgicos/farmacología , Dopaminérgicos/uso terapéutico , Relación Dosis-Respuesta a Droga , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores AMPA/genética , Receptores AMPA/metabolismo , Serotoninérgicos/farmacología , Serotoninérgicos/uso terapéutico
7.
Proc Natl Acad Sci U S A ; 112(50): 15474-9, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26621723

RESUMEN

Protein Numb, first identified as a cell-fate determinant in Drosophila, has been shown to promote the development of neurites in mammals and to be cotransported with endocytic receptors in clathrin-coated vesicles in vitro. Nevertheless, its function in mature neurons has not yet been elucidated. Here we show that cerebellar Purkinje cells (PCs) express high levels of Numb during adulthood and that conditional deletion of Numb in PCs is sufficient to impair motor coordination despite maintenance of a normal cerebellar cyto-architecture. Numb proved to be critical for internalization and recycling of metabotropic glutamate 1 receptor (mGlu1) in PCs. A significant decrease of mGlu1 and an inhibition of long-term depression at the parallel fiber-PC synapse were observed in conditional Numb knockout mice. Indeed, the trafficking of mGlu1 induced by agonists was inhibited significantly in these mutants, but the expression of ionotropic glutamate receptor subunits and of mGlu1-associated proteins was not affected by the loss of Numb. Moreover, transient and persistent forms of mGlu1 plasticity were robustly induced in mutant PCs, suggesting that they do not require mGlu1 trafficking. Together, our data demonstrate that Numb is a regulator for constitutive expression and dynamic transport of mGlu1.


Asunto(s)
Cerebelo/metabolismo , Proteínas de la Membrana/deficiencia , Actividad Motora , Proteínas del Tejido Nervioso/deficiencia , Células de Purkinje/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/metabolismo , Animales , Cerebelo/efectos de los fármacos , Cerebelo/crecimiento & desarrollo , Potenciación a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo , Potenciales de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones Noqueados , Morfogénesis/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Células de Purkinje/citología , Células de Purkinje/efectos de los fármacos , Sinapsis/efectos de los fármacos
8.
Small ; 13(40)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28809097

RESUMEN

Intermolecular interactions dominate the behavior of signal transduction in various physiological and pathological cell processes, yet assessing these interactions remains a challenging task. Here, this study reports a single-molecule force spectroscopic method that enables functional delineation of two interaction sites (≈35 pN and ≈90 pN) between signaling effectors Ras and BRaf in the canonical mitogen-activated protein kinase (MAPK) pathway. This analysis reveals mutations on BRaf at Q257 and A246, two sites frequently linked to cardio-faciocutaneous syndrome, result in ≈10-30 pN alterations in RasBRaf intermolecular binding force. The magnitude of changes in RasBRaf binding force correlates with the size of alterations in protein affinity and in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-sensitive glutamate receptor (-R)-mediated synaptic transmission in neurons expressing replacement BRaf mutants, and predicts the extent of learning impairments in animals expressing replacement BRaf mutants. These results establish single-molecule force spectroscopy as an effective platform for evaluating the piconewton-level interaction of signaling molecules and predicting the behavior outcome of signal transduction.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Animales , Células Cultivadas , Humanos , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Pinzas Ópticas , Transducción de Señal/genética , Transducción de Señal/fisiología
9.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895250

RESUMEN

Depolarizing current injections produced a rhythmic bursting of action potentials - a bursting oscillation - in a set of local interneurons in the lateral geniculate nucleus (LGN) of rats. The current dynamics underlying this firing pattern have not been determined, though this cell type constitutes an important cellular component of thalamocortical circuitry, and contributes to both pathologic and non-pathologic brain states. We thus investigated the source of the bursting oscillation using pharmacological manipulations in LGN slices in vitro and in silico. 1. Selective blockade of calcium channel subtypes revealed that high-threshold calcium currents I L and I P contributed strongly to the oscillation. 2. Increased extracellular K+ concentration (decreased K+currents) eliminated the oscillation. 3. Selective blockade of K+ channel subtypes demonstrated that the calcium-sensitive potassium current ( I A H P ) was of primary importance. A morphologically simplified, multicompartment model of the thalamic interneuron characterized the oscillation as follows: 1. The low-threshold calcium current I T provided the strong initial burst characteristic of the oscillation. 2. Alternating fluxes through high-threshold calcium channels and I A H P then provided the continuing oscillation's burst and interburst periods respectively. This interplay between I L and I A H P contrasts with the current dynamics underlying oscillations in thalamocortical and reticularis neurons, which primarily involve I T and I H , or I T and I A H P respectively. These findings thus point to a novel electrophysiological mechanism for generating intrinsic oscillations in a major thalamic cell type. Because local interneurons can sculpt the behavior of thalamocortical circuits, these results suggest new targets for the manipulation of ascending thalamocortical network activity.

10.
J Neurosci ; 32(34): 11716-26, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22915114

RESUMEN

Activity-dependent modifications of excitatory synapses contribute to synaptic maturation and plasticity, and are critical for learning and memory. Consequently, impairments in synapse formation or synaptic transmission are thought to be responsible for several types of mental disabilities. BRAG1 is a guanine nucleotide exchange factor for the small GTP-binding protein Arf6 that localizes to the postsynaptic density of excitatory synapses. Mutations in BRAG1 have been identified in families with X-linked intellectual disability (XLID). These mutations mapped to either the catalytic domain or an IQ-like motif; however, the pathophysiological basis of these mutations remains unknown. Here, we show that the BRAG1 IQ motif binds apo-calmodulin (CaM), and that calcium-induced CaM release triggers a reversible conformational change in human BRAG1. We demonstrate that BRAG1 activity, stimulated by activation of NMDA-sensitive glutamate receptors, depresses AMPA receptor (AMPA-R)-mediated transmission via JNK-mediated synaptic removal of GluA1-containing AMPA-Rs in rat hippocampal neurons. Importantly, a BRAG1 mutant that fails to activate Arf6 also fails to depress AMPA-R signaling, indicating that Arf6 activity is necessary for this process. Conversely, a mutation in the BRAG1 IQ-like motif that impairs CaM binding results in hyperactivation of Arf6 signaling and constitutive depression of AMPA transmission. Our findings reveal a role for BRAG1 in response to neuronal activity with possible clinical relevance to nonsyndromic XLID.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Región CA1 Hipocampal/citología , Sistema de Señalización de MAP Quinasas/fisiología , Glicoproteínas de Membrana/metabolismo , Neuronas/fisiología , Terminales Presinápticos/metabolismo , Receptores AMPA/metabolismo , Sulfotransferasas/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Secuencias de Aminoácidos/fisiología , Animales , Animales Recién Nacidos , Calcio/metabolismo , Calmodulina/metabolismo , Quelantes/farmacología , Homólogo 4 de la Proteína Discs Large , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ionomicina/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Glicoproteínas de Membrana/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación/fisiología , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Unión Proteica , Conformación Proteica/efectos de los fármacos , Ratas , Receptores AMPA/genética , Sulfotransferasas/genética , Transfección , Valina/análogos & derivados , Valina/farmacología
11.
Cell Rep ; 42(8): 112904, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37531251

RESUMEN

Acquisition of neuronal circuit architectures, central to understanding brain function and dysfunction, remains prohibitively challenging. Here I report the development of a simultaneous and sequential octuple-sexdecuple whole-cell patch-clamp recording system that enables architectural reconstruction of complex cortical circuits. The method unveils the canonical layer 1 single bouquet cell (SBC)-led disinhibitory neuronal circuits across the mouse somatosensory, motor, prefrontal, and medial entorhinal cortices. The ∼1,500-neuron modular circuits feature the translaminar, unidirectional, minicolumnar, and independent disinhibition and optimize cortical complexity, subtlety, plasticity, variation, and redundancy. Moreover, architectural reconstruction uncovers age-dependent deficits at SBC-disinhibited synapses in the senescence-accelerated mouse prone 8, an animal model of Alzheimer's disease. The deficits exhibit the characteristic Alzheimer's-like cortical spread and correlation with cognitive impairments. These findings decrypt operations of the elementary processing units in healthy and Alzheimer's mouse cortices and validate the efficacy of octuple-sexdecuple patch-clamp recordings for architectural reconstruction of complex neuronal circuits.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Neuronas/fisiología , Corteza Entorrinal , Técnicas de Placa-Clamp
12.
Elife ; 122023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37159499

RESUMEN

The cerebellum is involved in learning of fine motor skills, yet whether presynaptic plasticity contributes to such learning remains elusive. Here, we report that the EPAC-PKCε module has a critical role in a presynaptic form of long-term potentiation in the cerebellum and motor behavior in mice. Presynaptic cAMP-EPAC-PKCε signaling cascade induces a previously unidentified threonine phosphorylation of RIM1α, and thereby initiates the assembly of the Rab3A-RIM1α-Munc13-1 tripartite complex that facilitates docking and release of synaptic vesicles. Granule cell-specific blocking of EPAC-PKCε signaling abolishes presynaptic long-term potentiation at the parallel fiber to Purkinje cell synapses and impairs basic performance and learning of cerebellar motor behavior. These results unveil a functional relevance of presynaptic plasticity that is regulated through a novel signaling cascade, thereby enriching the spectrum of cerebellar learning mechanisms.


Asunto(s)
Potenciación a Largo Plazo , Sinapsis , Animales , Ratones , Cerebelo/fisiología , Factores de Intercambio de Guanina Nucleótido , Potenciación a Largo Plazo/fisiología , Neuronas , Células de Purkinje , Sinapsis/fisiología
13.
Proc Natl Acad Sci U S A ; 105(33): 11993-7, 2008 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-18687890

RESUMEN

Previously we uncovered a critical role for norepinephrine and beta(1)-adrenergic signaling in hippocampus-dependent memory retrieval. Because the beta(1) receptor couples to G(s), we examine here whether cAMP is also required for contextual memory retrieval. Using pharmacologic and genetic approaches to manipulate cAMP and downstream signaling, we demonstrate that cAMP and two of its targets, protein kinase A (PKA) and exchange protein activated by cAMP (Epac), are both required for retrieval. These findings demonstrate that cAMP signaling through Epac (as well as PKA) plays an essential role in cognition.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Memoria/fisiología , Transducción de Señal , Animales , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dopamina beta-Hidroxilasa/deficiencia , Dopamina beta-Hidroxilasa/genética , Dopamina beta-Hidroxilasa/metabolismo , Miedo , Hipocampo , Ratones
14.
Nat Neurosci ; 24(5): 746-752, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33821000

RESUMEN

Serotonin (5-HT) is a phylogenetically conserved monoamine neurotransmitter modulating important processes in the brain. To directly visualize the release of 5-HT, we developed a genetically encoded G-protein-coupled receptor (GPCR)-activation-based 5-HT (GRAB5-HT) sensor with high sensitivity, high selectivity, subsecond kinetics and subcellular resolution. GRAB5-HT detects 5-HT release in multiple physiological and pathological conditions in both flies and mice and provides new insights into the dynamics and mechanisms of 5-HT signaling.


Asunto(s)
Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratas , Transducción de Señal/fisiología
15.
Neuron ; 50(1): 75-88, 2006 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-16600857

RESUMEN

Activity-dependent synaptic delivery of GluR1-, GluR2L-, and GluR4-containing AMPA receptors (-Rs) and removal of GluR2-containing AMPA-Rs mediate synaptic potentiation and depression, respectively. The obvious puzzle is how synapses maintain the capacity for bidirectional plasticity if different AMPA-Rs are utilized for potentiation and depression. Here, we show that synaptic AMPA-R exchange is essential for maintaining the capacity for bidirectional plasticity. The exchange process consists of activity-independent synaptic removal of GluR1-, GluR2L-, or GluR4-containing AMPA-Rs and refilling with GluR2-containing AMPA-Rs at hippocampal and cortical synapses in vitro and in intact brains. In GluR1 and GluR2 knockout mice, initiation or completion of synaptic AMPA-R exchange is compromised, respectively. The complementary AMPA-R removal and refilling events in the exchange process ultimately maintain synaptic strength unchanged, but their long rate time constants ( approximately 15-18 hr) render transmission temporarily depressed in the middle of the exchange. These results suggest that the previously hypothesized "slot" proteins, rather than AMPA-Rs, code and maintain transmission efficacy at central synapses.


Asunto(s)
Encéfalo/citología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Receptores AMPA/fisiología , Sinapsis/metabolismo , Anestésicos Locales/farmacología , Animales , Animales Recién Nacidos , Estimulación Eléctrica/métodos , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Potenciación a Largo Plazo/efectos de la radiación , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/efectos de la radiación , Magnesio/farmacología , Ratones , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/efectos de la radiación , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Neuronas/virología , Técnicas de Placa-Clamp/métodos , Ratas , Receptores AMPA/clasificación , Receptores AMPA/deficiencia , Receptores AMPA/genética , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Transmisión Sináptica/efectos de la radiación , Tetrodotoxina/farmacología , Factores de Tiempo , Transfección/métodos , Vibrisas/inervación , Vibrisas/fisiología
16.
J Neurosci ; 29(19): 6320-35, 2009 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-19439609

RESUMEN

Central glutamatergic synapses may express AMPA-sensitive glutamate receptors (AMPA-Rs) with distinct gating properties and exhibit different transmission dynamics, which are important for computing various synaptic inputs received at different populations of synapses. However, how glutamatergic synapses acquire AMPA-Rs with distinct kinetics to influence synaptic integration remains poorly understood. Here I report synapse-specific trafficking of distinct AMPA-Rs in rat cortical layer 4 stellate and layer 5 pyramidal neurons. The analysis indicates that in single layer 4 stellate neurons thalamocortical synapses generate faster synaptic responses than intracortical synapses. Moreover, GluR1-containing AMPA-Rs traffic selectively into intracortical synapses, and this process requires sensory experience-dependent activity and slows down transmission kinetics. GluR4-containing AMPA-Rs traffic more heavily into thalamocortical synapses than intracortical synapses, and this process requires spontaneous synaptic activity and speeds up transmission kinetics. GluR2-containing AMPA-Rs traffic equally into both thalamocortical and intracortical synapses, and this process requires no synaptic activity and resets transmission kinetics. Notably, synaptic trafficking of distinct AMPA-Rs differentially regulates synaptic integration. Thus, synapse-specific AMPA-R trafficking coarsely sets and synaptic activity finely tunes transmission kinetics and integration properties at different synapses in central neurons.


Asunto(s)
Corteza Cerebral/metabolismo , Células Piramidales/metabolismo , Receptores AMPA/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Corteza Cerebral/citología , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores , Expresión Génica , Microelectrodos , Estimulación Física , Transporte de Proteínas , Ratas , Vibrisas/fisiología
17.
Neuron ; 46(6): 905-16, 2005 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-15953419

RESUMEN

The related small GTPases Ras and Rap1 are important for signaling synaptic AMPA receptor (-R) trafficking during long-term potentiation (LTP) and long-term depression (LTD), respectively. Rap2, which shares 60% identity to Rap1, is present at excitatory synapses, but its functional role is unknown. Here, we report that Rap2 activity, stimulated by NR2A-containing NMDA-R activation, depresses AMPA-R-mediated synaptic transmission via activation of JNK rather than Erk1/2 or p38 MAPK. Moreover, Rap2 controls synaptic removal of AMPA-Rs with long cytoplasmic termini during depotentiation. Thus, Rap2-JNK pathway, which opposes the action of the NR2A-containing NMDA-R-stimulated Ras-ERK1/2 signaling and complements the NR2B-containing NMDA-R-stimulated Rap1-p38 MAPK signaling, channels the specific signaling for depotentiating central synapses.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Valina/análogos & derivados , Proteínas de Unión al GTP rap/metabolismo , Animales , Animales Recién Nacidos , Western Blotting/métodos , Células Cultivadas , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Técnica del Anticuerpo Fluorescente/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Técnicas In Vitro , Proteínas Quinasas JNK Activadas por Mitógenos/clasificación , Magnesio/farmacología , Modelos Neurológicos , Mutagénesis/fisiología , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp/métodos , Fosforilación/efectos de los fármacos , Ratas , Proteínas Recombinantes/biosíntesis , Factores de Tiempo , Transfección/métodos , Valina/farmacología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
18.
J Neurosci ; 28(31): 7847-62, 2008 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-18667617

RESUMEN

Fragile X syndrome, caused by the loss of FMR1 gene function and loss of fragile X mental retardation protein (FMRP), is the most commonly inherited form of mental retardation. The syndrome is characterized by associative learning deficits, reduced risk of cancer, dendritic spine dysmorphogenesis, and facial dysmorphism. However, the molecular mechanism that links loss of function of FMR1 to the learning disability remains unclear. Here, we report an examination of small GTPase Ras signaling and synaptic AMPA receptor (AMPA-R) trafficking in cultured slices and intact brains of wild-type and FMR1 knock-out mice. In FMR1 knock-out mice, synaptic delivery of GluR1-, but not GluR2L- and GluR4-containing AMPA-Rs is impaired, resulting in a selective loss of GluR1-dependent long-term synaptic potentiation (LTP). Although Ras activity is upregulated, its downstream MEK (extracellular signal-regulated kinase kinase)-ERK (extracellular signal-regulated kinase) signaling appears normal, and phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB; or Akt) signaling is compromised in FMR1 knock-out mice. Enhancing Ras-PI3K-PKB signaling restores synaptic delivery of GluR1-containing AMPA-Rs and normal LTP in FMR1 knock-out mice. These results suggest aberrant Ras signaling as a novel mechanism for fragile X syndrome and indicate manipulating Ras-PI3K-PKB signaling to be a potentially effective approach for treating patients with fragile X syndrome.


Asunto(s)
Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/fisiopatología , Plasticidad Neuronal/fisiología , Receptores AMPA/fisiología , Transducción de Señal/fisiología , Proteínas ras/fisiología , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/genética , Transducción de Señal/genética
19.
Neuron ; 102(4): 745-761.e8, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30922875

RESUMEN

Norepinephrine (NE) is a key biogenic monoamine neurotransmitter involved in a wide range of physiological processes. However, its precise dynamics and regulation remain poorly characterized, in part due to limitations of available techniques for measuring NE in vivo. Here, we developed a family of GPCR activation-based NE (GRABNE) sensors with a 230% peak ΔF/F0 response to NE, good photostability, nanomolar-to-micromolar sensitivities, sub-second kinetics, and high specificity. Viral- or transgenic-mediated expression of GRABNE sensors was able to detect electrical-stimulation-evoked NE release in the locus coeruleus (LC) of mouse brain slices, looming-evoked NE release in the midbrain of live zebrafish, as well as optogenetically and behaviorally triggered NE release in the LC and hypothalamus of freely moving mice. Thus, GRABNE sensors are robust tools for rapid and specific monitoring of in vivo NE transmission in both physiological and pathological processes.


Asunto(s)
Proteínas Fluorescentes Verdes/genética , Hipotálamo/metabolismo , Locus Coeruleus/metabolismo , Mesencéfalo/metabolismo , Norepinefrina/metabolismo , Receptores Adrenérgicos alfa 2/genética , Animales , Animales Modificados Genéticamente , Estimulación Eléctrica , Técnicas In Vitro , Microscopía Intravital , Ratones , Microscopía Fluorescente , Optogenética , Ingeniería de Proteínas , Pez Cebra
20.
Neuron ; 40(6): 1199-212, 2003 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-14687553

RESUMEN

Activity-driven delivery of AMPA receptors is proposed to mediate glutamatergic synaptic plasticity, both during development and learning. In hippocampal CA1 principal neurons, such trafficking is primarily mediated by the abundant GluR-A subunit. We now report a study of GluR-B(long), a C-terminal splice variant of the GluR-B subunit. GluR-B(long) synaptic delivery is regulated by two forms of activity. Spontaneous synaptic activity-driven GluR-B(long) transport maintains one-third of the steady-state AMPA receptor-mediated responses, while GluR-B(long) delivery following the induction of LTP is responsible for approximately 50% of the resulting potentiation at the hippocampal CA3 to CA1 synapses at the time of GluR-B(long) peak expression-the second postnatal week. Trafficking of GluR-B(long)-containing receptors thus mediates a GluR-A-independent form of glutamatergic synaptic plasticity in the juvenile hippocampus.


Asunto(s)
Receptores AMPA/deficiencia , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Plasticidad Neuronal/fisiología , Transporte de Proteínas/fisiología , Receptores AMPA/biosíntesis , Receptores AMPA/genética , Análisis de Secuencia de Proteína/métodos , Sinapsis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA