Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(5): 957-974.e28, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36812912

RESUMEN

Bats are distinctive among mammals due to their ability to fly, use laryngeal echolocation, and tolerate viruses. However, there are currently no reliable cellular models for studying bat biology or their response to viral infections. Here, we created induced pluripotent stem cells (iPSCs) from two species of bats: the wild greater horseshoe bat (Rhinolophus ferrumequinum) and the greater mouse-eared bat (Myotis myotis). The iPSCs from both bat species showed similar characteristics and had a gene expression profile resembling that of cells attacked by viruses. They also had a high number of endogenous viral sequences, particularly retroviruses. These results suggest that bats have evolved mechanisms to tolerate a large load of viral sequences and may have a more intertwined relationship with viruses than previously thought. Further study of bat iPSCs and their differentiated progeny will provide insights into bat biology, virus host relationships, and the molecular basis of bats' special traits.


Asunto(s)
Quirópteros , Células Madre Pluripotentes , Virosis , Virus , Animales , Virus/genética , Transcriptoma , Filogenia
2.
Annu Rev Biochem ; 81: 737-65, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22443931

RESUMEN

Pluripotency is a "blank" cellular state characteristic of specific cells within the early embryo (e.g., epiblast cells) and of certain cells propagated in vitro (e.g., embryonic stem cells, ESCs). The terms pluripotent cell and stem cell are often used interchangeably to describe cells capable of differentiating into multiple cell types. In this review, we discuss the prevailing molecular and functional definitions of pluripotency and the working parameters employed to describe this state, both in the context of cells residing within the early embryo and cells propagated in vitro.


Asunto(s)
Reprogramación Celular , Embrión de Mamíferos/citología , Células Madre Pluripotentes/metabolismo , Animales , Técnicas de Cultivo de Célula , Células Madre Embrionarias/metabolismo , Humanos
3.
Nature ; 586(7827): 113-119, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32707573

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)1. The development of a vaccine is likely to take at least 12-18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose-response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod2-4 and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from induced pluripotent stem cells, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.


Asunto(s)
Antivirales/análisis , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/efectos de los fármacos , Betacoronavirus/crecimiento & desarrollo , COVID-19 , Línea Celular , Inhibidores de Cisteína Proteinasa/análisis , Inhibidores de Cisteína Proteinasa/farmacología , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidrazonas , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Morfolinas/análisis , Morfolinas/farmacología , Pandemias , Pirimidinas , Reproducibilidad de los Resultados , SARS-CoV-2 , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología , Triazinas/análisis , Triazinas/farmacología , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
5.
EMBO Rep ; 22(11): e53048, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34515391

RESUMEN

During implantation, the murine embryo transitions from a "quiet" into an active metabolic/proliferative state, which kick-starts the growth and morphogenesis of the post-implantation conceptus. Such transition is also required for embryonic stem cells to be established from mouse blastocysts, but the factors regulating this process are poorly understood. Here, we show that Ronin plays a critical role in the process by enabling active energy production, and the loss of Ronin results in the establishment of a reversible quiescent state in which naïve pluripotency is promoted. In addition, Ronin fine-tunes the expression of genes that encode ribosomal proteins and is required for proper tissue-scale organisation of the pluripotent lineage during the transition from blastocyst to egg cylinder stage. Thus, Ronin function is essential for governing the metabolic capacity so that it can support the pluripotent lineage's high-energy demands for cell proliferation and morphogenesis.


Asunto(s)
Desarrollo Embrionario , Células Madre Embrionarias , Animales , Blastocisto/metabolismo , Implantación del Embrión/fisiología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Células Madre Embrionarias/metabolismo , Ratones
6.
Cell ; 133(7): 1162-74, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18585351

RESUMEN

Pluripotency is a unique biological state that allows cells to differentiate into any tissue type. Here we describe a candidate pluripotency factor, Ronin, that possesses a THAP domain, which is associated with sequence-specific DNA binding and epigenetic silencing of gene expression. Ronin is expressed primarily during the earliest stages of murine embryonic development, and its deficiency in mice produces periimplantational lethality and defects in the inner cell mass. Conditional knockout of Ronin prevents the growth of ES cells while forced expression of Ronin allows ES cells to proliferate without differentiation under conditions that normally do not promote self-renewal. Ectopic expression also partly compensates for the effects of Oct4 knockdown. We demonstrate that Ronin binds directly to HCF-1, a key transcriptional regulator. Our findings identify Ronin as an essential factor underlying embryogenesis and ES cell pluripotency. Its association with HCF-1 suggests an epigenetic mechanism of gene repression in pluripotent cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Desarrollo Embrionario , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular , Línea Celular , Proteínas de Unión al ADN/genética , Implantación del Embrión , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Expresión Génica , Genes Letales , Factor C1 de la Célula Huésped/metabolismo , Ratones , Proteínas Represoras , Técnicas del Sistema de Dos Híbridos
7.
PLoS Genet ; 14(1): e1007169, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364887

RESUMEN

Dystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1 [THAP (Thanatos-associated protein) domain containing, apoptosis associated protein 1], a ubiquitously expressed transcription factor with DNA binding and protein-interaction domains, cause dystonia, DYT6. There is a unique, neuronal 50-kDa Thap1-like immunoreactive species, and Thap1 levels are auto-regulated on the mRNA level. However, THAP1 downstream targets in neurons, and the mechanism via which it causes dystonia are largely unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1 C54Y or ΔExon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2α Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic LongTerm Depression, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays were consistent with those enrichments, and the plasticity defects were partially corrected by salubrinal. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence in the pathophysiology of several forms of inherited dystonia.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas de Unión al ADN/genética , Distonía/genética , Mutación , Red Nerviosa/fisiología , Neuronas/fisiología , Proteínas Nucleares/genética , Animales , Animales Recién Nacidos , Células Cultivadas , Humanos , Células K562 , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/metabolismo , Plasticidad Neuronal/genética
8.
Nature ; 548(7666): 165-166, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28746313
9.
Genes Dev ; 24(14): 1479-84, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20581084

RESUMEN

Self-renewing embryonic stem (ES) cells have an exceptional need for timely biomass production, yet the transcriptional control mechanisms responsible for meeting this requirement are largely unknown. We report here that Ronin (Thap11), which is essential for the self-renewal of ES cells, binds with its transcriptional coregulator, Hcf-1, to a highly conserved enhancer element that previously lacked a recognized binding factor. The subset of genes bound by Ronin/Hcf-1 function primarily in transcription initiation, mRNA splicing, and cell metabolism; genes involved in cell signaling and cell development are conspicuously underrepresented in this target gene repertoire. Although Ronin/Hcf-1 represses the expression of some target genes, its activity at promoter sites more often leads to the up-regulation of genes essential to protein biosynthesis and energy production. We propose that Ronin/Hcf-1 controls a genetic program that contributes to the unimpeded growth of ES cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Factor C1 de la Célula Huésped/metabolismo , Animales , Proteínas de Unión al ADN/genética , Metabolismo Energético , Ratones , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Proteínas Represoras , Transcripción Genética
10.
Dev Biol ; 398(1): 80-96, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25482987

RESUMEN

Wnt proteins regulate cell behavior via a canonical signaling pathway that induces ß-catenin dependent transcription. It is now appreciated that Wnt/ß-catenin signaling promotes the expansion of the second heart field (SHF) progenitor cells that ultimately give-rise to the majority of cardiomyocytes. However, activating ß-catenin can also cause the loss of SHF progenitors, highlighting the necessity of precise control over ß-catenin signaling during heart development. We recently reported that two non-canonical Wnt ligands, Wnt5a and Wnt11, act cooperatively to attenuate canonical Wnt signaling that would otherwise disrupt the SHF. While these data reveal the essential role of this anti-canonical Wnt5a/Wnt11 signaling in SHF development, the mechanisms by which these ligands inhibit the canonical Wnt pathway are unclear. Wnt11 was previously shown to inhibit ß-catenin and promote cardiomyocyte maturation by activating a novel apoptosis-independent function of Caspases. Consistent with these data, we now show that Wnt5a and Wnt11 are capable of inducing Caspase activity in differentiating embryonic stem (ES) cells and that hearts from Wnt5a(-/-); Wnt11(-/-) embryos have diminished Caspase 3 (Casp3) activity. Furthermore, SHF markers are reduced in Casp3 mutant ES cells while the treatment of wild type ES cells with Caspase inhibitors blocked the ability of Wnt5a and Wnt11 to promote SHF gene expression. This finding was in agreement with our in vivo studies in which injecting pregnant mice with Caspase inhibitors reduced SHF marker expression in their gestating embryos. Caspase inhibition also blocked other Wnt5a/Wnt11 induced effects, including the suppression of ß-catenin protein expression and activity. Interestingly, Wnt5a/Wnt11 treatment of differentiating ES cells reduced both phosphorylated and total Akt through a Caspase-dependent mechanism and phosphorylated Akt levels were increased in the hearts Caspase inhibitor treated. Surprisingly, inhibition of either Akt or PI3K in ES cells was an equally effective means of increasing SHF markers compared to treatment with Wnt5a/Wnt11. Moreover, Akt inhibition restored SHF gene expression in Casp3 mutant ES cells. Taken together, these findings suggest that Wnt5a/Wnt11 inhibit ß-catenin to promote SHF development through Caspase-dependent Akt degradation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Madre/citología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Caspasas/metabolismo , Línea Celular , Células Madre Embrionarias/citología , Femenino , Masculino , Ratones , Ratones Transgénicos , Mutación , Miocardio/citología , Fosforilación , Reacción en Cadena de la Polimerasa , Embarazo , Preñez , Transducción de Señal , Proteína Wnt-5a
11.
Stem Cells ; 32(6): 1527-37, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24578347

RESUMEN

Cyclin D1 plays an important role in the regulation of cellular proliferation and its expression is activated during gastrulation in the mouse; however, it remains unknown how cyclin D1 expression is regulated during early embryonic development. Here, we define the role of germ cell nuclear factor (GCNF) in the activation of cyclin D1 expression during embryonic stem cell (ESC) differentiation as a model of early development. During our study of GCNF knockout (GCNF(-) (/) (-) ) ESC, we discovered that loss of GCNF leads to the repression of cyclin D1 activation during ESC differentiation. This was determined to be an indirect effect of deregulation Mir302a, which is a cyclin D1 suppressor via binding to the 3'UTR of cyclin D1 mRNA. Moreover, we showed that Mir302 is a target gene of GCNF that inhibits Mir302 expression by binding to a DR0 element within its promoter. Inhibition of Mir302a using Mir302 inhibitor during differentiation of GCNF(-) (/) (-) ESCs restored cyclin D1 expression. Similarly over-expression of GCNF during differentiation of GCNF(-) (/) (-) ESCs rescued the inhibition of Mir302a expression and the activation of cyclin D1. These results reveal that GCNF plays a key role in regulating activation of cyclin D1 expression via inhibition of Mir302a.


Asunto(s)
Diferenciación Celular/genética , Ciclina D1/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Miembro 1 del Grupo A de la Subfamilia 6 de Receptores Nucleares/metabolismo , Proteínas Represoras/metabolismo , Animales , Proliferación Celular , Forma de la Célula , Ensayo de Unidades Formadoras de Colonias , Ciclina D1/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Modelos Biológicos , Miembro 1 del Grupo A de la Subfamilia 6 de Receptores Nucleares/deficiencia , Regiones Promotoras Genéticas/genética , Unión Proteica/genética
12.
PLoS Biol ; 10(2): e1001268, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22389628

RESUMEN

Multiple studies show that tumor suppressor p53 is a barrier to dedifferentiation; whether this is strictly due to repression of proliferation remains a subject of debate. Here, we show that p53 plays an active role in promoting differentiation of human embryonic stem cells (hESCs) and opposing self-renewal by regulation of specific target genes and microRNAs. In contrast to mouse embryonic stem cells, p53 in hESCs is maintained at low levels in the nucleus, albeit in a deacetylated, inactive state. In response to retinoic acid, CBP/p300 acetylates p53 at lysine 373, which leads to dissociation from E3-ubiquitin ligases HDM2 and TRIM24. Stabilized p53 binds CDKN1A to establish a G(1) phase of cell cycle without activation of cell death pathways. In parallel, p53 activates expression of miR-34a and miR-145, which in turn repress stem cell factors OCT4, KLF4, LIN28A, and SOX2 and prevent backsliding to pluripotency. Induction of p53 levels is a key step: RNA-interference-mediated knockdown of p53 delays differentiation, whereas depletion of negative regulators of p53 or ectopic expression of p53 yields spontaneous differentiation of hESCs, independently of retinoic acid. Ectopic expression of p53R175H, a mutated form of p53 that does not bind DNA or regulate transcription, failed to induce differentiation. These studies underscore the importance of a p53-regulated network in determining the human stem cell state.


Asunto(s)
Ciclo Celular , Diferenciación Celular , Células Madre Embrionarias/fisiología , MicroARNs/metabolismo , Proteína p53 Supresora de Tumor/fisiología , Acetilación , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Apoptosis , Secuencia de Bases , Sitios de Unión , Células Cultivadas , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Humanos , Factor 4 Similar a Kruppel , MicroARNs/genética , Regiones Promotoras Genéticas , Unión Proteica , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Transcripción Genética , Tretinoina/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
13.
Stem Cells ; 31(12): 2659-66, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23495137

RESUMEN

Somatic cells have been reprogrammed into induced pluripotent stem (iPS) cells that recapitulate the pluripotent nature of embryonic stem (ES) cells. Reduced pluripotency and variable differentiation capacities have hampered progress with this technology for applications in regeneration medicine. We have previously shown that germ cell nuclear factor (Gcnf) is required for the repression of pluripotency genes during ES cell differentiation and embryonic development. Here we report that iPS cell lines, in which the Gcnf gene was properly reprogrammed, allowing expression of Gcnf, repress pluripotency genes during subsequent differentiation. In contrast, iPS clones in which the Gcnf gene was not reprogrammed maintained pluripotency gene expression during differentiation and did not differentiate properly either in vivo or in vitro. These mal-reprogrammed cells recapitulated the phenotype of Gcnf knockout (Gcnf(-/-)) ES cells. Reintroduction of Gcnf into either the Gcnf negative iPS cells or the Gcnf(-/-) ES cells rescued repression of Oct4 during differentiation. Our findings establish a key role for Gcnf as a regulator of iPS cell pluripotency gene expression. It also demonstrates that reactivation of the Gcnf gene may serve as a marker to distinguish completely reprogrammed iPS cells from incompletely pluripotent cells, which would make therapeutic use of iPS cells safer and more practical as it would reduce the oncogenic potential of iPS cells.


Asunto(s)
Reprogramación Celular/genética , Células Madre Embrionarias/fisiología , Miembro 1 del Grupo A de la Subfamilia 6 de Receptores Nucleares/genética , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular/genética , Células Madre Embrionarias/citología , Epigénesis Genética , Femenino , Regulación de la Expresión Génica , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/citología , Regiones Promotoras Genéticas
14.
Stem Cell Res ; 79: 103483, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38943762

RESUMEN

Recent studies reported that the mutation in the THAP11 gene (THAP11F80L) could be responsible for the inborn vitamin deficiency known as cobalamin disorder, by affecting the expression of the enzyme MMACHC, key in the cobalamin metabolism. However, the specifics of the molecular mechanism are largely unknown. In here we generated genetically modified human pluripotent stem cell lines with THAP11F80L mutation, providing a new research tool for futher exploring the molecular mechanism. The established hPSC lines remain pluripotent, showing expression of OCT3/4, differentiation capacity to the three germ layers and displaying normal karyotype.

15.
Cell Rep ; 42(5): 112505, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37182209

RESUMEN

Genes that are key to cell identity are generally regulated by cell-type-specific enhancer elements bound by transcription factors, some of which facilitate looping to distant gene promoters. In contrast, genes that encode housekeeping functions, whose regulation is essential for normal cell metabolism and growth, generally lack interactions with distal enhancers. We find that Ronin (Thap11) assembles multiple promoters of housekeeping and metabolic genes to regulate gene expression. This behavior is analogous to how enhancers are brought together with promoters to regulate cell identity genes. Thus, Ronin-dependent promoter assemblies provide a mechanism to explain why housekeeping genes can forgo distal enhancer elements and why Ronin is important for cellular metabolism and growth control. We propose that clustering of regulatory elements is a mechanism common to cell identity and housekeeping genes but is accomplished by different factors binding distinct control elements to establish enhancer-promoter or promoter-promoter interactions, respectively.


Asunto(s)
Elementos de Facilitación Genéticos , Genes Esenciales , Genes Esenciales/genética , Elementos de Facilitación Genéticos/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas/genética
16.
Nat Genet ; 55(3): 471-483, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36894709

RESUMEN

Identification of host determinants of coronavirus infection informs mechanisms of viral pathogenesis and can provide new drug targets. Here we demonstrate that mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) chromatin remodeling complexes, specifically canonical BRG1/BRM-associated factor (cBAF) complexes, promote severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and represent host-directed therapeutic targets. The catalytic activity of SMARCA4 is required for mSWI/SNF-driven chromatin accessibility at the ACE2 locus, ACE2 expression and virus susceptibility. The transcription factors HNF1A/B interact with and recruit mSWI/SNF complexes to ACE2 enhancers, which contain high HNF1A motif density. Notably, small-molecule mSWI/SNF ATPase inhibitors or degraders abrogate angiotensin-converting enzyme 2 (ACE2) expression and confer resistance to SARS-CoV-2 variants and a remdesivir-resistant virus in three cell lines and three primary human cell types, including airway epithelial cells, by up to 5 logs. These data highlight the role of mSWI/SNF complex activities in conferring SARS-CoV-2 susceptibility and identify a potential class of broad-acting antivirals to combat emerging coronaviruses and drug-resistant variants.


Asunto(s)
COVID-19 , Humanos , Enzima Convertidora de Angiotensina 2/genética , Cromatina , COVID-19/genética , ADN Helicasas/genética , Proteínas Nucleares/genética , SARS-CoV-2 , Factores de Transcripción/genética
17.
J Biol Chem ; 286(26): 23178-88, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21561870

RESUMEN

δ-Catenin is an Armadillo protein of the p120-catenin subfamily capable of modulating cadherin stability, small GTPase activity, and nuclear transcription. From yeast two-hybrid screening of a human embryonic stem cell cDNA library, we identified δ-catenin as a potential interacting partner of the caspase-3 protease, which plays essential roles in apoptotic as well as non-apoptotic processes. Interaction of δ-catenin with caspase-3 was confirmed using cleavage assays conducted in vitro, in Xenopus apoptotic extracts, and in cell line chemically induced contexts. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo repeat 6 of δ-catenin, was identified through peptide sequencing. Cleavage thus generates an amino-terminal (residues 1-816) and carboxyl-terminal (residues 817-1314) fragment, each containing about half of the central Armadillo domain. We found that cleavage of δ-catenin both abolishes its association with cadherins and impairs its ability to modulate small GTPases. Interestingly, 817-1314 possesses a conserved putative nuclear localization signal that may facilitate the nuclear targeting of δ-catenin in defined contexts. To probe for novel nuclear roles of δ-catenin, we performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating interaction with an uncharacterized KRAB family zinc finger protein, ZIFCAT. Our results indicate that ZIFCAT is nuclear and suggest that it may associate with DNA as a transcriptional repressor. We further determined that other p120 subfamily catenins are similarly cleaved by caspase-3 and likewise bind ZIFCAT. Our findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120-catenin subfamily members, facilitating the coordinate modulation of cadherins, small GTPases, and nuclear functions.


Asunto(s)
Apoptosis/fisiología , Caspasa 3/metabolismo , Cateninas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Secuencias de Aminoácidos , Animales , Cadherinas/genética , Cadherinas/metabolismo , Caspasa 3/genética , Cateninas/genética , Proteínas de Unión al ADN/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Saccharomyces cerevisiae , Técnicas del Sistema de Dos Híbridos , Xenopus laevis , Catenina delta
18.
ACS Infect Dis ; 8(7): 1265-1279, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35766385

RESUMEN

There is a pressing need for host-directed therapeutics that elicit broad-spectrum antiviral activities to potentially address current and future viral pandemics. Apratoxin S4 (Apra S4) is a potent Sec61 inhibitor that prevents cotranslational translocation of secretory proteins into the endoplasmic reticulum (ER), leading to anticancer and antiangiogenic activity both in vitro and in vivo. Since Sec61 has been shown to be an essential host factor for viral proteostasis, we tested Apra S4 in cellular models of viral infection, including SARS-CoV-2, influenza A virus, and flaviviruses (Zika, West Nile, and Dengue virus). Apra S4 inhibited viral replication in a concentration-dependent manner and had high potency particularly against SARS-CoV-2 and influenza A virus, with subnanomolar activity in human cells. Characterization studies focused on SARS-CoV-2 revealed that Apra S4 impacted a post-entry stage of the viral life-cycle. Transmission electron microscopy revealed that Apra S4 blocked formation of stacked double-membrane vesicles, the sites of viral replication. Apra S4 reduced dsRNA formation and prevented viral protein production and trafficking of secretory proteins, especially the spike protein. Given the potent and broad-spectrum activity of Apra S4, further preclinical evaluation of Apra S4 and other Sec61 inhibitors as antivirals is warranted.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Virus de la Influenza A , Infección por el Virus Zika , Virus Zika , Antivirales/farmacología , Antivirales/uso terapéutico , Depsipéptidos , Humanos , Pandemias , SARS-CoV-2 , Infección por el Virus Zika/tratamiento farmacológico
19.
Cell Host Microbe ; 30(3): 373-387.e7, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35150638

RESUMEN

SARS-CoV-2 lineages have diverged into highly prevalent variants termed "variants of concern" (VOCs). Here, we characterized emerging SARS-CoV-2 spike polymorphisms in vitro and in vivo to understand their impact on transmissibility and virus pathogenicity and fitness. We demonstrate that the substitution S:655Y, represented in the gamma and omicron VOCs, enhances viral replication and spike protein cleavage. The S:655Y substitution was transmitted more efficiently than its ancestor S:655H in the hamster infection model and was able to outcompete S:655H in the hamster model and in a human primary airway system. Finally, we analyzed a set of emerging SARS-CoV-2 variants to investigate how different sets of mutations may impact spike processing. All VOCs tested exhibited increased spike cleavage and fusogenic capacity. Taken together, our study demonstrates that the spike mutations present in VOCs that become epidemiologically prevalent in humans are linked to an increase in spike processing and virus transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
20.
Dev Cell ; 10(1): 1-2, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16399069

RESUMEN

Only a few factors controlling stem cell pluripotency have been identified to date, and we do not yet fully understand how they act to maintain pluripotency and control differentiation. A report in this issue of Developmental Cell (Meshorer et al., 2006) describes a new trait of pluripotent cells: hyperdynamic or "breathing" chromatin. According to this report, hyperdynamic chromatin is both specific and functionally relevant for pluripotent cells.


Asunto(s)
División Celular/fisiología , Cromatina/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA