Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(9): e1010828, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36136995

RESUMEN

Spillover of sarbecoviruses from animals to humans has resulted in outbreaks of severe acute respiratory syndrome SARS-CoVs and the ongoing COVID-19 pandemic. Efforts to identify the origins of SARS-CoV-1 and -2 has resulted in the discovery of numerous animal sarbecoviruses-the majority of which are only distantly related to known human pathogens and do not infect human cells. The receptor binding domain (RBD) on sarbecoviruses engages receptor molecules on the host cell and mediates cell invasion. Here, we tested the receptor tropism and serological cross reactivity for RBDs from two sarbecoviruses found in Russian horseshoe bats. While these two viruses are in a viral lineage distinct from SARS-CoV-1 and -2, the RBD from one virus, Khosta 2, was capable of using human ACE2 to facilitate cell entry. Viral pseudotypes with a recombinant, SARS-CoV-2 spike encoding for the Khosta 2 RBD were resistant to both SARS-CoV-2 monoclonal antibodies and serum from individuals vaccinated for SARS-CoV-2. Our findings further demonstrate that sarbecoviruses circulating in wildlife outside of Asia also pose a threat to global health and ongoing vaccine campaigns against SARS-CoV-2.


Asunto(s)
COVID-19 , Quirópteros , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Pandemias/prevención & control , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
2.
Brain Behav Immun ; 117: 36-50, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38182037

RESUMEN

Risk factors contributing to dementia are multifactorial. Accumulating evidence suggests a role for pathogens as risk factors, but data is largely correlative with few causal relationships. Here, we demonstrate that intermittent murine cytomegalovirus (MCMV) infection of mice, alters blood brain barrier (BBB) permeability and metabolic pathways. Increased basal mitochondrial function is observed in brain microvessels cells (BMV) exposed to intermittent MCMV infection and is accompanied by elevated levels of superoxide. Further, mice score lower in cognitive assays compared to age-matched controls who were never administered MCMV. Our data show that repeated systemic infection with MCMV, increases markers of neuroinflammation, alters mitochondrial function, increases markers of oxidative stress and impacts cognition. Together, this suggests that viral burden may be a risk factor for dementia. These observations provide possible mechanistic insights through which pathogens may contribute to the progression or exacerbation of dementia.


Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Infecciones por Citomegalovirus , Demencia , Animales , Ratones , Infecciones por Citomegalovirus/complicaciones , Cognición
3.
Biochemistry ; 62(17): 2517-2529, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37554055

RESUMEN

Antigen conformation shapes CD4+ T-cell specificity through mechanisms of antigen processing, and the consequences for immunity may rival those from conformational effects on antibody specificity. CD4+ T cells initiate and control immunity to pathogens and cancer and are at least partly responsible for immunopathology associated with infection, autoimmunity, and allergy. The primary trigger for CD4+ T-cell maturation is the presentation of an epitope peptide in the MHC class II antigen-presenting protein (MHCII), most commonly on an activated dendritic cell, and then the T-cell responses are recalled by subsequent presentations of the epitope peptide by the same or other antigen-presenting cells. Peptide presentation depends on the proteolytic fragmentation of the antigen in an endosomal/lysosomal compartment and concomitant loading of the fragments into the MHCII, a multistep mechanism called antigen processing and presentation. Although the role of peptide affinity for MHCII has been well studied, the role of proteolytic fragmentation has received less attention. In this Perspective, we will briefly summarize evidence that antigen resistance to unfolding and proteolytic fragmentation shapes the specificity of the CD4+ T-cell response to selected viral envelope proteins, identify several remarkable examples in which the immunodominant CD4+ epitopes most likely depend on the interaction of processing machinery with antigen conformation, and outline how knowledge of antigen conformation can inform future efforts to design vaccines.


Asunto(s)
Linfocitos T CD4-Positivos , Epítopos de Linfocito T , Linfocitos T CD4-Positivos/metabolismo , Epítopos de Linfocito T/química , Epítopos de Linfocito T/metabolismo , Proteínas Virales de Fusión/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Presentación de Antígeno , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/metabolismo
4.
J Virol ; 94(2)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694945

RESUMEN

Human cytomegalovirus (HCMV) is a large DNA herpesvirus that is highly prevalent in the human population. HCMV can result in severe direct and indirect pathologies under immunosuppressed conditions and is the leading cause of birth defects related to infectious disease. Currently, the effect of HCMV infection on host cell metabolism as an increase in glycolysis during infection has been defined. We have observed that oxidative phosphorylation is also increased. We have identified morphological and functional changes to host mitochondria during HCMV infection. The mitochondrial network undergoes fission events after HCMV infection. Interestingly, the network does not undergo fusion. At the same time, mitochondrial mass and membrane potential increase. The electron transport chain (ETC) functions at an elevated rate, resulting in the release of increased reactive oxygen species. Surprisingly, despite the stress applied to the host mitochondria, the network is capable of responding to and meeting the increased bioenergetic and biosynthetic demands placed on it. When mitochondrial DNA is depleted from the cells, we observed severe impairment of viral replication. Mitochondrial DNA encodes many of the ETC components. These findings suggest that the host cell ETC is essential to HCMV replication. Our studies suggest the host cell mitochondria may be a therapeutic target.IMPORTANCE Human cytomegalovirus (HCMV) is a herpesvirus present in up to 85% of some populations. Like all herpesviruses, HCMV infection is for life. No vaccine is currently available, neutralizing antibody therapies are ineffective, and current antivirals have limited long-term efficacy due to side effects and potential for viral mutation and resistance. The significance of this research is in understanding how HCMV manipulates the host mitochondria to support bioenergetic and biosynthetic requirements for replication. Despite a large genome, HCMV relies exclusively on host cells for metabolic functions. By understanding the dependency of HCMV on the mitochondria, we could exploit these requirements and develop novel antivirals.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Citomegalovirus/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Línea Celular , Infecciones por Citomegalovirus/patología , Humanos , Mitocondrias/patología
6.
PLoS Pathog ; 8(10): e1002959, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23071438

RESUMEN

Human Cytomegalovirus (HCMV) is a ubiquitous herpesvirus that currently infects a large percentage of the world population. Although usually asymptomatic in healthy individuals, HCMV infection during pregnancy may cause spontaneous abortions, premature delivery, or permanent neurological disabilities in infants infected in utero. During infection, the virus exerts control over a multitude of host signaling pathways. Wnt/ß-catenin signaling, an essential pathway involved in cell cycle control, differentiation, embryonic development, placentation and metastasis, is frequently dysregulated by viruses. How HCMV infection affects this critical pathway is not currently known. In this study, we demonstrate that HCMV dysregulates Wnt/ß-catenin signaling in dermal fibroblasts and human placental extravillous trophoblasts. Infection inhibits Wnt-induced transcriptional activity of ß-catenin and expression of ß-catenin target genes in these cells. HCMV infection leads to ß-catenin protein accumulation in a discrete juxtanuclear region. Levels of ß-catenin in membrane-associated and cytosolic pools, as well as nuclear ß-catenin, are reduced after infection; while transcription of the ß-catenin gene is unchanged, suggesting enhanced degradation. Given the critical role of Wnt/ß-catenin signaling in cellular processes, these findings represent a novel and important mechanism whereby HCMV disrupts normal cellular function.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo , Ciclo Celular , Diferenciación Celular , Línea Celular , Movimiento Celular , Fibroblastos/metabolismo , Fibroblastos/virología , Regulación de la Expresión Génica , Humanos , Transcripción Genética , Activación Transcripcional , Trofoblastos/metabolismo , Trofoblastos/virología
7.
Methods Mol Biol ; 2783: 335-347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478245

RESUMEN

Bioenergetic and biosynthetic processes are key indicators regulating adipose-derived stromal/stem cell (ADSC) function, health, and differentiation. A common method used to metabolically profile cells is the Seahorse XF Analyzer. This live-cell assay can be used to define key metabolic pathways, including glycolysis and oxidative phosphorylation. Here, we share optimized protocols to characterize metabolism of ADSCs under basal conditions and provide insight into further assays defining metabolic changes and/or dependency during ADSC differentiation.


Asunto(s)
Smegmamorpha , Animales , Smegmamorpha/metabolismo , Adipocitos , Metabolismo Energético , Fosforilación Oxidativa , Glucólisis , Tejido Adiposo/metabolismo
8.
J Allergy Clin Immunol Glob ; 3(2): 100236, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38590754

RESUMEN

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a spectrum of clinical outcomes that may be complicated by severe asthma. Antiviral immunity is often compromised in patients with asthma; however, whether this is true for SARS-CoV-2 immunity and children is unknown. Objective: We aimed to evaluate SARS-CoV-2 immunity in children with asthma on the basis of infection or vaccination history and compared to respiratory syncytial viral or allergen (eg, cockroach, dust mite)-specific immunity. Methods: Fifty-three children from an urban asthma study were evaluated for medical history, lung function, and virus- or allergen-specific immunity using antibody or T-cell assays. Results: Polyclonal antibody responses to spike were observed in most children from infection and/or vaccination history. Children with atopic asthma or high allergen-specific IgE, particularly to dust mites, exhibited reduced seroconversion, antibody magnitude, and SARS-CoV-2 virus neutralization after SARS-CoV-2 infection or vaccination. TH1 responses to SARS-CoV-2 and respiratory syncytial virus correlated with antigen-respective IgG. Cockroach-specific T-cell activation as well as IL-17A and IL-21 cytokines negatively correlated with SARS-CoV-2 antibodies and effector functions, distinct from total and dust mite IgE. Allergen-specific IgE and lack of vaccination were associated with recent health care utilization. Reduced lung function (forced expiratory volume in 1 second ≤ 80%) was independently associated with (SARS-CoV-2) peptide-induced cytokines, including IL-31, whereas poor asthma control was associated with cockroach-specific cytokine responses. Conclusion: Mechanisms underpinning atopic and nonatopic asthma may complicate the development of memory to SARS-CoV-2 infection or vaccination and lead to a higher risk of repeated infection in these children.

9.
Viruses ; 15(5)2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37243170

RESUMEN

Human cytomegalovirus (HCMV) exploits host mitochondrial function to promote viral replication. HCMV gene products have been described to directly interact and alter functional or structural aspects of host mitochondria. Current antivirals against HCMV, such as ganciclovir and letermovir, are designed against viral targets. Concerns with the current antivirals include toxicity and viral resistance. Targeting host mitochondrial function is a promising alternative or complimentary antiviral approach as (1) drugs targeting host mitochondrial function interact with host targets, minimizing viral resistance, and (2) host mitochondrial metabolism plays key roles in HCMV replication. This review describes how HCMV alters mitochondrial function and highlights pharmacological targets that can be exploited for novel antiviral development.


Asunto(s)
Antivirales , Infecciones por Citomegalovirus , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Citomegalovirus/genética , Infecciones por Citomegalovirus/tratamiento farmacológico , Ganciclovir/farmacología , Replicación Viral , Mitocondrias
10.
Immunometabolism (Cobham) ; 5(4): e00034, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38037590

RESUMEN

Cytomegalovirus (CMV) is a master manipulator of host metabolic pathways. The impact of CMV metabolic rewiring during congenital CMV on immune function is unknown. CMV infection can directly alter glycolytic and oxidative phosphorylation pathways in infected cells. Recent data suggests CMV may alter metabolism in uninfected neighboring cells. In this mini review, we discuss how CMV infection may impact immune function through metabolic pathways. We discuss how immune cells differ between maternal and decidual compartments and how altered immunometabolism may contribute to congenital infections.

11.
J Fungi (Basel) ; 9(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37367538

RESUMEN

Pneumocystis jirovecii is the most common cause of fungal pneumonia in children under the age of 2 years. However, the inability to culture and propagate this organism has hampered the acquisition of a fungal genome as well as the development of recombinant antigens to conduct seroprevalence studies. In this study, we performed proteomics on Pneumocystis-infected mice and used the recent P. murina and P. jirovecii genomes to prioritize antigens for recombinant protein expression. We focused on a fungal glucanase due to its conservation among fungal species. We found evidence of maternal IgG to this antigen, followed by a nadir in pediatric samples between 1 and 3 months of age, followed by an increase in prevalence over time consistent with the known epidemiology of Pneumocystis exposure. Moreover, there was a strong concordance of anti-glucanase responses and IgG against another Pneumocystis antigen, PNEG_01454. Taken together, these antigens may be useful tools for Pneumocystis seroprevalence and seroconversion studies.

12.
Antiviral Res ; 215: 105624, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37150408

RESUMEN

Despite decades of research, human cytomegalovirus (CMV) continues to contribute to significant morbidity and mortality in transplant settings and remains the leading cause of viral congenital infections. Clinical diagnosis of CMV infection and/or reactivation under these settings is completed using real time quantitative polymerase chain reaction (RT-qPCR). This assay performs well but is hampered by poor sensitivity and a lack of standardization among testing facilities. A point-of-care rapid diagnostic to determine CMV viremia could address these issues and improve patient care. In this manuscript, we introduce clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a technology to design and validate a rapid diagnostic for CMV. This system was tested using CMV spiked human saliva and urine samples. Sensitivity of the assay was ∼10 infectious units (IU)/mL. Specificity of the assay was robust and failed to detect other herpesviruses. Collectively, we have designed and validated a rapid diagnostic for CMV that overcomes limitations of the current standard diagnostic. This assay has the potential to be used as a point-of-care screening tool in transplant and neonatal settings.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Recién Nacido , Humanos , Citomegalovirus/genética , Sistemas CRISPR-Cas , Prueba de Diagnóstico Rápido , Reacción en Cadena en Tiempo Real de la Polimerasa , ADN Viral/análisis
13.
ACS Nano ; 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36595218

RESUMEN

Interferon-gamma release assays (IGRAs) that measure pathogen-specific T-cell response rates can provide a more reliable estimate of protection than specific antibody levels but have limited potential for widespread use due to their workflow, personnel, and instrumentation demands. The major vaccines for SARS-CoV-2 have demonstrated substantial efficacy against all of its current variants, but approaches are needed to determine how these vaccines will perform against future variants, as they arise, to inform vaccine and public health policies. Here we describe a rapid, sensitive, nanolayer polylysine-integrated microfluidic chip IGRA read by a fluorescent microscope that has a 5 h sample-to-answer time and uses ∼25 µL of a fingerstick whole blood sample. Results from this assay correlated with those of a comparable clinical IGRA when used to evaluate the T-cell response to SARS-CoV-2 peptides in a population of vaccinated and/or infected individuals. Notably, this streamlined and inexpensive assay is suitable for high-throughput analyses in resource-limited settings for other infectious diseases.

14.
Nat Commun ; 14(1): 7733, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007516

RESUMEN

Nephron endowment at birth impacts long-term renal and cardiovascular health, and it is contingent on the nephron progenitor cell (NPC) pool. Glycolysis modulation is essential for determining NPC fate, but the underlying mechanism is unclear. Combining RNA sequencing and quantitative proteomics we identify 267 genes commonly targeted by Wnt activation or glycolysis inhibition in NPCs. Several of the impacted pathways converge at Acetyl-CoA, a co-product of glucose metabolism. Notably, glycolysis inhibition downregulates key genes of the Mevalonate/cholesterol pathway and stimulates NPC differentiation. Sodium acetate supplementation rescues glycolysis inhibition effects and favors NPC maintenance without hindering nephrogenesis. Six2Cre-mediated removal of ATP-citrate lyase (Acly), an enzyme that converts citrate to acetyl-CoA, leads to NPC pool depletion, glomeruli count reduction, and increases Wnt4 expression at birth. Sodium acetate supplementation counters the effects of Acly deletion on cap-mesenchyme. Our findings show a pivotal role of acetyl-CoA metabolism in kidney development and uncover new avenues for manipulating nephrogenesis and preventing adult kidney disease.


Asunto(s)
Riñón , Nefronas , Acetilcoenzima A/metabolismo , Acetato de Sodio/metabolismo , Riñón/metabolismo , Células Madre/metabolismo
15.
Virol J ; 9: 255, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23116176

RESUMEN

BACKGROUND: During the first trimester of pregnancy, a series of tightly regulated interactions govern the formation of a highly invasive population of fetal-derived extravillous cytotrophoblasts (EVT). Successful pregnancy is dependent on efficient invasion of the uterine wall and maternal spiral arteries by EVT. Dysregulated trophoblast invasion is associated with intrauterine growth restriction, birth defects, spontaneous abortion and preeclampsia. A number of soluble growth factors, cytokines, and chemokines modulate this process, fine-tuning the temporal and spatial aspects of cytotrophoblast invasion. In particular, the CXCL12/CXCR4 axis has been shown to specifically modulate cytotrophoblast differentiation, invasion, and survival throughout early pregnancy. Infection with human cytomegalovirus (HCMV) has been associated with impaired differentiation of cytotrophoblasts down the invasive pathway, specifically dysregulating the response to mitogens including epidermal growth factor (EGF) and hepatocyte growth factor (HGF). In this study, the effect of HCMV infection on the CXCL12-mediated migration and invasion of the EVT cell line SGHPL-4 was investigated. RESULTS: Infection with HCMV significantly decreased secretion of CXCL12 by SGHPL-4 cells, and induced a striking perinuclear accumulation of the chemokine. HCMV infection significantly increased mRNA and total cell surface expression of the two known receptors for CXCL12: CXCR4 and CXCR7. Functionally, HCMV-infected SGHPL-4 cells were unable to migrate or invade in response to a gradient of soluble CXCL12 in transwell assays. CONCLUSIONS: Collectively, these studies demonstrate that HCMV impairs EVT migration and invasion induced by CXCL12. As HCMV has the ability to inhibit EVT migration and invasion through dysregulation of other relevant signaling pathways, it is likely that the virus affects multiple signaling pathways to impair placentation and contribute to some of the placental defects seen in HCMV-positive pregnancies.


Asunto(s)
Quimiocina CXCL12/metabolismo , Infecciones por Citomegalovirus/metabolismo , Citomegalovirus , Trofoblastos/metabolismo , Trofoblastos/virología , Línea Celular , Movimiento Celular/genética , Quimiocina CXCL12/genética , Infecciones por Citomegalovirus/genética , Femenino , Expresión Génica , Humanos , Embarazo , ARN Mensajero/genética , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
16.
Proc Natl Acad Sci U S A ; 106(10): 3806-11, 2009 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-19234121

RESUMEN

Bone marrow-derived mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) have been shown to engraft into the stroma of several tumor types, where they contribute to tumor progression and metastasis. However, the chemotactic signals mediating MSC migration to tumors remain poorly understood. Previous studies have shown that LL-37 (leucine, leucine-37), the C-terminal peptide of human cationic antimicrobial protein 18, stimulates the migration of various cell types and is overexpressed in ovarian, breast, and lung cancers. Although there is evidence to support a pro-tumorigenic role for LL-37, the function of the peptide in tumors remains unclear. Here, we demonstrate that neutralization of LL-37 in vivo significantly reduces the engraftment of MSCs into ovarian tumor xenografts, resulting in inhibition of tumor growth as well as disruption of the fibrovascular network. Migration and invasion experiments conducted in vitro indicated that the LL-37-mediated migration of MSCs to tumors likely occurs through formyl peptide receptor like-1. To assess the response of MSCs to the LL-37-rich tumor microenvironment, conditioned medium from LL-37-treated MSCs was assessed and found to contain increased levels of several cytokines and pro-angiogenic factors compared with controls, including IL-1 receptor antagonist, IL-6, IL-10, CCL5, VEGF, and matrix metalloproteinase-2. Similarly, Matrigel mixed with LL-37, MSCs, or the combination of the two resulted in a significant number of vascular channels in nude mice. These data indicate that LL-37 facilitates ovarian tumor progression through recruitment of progenitor cell populations to serve as pro-angiogenic factor-expressing tumor stromal cells.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Movimiento Celular/efectos de los fármacos , Mediadores de Inflamación/farmacología , Mesodermo/citología , Células Madre Multipotentes/citología , Neoplasias Ováricas/patología , Células del Estroma/citología , Inductores de la Angiogénesis/metabolismo , Animales , Catelicidinas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Factores Quimiotácticos/farmacología , Progresión de la Enfermedad , Femenino , Humanos , Mesodermo/efectos de los fármacos , Ratones , Modelos Biológicos , Células Madre Multipotentes/efectos de los fármacos , Pruebas de Neutralización , Neoplasias Ováricas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células del Estroma/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Viruses ; 14(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-35062307

RESUMEN

Glioblastoma (GBM) is an aggressive primary central nervous system neoplasia with limited therapeutic options and poor prognosis. Following reports of cytomegalovirus (HCMV) in GBM tumors, the anti-viral drug Valganciclovir was administered and found to significantly increase the longevity of GBM patients. While these findings suggest a role for HCMV in GBM, the relationship between them is not clear and remains controversial. Treatment with anti-viral drugs may prove clinically useful; however, their results do not explain the underlying mechanism between HCMV infection and GBM progression. We hypothesized that HCMV infection would metabolically reprogram GBM cells and that these changes would allow for increased tumor progression. We infected LN-18 GBM cells and employed a Seahorse Bioanalyzer to characterize cellular metabolism. Increased mitochondrial respiration and glycolytic rates were observed following infection. These changes were accompanied by elevated production of reactive oxygen species and lactate. Due to lactate's numerous tumor-promoting effects, we examined the impact of paracrine signaling of HCMV-infected GBM cells on uninfected stromal cells. Our results indicated that, independent of viral transmission, the secretome of HCMV-infected GBM cells was able to alter the expression of key metabolic proteins and epigenetic markers. This suggests a mechanism of action where reprogramming of GBM cells alters the surrounding tumor microenvironment to be permissive to tumor progression in a manner akin to the Reverse-Warburg Effect. Overall, this suggests a potential oncomodulatory role for HCMV in the context of GBM.


Asunto(s)
Infecciones por Citomegalovirus/fisiopatología , Citomegalovirus/fisiología , Glioblastoma/metabolismo , Glioblastoma/virología , Comunicación Paracrina , Secretoma , Línea Celular Tumoral , Citomegalovirus/genética , Infecciones por Citomegalovirus/virología , Glucólisis , Humanos , Ácido Láctico/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral , Replicación Viral
18.
Antiviral Res ; 194: 105159, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34390771

RESUMEN

Human cytomegalovirus (HCMV) is a near ubiquitous herpesvirus that relies on host cell metabolism for efficient replication. Although it has been shown that HCMV requires functional host cell mitochondria for efficient replication, it is unknown whether mitochondrial targeted pharmacological agents can be repurposed as antivirals. Here we report that treatment with drugs targeting the electron transport chain (ETC) complexes inhibit HCMV replication. Addition of rotenone, oligomycin, antimycin and metformin resulted in decreased HCMV titers in vitro, independent of HCMV strain. This further illustrates the dependence of HCMV replication on functional mitochondria. Metformin, an FDA approved drug, delays HCMV replication kinetics resulting in a reduction of viral titers. Repurposing metformin as an antiviral is advantageous as its safety profile and epidemiological data are well accepted. Our findings provide new insight into the potential for targeting HCMV infection through host cell metabolism and how these pharmacological interventions function.


Asunto(s)
Antivirales/farmacología , Citomegalovirus/efectos de los fármacos , Transporte de Electrón/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/virología , Prepucio/citología , Humanos , Masculino , Metformina/farmacología , Oligomicinas/farmacología
19.
Nat Nanotechnol ; 16(9): 1039-1044, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34294909

RESUMEN

Plasma SARS-CoV-2 RNA may represent a viable diagnostic alternative to respiratory RNA levels, which rapidly decline after infection. Quantitative PCR with reverse transcription (RT-qPCR) reference assays exhibit poor performance with plasma, probably reflecting the dilution and degradation of viral RNA released into the circulation, but these issues could be addressed by analysing viral RNA packaged into extracellular vesicles. Here we describe an assay approach in which extracellular vesicles directly captured from plasma are fused with reagent-loaded liposomes to sensitively amplify and detect a SARS-CoV-2 gene target. This approach accurately identified patients with COVID-19, including challenging cases missed by RT-qPCR. SARS-CoV-2-positive extracellular vesicles were detected at day 1 post-infection, and plateaued from day 6 to the day 28 endpoint in a non-human primate model, while signal durations for 20-60 days were observed in young children. This nanotechnology approach uses a non-infectious sample and extends virus detection windows, offering a tool to support COVID-19 diagnosis in patients without SARS-CoV-2 RNA detectable in the respiratory tract.


Asunto(s)
COVID-19/diagnóstico , Vesículas Extracelulares/metabolismo , Liposomas/uso terapéutico , ARN Viral/sangre , SARS-CoV-2/aislamiento & purificación , Animales , Técnicas Biosensibles , COVID-19/sangre , Prueba de Ácido Nucleico para COVID-19 , Chlorocebus aethiops , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Cinética , Liposomas/metabolismo , ARN Viral/genética , SARS-CoV-2/genética , Tetraspanina 28/inmunología , Tetraspanina 28/metabolismo
20.
J Clin Virol Plus ; 1(4): 100047, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35262027

RESUMEN

Serologic testing of residual blood samples from 812 children from a hospital in New Orleans, LA, between March and May 2020, demonstrated a SARS-CoV-2 seroprevalence of 6.8% based on S and N protein IgG; Black and Hispanic children, and children living in zip codes with lower household incomes were over-represented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA