Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 194(4): 2354-2371, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38060676

RESUMEN

Temperature-sensitive male sterility is one of the core components for hybrid rice (Oryza sativa) breeding based on the 2-line system. We previously found that knockout of ARGONAUTE 1d (AGO1d) causes temperature-sensitive male sterility in rice by influencing phased small interfering RNA (phasiRNA) biogenesis and function. However, the specific phasiRNAs and their targets underlying the temperature-sensitive male sterility in the ago1d mutant remain unknown. Here, we demonstrate that the ago1d mutant displays normal female fertility but complete male sterility at low temperature. Through a multiomics analysis of small RNA (sRNA), degradome, and transcriptome, we found that 21-nt phasiRNAs account for the greatest proportion of the 21-nt sRNA species in rice anthers and are sensitive to low temperature and markedly downregulated in the ago1d mutant. Moreover, we found that 21-nt phasiRNAs are essential for the mRNA cleavage of a set of fertility- and cold tolerance-associated genes, such as Earlier Degraded Tapetum 1 (EDT1), Tapetum Degeneration Retardation (TDR), OsPCF5, and OsTCP21, directly or indirectly determined by AGO1d-mediated gene silencing. The loss of function of 21-nt phasiRNAs can result in upregulation of their targets and causes varying degrees of defects in male fertility and grain setting. Our results highlight the essential functions of 21-nt phasiRNAs in temperature-sensitive male sterility in rice and suggest their promising application in 2-line hybrid rice breeding in the future.


Asunto(s)
Infertilidad Masculina , Oryza , Masculino , Humanos , Oryza/genética , Oryza/metabolismo , Nucleótidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Temperatura , ARN de Planta/genética , Fitomejoramiento , ARN Interferente Pequeño/genética , Regulación de la Expresión Génica de las Plantas
2.
J Integr Plant Biol ; 65(12): 2541-2551, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37728044

RESUMEN

Continuously increasing global temperatures present great challenges to food security. Grain size, one of the critical components determining grain yield in rice (Oryza sativa L.), is a prime target for genetic breeding. Thus, there is an immediate need for genetic improvement in rice to maintain grain yield under heat stress. However, quantitative trait loci (QTLs) endowing heat stress tolerance and grain size in rice are extremely rare. Here, we identified a novel negative regulator with pleiotropic effects, Thermo-Tolerance and grain Length 1 (TTL1), from the super pan-genomic and transcriptomic data. Loss-of-function mutations in TTL1 enhanced heat tolerance, and caused an increase in grain size by coordinating cell expansion and proliferation. TTL1 was shown to function as a transcriptional regulator and localized to the nucleus and cell membrane. Furthermore, haplotype analysis showed that hapL and hapS of TTL1 were obviously correlated with variations of thermotolerance and grain size in a core collection of cultivars. Genome evolution analysis of available rice germplasms suggested that TTL1 was selected during domestication of the indica and japonica rice subspecies, but still had much breeding potential for increasing grain length and thermotolerance. These findings provide insights into TTL1 as a novel potential target for the development of high-yield and thermotolerant rice varieties.


Asunto(s)
Oryza , Termotolerancia , Oryza/genética , Termotolerancia/genética , Fenotipo , Fitomejoramiento , Grano Comestible/genética
3.
J Exp Bot ; 72(20): 7067-7077, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34283216

RESUMEN

MicroRNAs (miRNAs) target specific mRNA molecules based on sequence complementarity for their degradation or repression of translation, thereby regulating various developmental and physiological processes in eukaryotic organisms. Expressing the target mimicry (MIM) and short tandem target mimicry (STTM) can block endogenous activity of mature miRNAs and eliminate the inhibition of their target genes, resulting in phenotypic changes due to higher expression of the target genes. Here, we report a strategy to achieve derepression of interested miRNA-target genes through CRISPR/Cas9-based generation of in-frame mutants within the miRNA-complementary sequence of the target gene. We show that two rice genes, OsGRF4 (GROWTH REGULATING FACTOR 4) and OsGRF8 carrying in-frame mutants with disruption of the miR396 recognition sites, escape from miR396-mediated post-transcriptional silencing, resulting in enlarged grain size and increase in brown planthopper (BPH) resistance, in their respective transgenic rice lines. These results demonstrate that CRISPR/Cas9-mediated disruption of miRNA target sites can be effectively employed to precisely derepress particular target genes of functional importance for trait improvement in plants.


Asunto(s)
MicroARNs , Oryza , Sistemas CRISPR-Cas , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Oryza/genética , Plantas Modificadas Genéticamente/genética
4.
J Integr Plant Biol ; 63(8): 1462-1474, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33960113

RESUMEN

In eukaryotes, histone acetylation is a major modification on histone N-terminal tails that is tightly connected to transcriptional activation. HDA6 is a histone deacetylase involved in the transcriptional regulation of genes and transposable elements (TEs) in Arabidopsis thaliana. HDA6 has been shown to participate in several complexes in plants, including a conserved SIN3 complex. Here, we uncover a novel protein complex containing HDA6, several Harbinger transposon-derived proteins (HHP1, SANT1, SANT2, SANT3, and SANT4), and MBD domain-containing proteins (MBD1, MBD2, and MBD4). We show that mutations of all four SANT genes in the sant-null mutant cause increased expression of the flowering repressors FLC, MAF4, and MAF5, resulting in a late flowering phenotype. Transcriptome deep sequencing reveals that while the SANT proteins and HDA6 regulate the expression of largely overlapping sets of genes, TE silencing is unaffected in sant-null mutants. Our global histone H3 acetylation profiling shows that SANT proteins and HDA6 modulate gene expression through deacetylation. Collectively, our findings suggest that Harbinger transposon-derived SANT domain-containing proteins are required for histone deacetylation and flowering time control in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Elementos Transponibles de ADN/genética , Domesticación , Genes de Plantas , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Transposasas/metabolismo , Acetilación , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Fenotipo , Mapas de Interacción de Proteínas , Proteínas Represoras/metabolismo
5.
Plant Biotechnol J ; 17(11): 2096-2105, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31002444

RESUMEN

Red rice contains high levels of proanthocyanidins and anthocyanins, which have been recognized as health-promoting nutrients. The red coloration of rice grains is controlled by two complementary genes, Rc and Rd. The RcRd genotype produces red pericarp in wild species Oryza rufipogon, whereas most cultivated rice varieties produce white grains resulted from a 14-bp frame-shift deletion in the seventh exon of the Rc gene. In the present study, we developed a CRISPR/Cas9-mediated method to functionally restore the recessive rc allele through reverting the 14-bp frame-shift deletion to in-frame mutations in which the deletions were in multiples of three bases, and successfully converted three elite white pericarp rice varieties into red ones. Rice seeds from T1 in-frame Rc lines were measured for proanthocyanidins and anthocyanidins, and high accumulation levels of proanthocyanidins and anthocyanidins were observed in red grains from the mutants. Moreover, there was no significant difference between wild-type and in-frame Rc mutants in major agronomic traits, indicating that restoration of Rc function had no negative effect on important agronomic traits in rice. Given that most white pericarp rice varieties are resulted from the 14-bp deletion in Rc, it is conceivable that our method could be applied to most white pericarp rice varieties and would greatly accelerate the breeding of new red rice varieties with elite agronomic traits. In addition, our study demonstrates an effective approach to restore recessive frame-shift alleles for crop improvement.


Asunto(s)
Alelos , Sistemas CRISPR-Cas , Oryza/genética , Pigmentación , Mutación del Sistema de Lectura , Genes de Plantas , Eliminación de Secuencia
8.
Plants (Basel) ; 13(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38337903

RESUMEN

As one of the essential nutrients for plants, nitrogen (N) has a major impact on the yield and quality of wheat worldwide. Due to chemical fertilizer pollution, it has become increasingly important to improve crop yield by increasing N use efficiency (NUE). Therefore, understanding the response mechanisms to low N (LN) stress is essential for the regulation of NUE in wheat. In this study, LN stress significantly accelerated wheat root growth, but inhibited shoot growth. Further transcriptome analysis showed that 8468 differentially expressed genes (DEGs) responded to LN stress. The roots and shoots displayed opposite response patterns, of which the majority of DEGs in roots were up-regulated (66.15%; 2955/4467), but the majority of DEGs in shoots were down-regulated (71.62%; 3274/4565). GO and KEGG analyses showed that nitrate reductase activity, nitrate assimilation, and N metabolism were significantly enriched in both the roots and shoots. Transcription factor (TF) and protein kinase analysis showed that genes such as MYB-related (38/38 genes) may function in a tissue-specific manner to respond to LN stress. Moreover, 20 out of 107 N signaling homologous genes were differentially expressed in wheat. A total of 47 transcriptome datasets were used for weighted gene co-expression network analysis (17,840 genes), and five TFs were identified as the potential hub regulatory genes involved in the response to LN stress in wheat. Our findings provide insight into the functional mechanisms in response to LN stress and five candidate regulatory genes in wheat. These results will provide a basis for further research on promoting NUE in wheat.

9.
Hortic Res ; 10(8): uhad126, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37560013

RESUMEN

In plants, 5mC DNA methylation is an important and conserved epistatic mark involving genomic stability, gene transcriptional regulation, developmental regulation, abiotic stress response, metabolite synthesis, etc. However, the roles of 5mC DNA methylation modification (5mC methylation) in tea plant growth and development (in pre-harvest processing) and flavor substance synthesis in pre- and post-harvest processing are unknown. We therefore conducted a comprehensive methylation analysis of four key pre-harvest tissues (root, leaf, flower, and fruit) and two processed leaves during oolong tea post-harvest processing. We found that differential 5mC methylation among four key tissues is closely related to tissue functional differentiation and that genes expressed tissue-specifically, responsible for tissue-specific functions, maintain relatively low 5mC methylation levels relative to non-tissue-specifically expressed genes. Importantly, hypomethylation modifications of CsAlaDC and TS/GS genes in roots provided the molecular basis for the dominant synthesis of theanine in roots. In addition, integration of 5mC DNA methylationomics, metabolomics, and transcriptomics of post-harvest leaves revealed that content changes in flavor metabolites during oolong tea processing were closely associated with transcription level changes in corresponding metabolite synthesis genes, and changes in transcript levels of these important synthesis genes were strictly regulated by 5mC methylation. We further report that some key genes during processing are regulated by 5mC methylation, which can effectively explain the content changes of important aroma metabolites, including α-farnesene, nerolidol, lipids, and taste substances such as catechins. Our results not only highlight the key roles of 5mC methylation in important flavor substance synthesis in pre- and post-harvest processing, but also provide epimutation-related gene targets for future improvement of tea quality or breeding of whole-tissue high-theanine varieties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA