Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(5): 101932, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35427647

RESUMEN

GPR84 is an immune cell-expressed, proinflammatory receptor currently being assessed as a therapeutic target in conditions including fibrosis and inflammatory bowel disease. Although it was previously shown that the orthosteric GPR84 activators 2-HTP and 6-OAU promoted its interactions with arrestin-3, a G protein-biased agonist DL-175 did not. Here, we show that replacement of all 21 serine and threonine residues within i-loop 3 of GPR84, but not the two serines in the C-terminal tail, eliminated the incorporation of [32P] and greatly reduced receptor-arrestin-3 interactions promoted by 2-HTP. GPR84 was phosphorylated constitutively on residues Ser221 and Ser224, while various other amino acids are phosphorylated in response to 2-HTP. Consistent with this, an antiserum able to identify pSer221/pSer224 recognized GPR84 from cells treated with and without activators, whereas an antiserum able to identify pThr263/pThr264 only recognized GPR84 after exposure to 2-HTP and not DL-175. Two distinct GPR84 antagonists as well as inhibition of G protein-coupled receptor kinase 2/3 prevented phosphorylation of pThr263/pThr264, but neither strategy affected constitutive phosphorylation of Ser221/Ser224. Furthermore, mutation of residues Thr263 and Thr264 to alanine generated a variant of GPR84 also limited in 2-HTP-induced interactions with arrestin-2 and -3. By contrast, this mutant was unaffected in its capacity to reduce cAMP levels. Taken together, these results define a key pair of threonine residues, regulated only by subsets of GPR84 small molecule activators and by GRK2/3 that define effective interactions with arrestins and provide novel tools to monitor the phosphorylation and functional status of GPR84.


Asunto(s)
Arrestinas , Treonina , Arrestinas/metabolismo , Humanos , Ligandos , Mutación , Fosforilación , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Serina/metabolismo , Treonina/metabolismo , Arrestina beta 2/metabolismo
2.
Glia ; 71(11): 2609-2622, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37470163

RESUMEN

Resident microglia are important to maintain homeostasis in the central nervous system, which includes the retina. The retinal microglia become activated in numerous pathological conditions, but the molecular signatures of these changes are poorly understood. Here, using an approach based on FACS and RNA-seq, we show that microglial gene expression patterns gradually change during RGC degeneration induced by optic nerve injury. Most importantly, we found that the microglial cells strongly expressed Tnf and Il1α, both of which are known to induce neurotoxic reactive astrocytes, and were characterized by Gpr84high -expressing cells in a particular subpopulation. Moreover, ripasudil, a Rho kinase inhibitor, significantly blunted Gpr84 expression and cytokine induction in vitro and in vivo. Finally, GPR84-deficient mice prevented RGC loss in optic nerve-injured retina. These results reveal that Rho kinase-mediated GPR84 alteration strongly contribute to microglial activation and promote neurotoxicity, suggesting that Rho-ROCK and GPR84 signaling may be potential therapeutic targets to prevent the neurotoxic microglial phenotype induced by optic nerve damage, such as occurs in traumatic optic neuropathy and glaucoma.


Asunto(s)
Traumatismos del Nervio Óptico , Ratones , Animales , Microglía/metabolismo , Células Ganglionares de la Retina , Quinasas Asociadas a rho/metabolismo , Neuroglía/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
3.
BMC Cancer ; 23(1): 426, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170248

RESUMEN

BACKGROUND: In previous study, we found that the content of medium-chain fatty acid Caprylic Acid (FFA C8:0) may be an important risk factor of obesity induced prostate cancer (PCa). However, the relationship between FFA C8:0 and PCa has not been reported. In this study, we explored whether the FFA C8:0 can promotes the progression of PCa by up-regulating Krüppel-like factor 7 (KLF7). METHODS: We collected tissues from PCa patients and Benign Prostate Hyperplasia (BPH), constructed a primary-tumor bearing mouse model with obesity through high-fat diet, and observed the tumor formation ability of PCa cells. In vitro, CCK8 assay, plate cloning, Transwell and scratch experiment were used to detect the changes in biological behavior of PCa cells stimulated by FFA C8:0. RESULTS: First, we found that the expression level of KLF7 is higher in PCa tissues of patients, and the expression of KLF7 is positively correlated with tumour-promoting gene IL-6, while it is negative correlated with another tumour-suppressor gene p21. Then, this study found that PCa cells were more likely to form tumors in diet induced obese mice. Compared with the normal diet group (ND), the expression levels of KLF7 in tumor tissues in high-fat diet group (HFD) were higher. Futhermore, we verified that high concentrations of FFA C8:0 can promote the biological behavior of PCa cells by activating KLF7/IL-6/p21 signaling pathway, which is mediated by the GPR84. CONCLUSIONS: Our research may provide a potential target for clinical prevention and treatment of PCa which induced by obesity.


Asunto(s)
Interleucina-6 , Neoplasias de la Próstata , Humanos , Masculino , Ratones , Animales , Línea Celular Tumoral , Neoplasias de la Próstata/patología , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Receptores Acoplados a Proteínas G/genética , Obesidad/complicaciones
4.
Acta Pharmacol Sin ; 44(8): 1665-1675, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37016043

RESUMEN

Acute lung injury (ALI) is an acute, progressive hypoxic respiratory failure that could develop into acute respiratory distress syndrome (ARDS) with very high mortality rate. ALI is believed to be caused by uncontrolled inflammation, and multiple types of immune cells, especially neutrophils, are critically involved in the development of ALI. The treatment for ALI/ARDS is very limited, a better understanding of the pathogenesis and new therapies are urgently needed. Here we discover that GPR84, a medium chain fatty acid receptor, plays critical roles in ALI development by regulating neutrophil functions. GPR84 is highly upregulated in the cells isolated from the bronchoalveolar lavage fluid of LPS-induced ALI mice. GPR84 deficiency or blockage significantly ameliorated ALI mice lung inflammation by reducing neutrophils infiltration and oxidative stress. Further studies reveal that activation of GPR84 strongly induced reactive oxygen species production from neutrophils by stimulating Lyn, AKT and ERK1/2 activation and the assembly of the NADPH oxidase. These results reveal an important role of GPR84 in neutrophil functions and lung inflammation and strongly suggest that GPR84 is a potential drug target for ALI.


Asunto(s)
Lesión Pulmonar Aguda , Neumonía , Síndrome de Dificultad Respiratoria , Animales , Ratones , Neutrófilos/patología , Neumonía/patología , Inflamación/tratamiento farmacológico , Lesión Pulmonar Aguda/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/patología , Lipopolisacáridos/efectos adversos
5.
J Neurosci ; 41(24): 5219-5228, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33941648

RESUMEN

The ability of mammalian taste cells to respond to fatty acids (FAs) has garnered significant attention of late and has been proposed to represent a sixth primary taste. With few exceptions, studies on FA taste have centered exclusively on polyunsaturated FAs, most notably on linoleic acid. In the current study, we have identified an additional FA receptor, GPR84, in the gustatory system that responds to the medium-chain saturated FAs (MCFAs) in male mice. GPR84 ligands activate both Type II and Type III taste cells in calcium imaging and patch-clamp recording assays. MCFAs depolarize and lead to a rise in intracellular free [Ca2+] in mouse taste cells in a concentration-dependent fashion, and the relative ligand specificity in taste cells is consistent with the response profile of GPR84 expressed in a heterologous system. A systemic Gpr84-/- mouse model reveals a specific deficit in both the neural (via chorda tympani recording) and behavioral responses to administration of oral MCFAs compared with WT mice. Together, we show that the peripheral taste system can respond to an additional class of FAs, the saturated FAs, and that the cognate receptor necessary for this ability is GPR84.


Asunto(s)
Ácidos Grasos , Receptores Acoplados a Proteínas G/metabolismo , Papilas Gustativas/metabolismo , Gusto/fisiología , Animales , Masculino , Ratones , Ratones Noqueados
6.
Pharmacol Res ; 176: 106047, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34968686

RESUMEN

G protein-coupled receptors (GPCRs) are key regulatory proteins of immune cell function inducing signaling in response to extracellular (pathogenic) stimuli. Although unrelated, hydroxycarboxylic acid receptor 3 (HCA3) and GPR84 share signaling via Gαi/o proteins and the agonist 3-hydroxydecanoic acid (3HDec). Both receptors are abundantly expressed in monocytes, macrophages and neutrophils but have opposing functions in these innate immune cells. Detailed insights into the molecular mechanisms and signaling components involved in immune cell regulation by GPR84 and HCA3 are still lacking. Here, we report that GPR84-mediated pro-inflammatory signaling depends on coupling to the hematopoietic cell-specific Gα15 protein in human macrophages, while HCA3 exclusively couples to Gαi protein. We show that activated GPR84 induces Gα15-dependent ERK activation, increases intracellular Ca2+ and IP3 levels as well as ROS production. In contrast, HCA3 activation shifts macrophage metabolism to a less glycolytic phenotype, which is associated with anti-inflammatory responses. This is supported by an increased release of anti-inflammatory IL-10 and a decreased secretion of pro-inflammatory IL-1ß. In primary human neutrophils, stimulation with HCA3 agonists counteracts the GPR84-induced neutrophil activation. Our analyses reveal that 3HDec acts solely through GPR84 but not HCA3 activation in macrophages. In summary, this study shows that HCA3 mediates hyporesponsiveness in response to metabolites derived from dietary lactic acid bacteria and uncovers that GPR84, which is already targeted in clinical trials, promotes pro-inflammatory signaling via Gα15 protein in macrophages.


Asunto(s)
Macrófagos/metabolismo , Neutrófilos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Escherichia coli/crecimiento & desarrollo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Inmunidad Innata , Lactobacillales , Fagocitosis , Especies Reactivas de Oxígeno/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Nicotínicos/genética
7.
Acta Pharmacol Sin ; 43(8): 2042-2054, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34912006

RESUMEN

The putative medium-chain free fatty acid receptor GPR84 is a G protein-coupled receptor primarily expressed in myeloid cells that constitute the innate immune system, including neutrophils, monocytes, and macrophages in the periphery and microglia in the brain. The fact that GPR84 expression in leukocytes is remarkably increased under acute inflammatory stimuli such as lipopolysaccharide (LPS) and TNFα suggests that it may play a role in the development of inflammatory and fibrotic diseases. Here we demonstrate that GPR84 is highly upregulated in inflamed colon tissues of active ulcerative colitis (UC) patients and dextran sulfate sodium (DSS)-induced colitis mice. Infiltrating GPR84+ macrophages are significantly increased in the colonic mucosa of both the UC patients and the mice with colitis. Consistently, GPR84-/- mice are resistant to the development of colitis induced by DSS. GPR84 activation imposes pro-inflammatory properties in colonic macrophages through enhancing NLRP3 inflammasome activation, while the loss of GPR84 prevents the M1 polarization and properties of proinflammatory macrophages. CLH536, a novel GPR84 antagonist discovered by us, suppresses colitis by reducing the polarization and function of pro-inflammatory macrophages. These results define a unique role of GPR84 in innate immune cells and intestinal inflammation, and suggest that GPR84 may serve as a potential drug target for the treatment of UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Colitis/inducido químicamente , Colitis/metabolismo , Colitis Ulcerosa/metabolismo , Sulfato de Dextran/toxicidad , Inflamasomas/metabolismo , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
8.
Microb Pathog ; 158: 105079, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34245824

RESUMEN

Brucella abortus, one of the most important members of the genus Brucella responsible for human disease, is an intracellular pathogen capable of avoiding or interfering components of the host immune responses that are critical for its virulence. GPR84, on the other hand, is a seven-transmembrane GPCR involved in the inflammatory response and its induced expression was associated with B. abortus infection of RAW264.7 cells. Here we examined the effects of the reported GPR84 surrogate and endogenous agonists, namely 6-n-octylaminouracil (6-OAU) and lauric acid (LU), respectively in the progression of B. abortus infection in a cell and mouse models. The in vitro studies revealed the LU had bactericidal effect against Brucella starting at 24 h post-incubation. Adhesion of Brucella to RAW264.7 cells was attenuated in both 6-OAU and LU treatments. Brucella uptake was observed to be inhibited in a dose and time-dependent manner in 6-OAU but only at the highest non-cytotoxic concentration in LU-treated cells. However, survival of Brucella within the cells was reduced only in LU-treated cells. We also investigated the possible inhibitory effects of the agonist in other Gram-negative bacterium, Salmonella Typhimurium and we found that both adhesion and uptake were inhibited in 6-OAU treatment and only the intracellular survival for LU treatment. Furthermore, 6-OAU treatment reduced ERK phosphorylation and MCP-1 secretion during Brucella infection as well as reduced MALT1 protein expression and ROS production in cells without infection. LU treatment attenuated ERK and JNK phosphorylation, MCP-1 secretion and NO accumulation but increased ROS production during infection, and similar pattern with MALT1 protein expression. The in vivo studies showed that both treatments via oral route augmented resistance to Brucella infection but more pronounced with 6-AOU as observed with reduced bacterial proliferation in spleens and livers. At 7 d post-treatment and 14 d post-infection, 6-OAU-treated mice displayed reduced IFN-γ serum level. At 7 d post-infection, high serum level of MCP-1 was observed in both treatments with the addition of TNF-α in LU group. IL-6 was increased in both treatments at 14 d post-infection with higher TNF-α, MCP-1 and IL-10 in LU group. Taken together, 6-OAU and LU are potential candidates representing pharmaceutical strategy against brucellosis and possibly other intracellular pathogens or inflammatory diseases.


Asunto(s)
Brucelosis , Ácidos Láuricos/farmacología , Receptores Acoplados a Proteínas G/agonistas , Uracilo/análogos & derivados , Animales , Brucella abortus , Bovinos , Humanos , Ratones , Células RAW 264.7 , Uracilo/farmacología
9.
Pharmacol Res ; 164: 105406, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33359913

RESUMEN

It is well known that free fatty acids (FFAs) have beneficial effects on the skeletal system, however, which fatty acid sensing GPCR(s) and how the GPCR(s) regulating cartilage development and osteoarthritis (OA) pathogenesis is largely unknown. In this study, we found Gpr84, a receptor for medium-chain FFAs (MCFA), was the only FFA-sensing GPCR in human and mouse chondrocytes that exhibited elevated expression when stimulated by interleukin (IL)-1ß. Gpr84-deficiency upregulated cartilage catabolic regulator expression and downregulated anabolic factor expression in the IL-1ß-induced cell model and the destabilization of the medial meniscus (DMM)-induced OA mouse model. Gpr84-/- mice exhibited an aggravated OA phenotype characterized by severe cartilage degradation, osteophyte formation and subchondral bone sclerosis. Moreover, activating Gpr84 directly enhanced cartilage extracellular matrix (ECM) generation while knockout of Gpr84 suppressed ECM-related gene expression. Especially, the agonists of GPR84 protected human OA cartilage explants against degeneration by inducing cartilage anabolic factor expression. At the molecular level, GPR84 activation inhibited IL-1ß-induced NF-κB signaling pathway. Furthermore, deletion of Gpr84 had little effect on articular and spine cartilaginous tissues during skeletal growth. Together, all of our results demonstrated that fatty acid sensing GPCR (Gpr84) signaling played a critical role in OA pathogenesis, and activation of GPR84 or MCFA supplementation has potential in preventing the pathogenesis and progression of OA without severe cartilaginous side effect.


Asunto(s)
Osteoartritis/genética , Receptores Acoplados a Proteínas G/genética , Animales , Artralgia/genética , Artralgia/metabolismo , Artralgia/patología , Cartílago/metabolismo , Cartílago/patología , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Ácidos Grasos/metabolismo , Homeostasis , Humanos , Interleucina-1beta/farmacología , Articulación de la Rodilla/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Columna Vertebral/patología , Tibia/patología
10.
Exp Brain Res ; 239(12): 3601-3613, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34591125

RESUMEN

The present study aimed to explore the potential mechanism of the effect of hyperbaric oxygenation (HBO) preconditioning on cerebral ischemia and reperfusion injury (CIRI). GSE23160 dataset was used to identify differentially expressed genes (DEGs) from striatum between the middle cerebral artery occlusion (MCAO)/reperfusion and sham rats. The gene clusters with continuous increase and decrease were identified by soft clustering analysis in Mfuzz, and functional enrichment analysis of these genes was performed using clusterProfiler package. The intersection set of the genes with significantly altered expression at post-reperfusion 2, 8, and 24 h were screened in comparison to 0 h (sham group), and the expression of these genes was detected in the MCAO/reperfusion model and HBO preconditioning groups by real-time PCR (RT-PCR) and western blotting. A total of 41 upregulated DEGs, and 7 downregulated DEGs were detected, among which the expression of Gpr84 and Ggta1 was significantly upregulated at each reperfusion phase as compared to the sham group, while the expression of Kcnk3 was significantly downregulated except in the postreperfusion 8 h in the striatum group. RT-PCR and western blotting analyses showed that the expression of Ggta1, Gpr84, and Kcnk3 genes between the MCAO/reperfusion and sham rats were consistent with the bioinformatics analysis. In addition, the HBO preconditioning reduced the expression of Ggta1 and Gpr84 and increased the expression of Kcnk3 in MCAO/reperfusion rats. Kcnk3, Ggta1, and Gpr84 may play a major role in HBO-mediated protection of the brain against CIRI.


Asunto(s)
Isquemia Encefálica , Oxigenoterapia Hiperbárica , Daño por Reperfusión , Animales , Infarto de la Arteria Cerebral Media , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control
11.
Cell Commun Signal ; 18(1): 31, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32102673

RESUMEN

BACKGROUND: Medium-chain fatty acids and their 3-hydroxy derivatives are metabolites endogenously produced in humans, food-derived or originating from bacteria. They activate G protein-coupled receptors, including GPR84 and HCA3, which regulate metabolism and immune functions. Although both receptors are coupled to Gi proteins, share at least one agonist and show overlapping tissue expression, GPR84 exerts pro-inflammatory effects whereas HCA3 is involved in anti-inflammatory responses. Here, we analyzed signaling kinetics of both HCA3 and GPR84, to unravel signal transduction components that may explain their physiological differences. METHODS: To study the signaling kinetics and components involved in signal transduction of both receptors we applied the label-free dynamic mass redistribution technology in combination with classical cAMP, ERK signaling and ß-arrestin-2 recruitment assays. For phenotypical analyses, we used spheroid cell culture models. RESULTS: We present strong evidence for a natural biased signaling of structurally highly similar agonists at HCA3 and GPR84. We show that HCA3 signaling and trafficking depends on dynamin-2 function. Activation of HCA3 by 3-hydroxyoctanoic acid but not 3-hydroxydecanoic acid leads to ß-arrestin-2 recruitment, which is relevant for cell-cell adhesion. GPR84 stimulation with 3-hydroxydecanoic acid causes a sustained ERK activation but activation of GPR84 is not followed by ß-arrestin-2 recruitment. CONCLUSIONS: In summary, our results highlight that biased agonism is a physiological property of HCA3 and GPR84 with relevance for innate immune functions potentially to differentiate between endogenous, non-pathogenic compounds and compounds originating from e.g. pathogenic bacteria. Video Abstract.


Asunto(s)
Receptores Acoplados a Proteínas G/inmunología , Receptores Nicotínicos/inmunología , Animales , Células CHO , Cricetulus , Células HEK293 , Humanos , Cinética , Transducción de Señal/inmunología
12.
Fish Shellfish Immunol ; 84: 1098-1099, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30414894

RESUMEN

GPR84 was identified as a receptor for medium-chain fatty acids with carbon chain lengths of 9-14. It has previously been reported that lipopolysaccharide (LPS) induces significantly up-regulation of zebrafish gpr84, and zebrafish gpr84 overexpression markedly increased the LPS-stimulated production of the cytokine IL-12. Here we expanded on these studies to further investigate the roles of zebrafish Gpr84 in immune reaction. Flow cytometric assay was used to assess the effects of zebrafish Gpr84 on the phagocytosis of bacteria by macrophages. It was found that overexpression of zebrafish gpr84 significantly increased both the phagocytic ability (PA) and phagocytic index (PI) values of the macrophages engulfing the bacteria, suggesting that zebrafish Gpr84 was able to promote the phagocytosis of bacteria by the macrophages. The data proves the direct effect of Gpr84 in immune reaction.


Asunto(s)
Macrófagos/fisiología , Fagocitosis/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/inmunología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/inmunología , Pez Cebra/fisiología , Animales , Escherichia coli/fisiología , Citometría de Flujo , Expresión Génica , Staphylococcus aureus/fisiología , Pez Cebra/genética , Pez Cebra/inmunología
13.
J Cell Physiol ; 233(2): 1481-1489, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28574596

RESUMEN

GPR84, a member of the G protein-coupled receptor family, is found predominantly in immune cells, such as macrophages, and functions as a pivotal modulator of inflammatory responses. In this study, we investigated the role of GPR84 in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. Our microarray data showed that GPR84 was significantly downregulated in osteoclasts compared to in their precursors, macrophages. The overexpression of GPR84 in bone marrow-derived macrophages suppressed the formation of multinucleated osteoclasts without affecting precursor proliferation. In addition, GPR84 overexpression attenuated the induction of c-Fos and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), which are transcription factors that are critical for osteoclastogenesis. Furthermore, knockdown of GPR84 using a small hairpin RNA promoted RANKL-mediated osteoclast differentiation and gene expression of osteoclastogenic markers. Mechanistically, GPR84 overexpression blocked RANKL-stimulated phosphorylation of IκBα and three MAPKs, JNK, ERK, and p38. GPR84 also suppressed NF-κB transcriptional activity mediated by RANKL. Conversely, GPR84 knockdown enhanced RANKL-induced activation of IκBα and the three MAPKs. Collectively, our results revealed that GPR84 functions as a negative regulator of osteoclastogenesis, suggesting that it may be a potential therapeutic target for osteoclast-mediated bone-destructive diseases.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Osteoclastos/enzimología , Osteogénesis , Receptores Acoplados a Proteínas G/metabolismo , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ligando RANK/genética , Ligando RANK/metabolismo , Células RAW 264.7 , Interferencia de ARN , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Factores de Tiempo , Transfección
14.
Cytokine ; 110: 189-193, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29775920

RESUMEN

Expression of GPCR fatty acid sensor/receptor genes in adipocytes is modulated by inflammatory mediators, particularly IL-1ß. In this study we examined whether the IL-1 gene superfamily member, IL-33, also regulates expression of the fatty acid receptor genes in adipocytes. Human fat cells, differentiated from preadipocytes, were incubated with IL-33 at three different dose levels for 3 or 24 h and mRNA measured by qPCR. Treatment with IL-33 induced a dose-dependent increase in GPR84 mRNA at 3 h, the level with the highest dose being 13.7-fold greater than in controls. Stimulation of GPR84 expression was transitory; the mRNA level was not elevated at 24 h. In contrast to GPR84, IL-33 had no effect on GPR120 expression. IL-33 markedly stimulated expression of the IL1B, CCL2, IL6, CXCL2 and CSF3 genes, but there was no effect on ADIPOQ expression. The largest effect was on CSF3, the mRNA level of which increased 183-fold over controls at 3 h with the highest dose of IL-33; there was a parallel increase in the secretion of G-CSF protein into the medium. It is concluded that in human adipocytes IL-33, which is synthesised in adipose tissue, has a strong stimulatory effect on the expression of cytokine and chemokine genes, particularly CSF3, and on the expression of GPR84, a pro-inflammatory fatty acid receptor.


Asunto(s)
Adipocitos/metabolismo , Quimiocinas/genética , Citocinas/genética , Interleucina-33/genética , Receptores de Superficie Celular/genética , Adiponectina/genética , Tejido Adiposo/metabolismo , Células Cultivadas , Ácidos Grasos/genética , Factor Estimulante de Colonias de Granulocitos/genética , Humanos , Interleucina-1beta/genética , Macrófagos/metabolismo , ARN Mensajero/genética , Receptores Acoplados a Proteínas G , Factor de Necrosis Tumoral alfa/genética
15.
Pharmacol Res ; 131: 185-198, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29471103

RESUMEN

GPR84 is an orphan G-protein coupled receptor, expressed on monocytes, macrophages and neutrophils and is significantly upregulated by inflammatory stimuli. The physiological role of GPR84 remains largely unknown. Medium chain fatty acids (MCFA) activate the receptor and have been proposed to be its endogenous ligands, although the high concentrations of MCFAs required for receptor activation generally exceed normal physiological levels. We identified the natural product embelin as a highly potent and selective surrogate GPR84 agonist (originally disclosed in patent application WO2007027661A2, 2007) and synthesized close structural analogs with widely varying receptor activities. These tools were used to perform a comprehensive study of GPR84 signaling and function in recombinant cells and in primary human macrophages and neutrophils. Activation of recombinant GPR84 by embelin in HEK293 cells results in Gi/o as well as G12/13-Rho signaling. In human macrophages, GPR84 initiates PTX sensitive Erk1/2 and Akt phosphorylation, PI-3 kinase activation, calcium flux, and release of prostaglandin E2. In addition, GPR84 signaling in macrophages elicits Gi Gßγ-mediated augmentation of intracellular cAMP, rather than the decrease expected from Giα engagement. GPR84 activation drives human neutrophil chemotaxis and primes them for amplification of oxidative burst induced by FMLP and C5A. Loss of GPR84 is associated with attenuated LPS-induced release of proinflammatory mediators IL-6, KC-GROα, VEGF, MIP-2 and NGAL from peritoneal exudates. While initiating numerous proinflammatory activities in macrophages and neutrophils, GPR84 also possesses GPR109A-like antiatherosclerotic properties in macrophages. Macrophage receptor activation leads to upregulation of cholesterol transporters ABCA1 and ABCG1 and stimulates reverse cholesterol transport. These data suggest that GPR84 may be a target of therapeutic value and that distinct modes of receptor modulation (inhibition vs. stimulation) may be required for inflammatory and atherosclerotic indications.


Asunto(s)
Benzoquinonas/química , Benzoquinonas/farmacología , Macrófagos/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Receptores de Superficie Celular/agonistas , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Células HEK293 , Humanos , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Mar Drugs ; 16(10)2018 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297608

RESUMEN

Bacteria of the family Rhodobacteraceae are widespread in marine environments and known to colonize surfaces, such as those of e.g., oysters and shells. The marine bacterium Labrenzia sp. 011 is here investigated and it was found to produce two cyclopropane-containing medium-chain fatty acids (1, 2), which inhibit the growth of a range of bacteria and fungi, most effectively that of a causative agent of Roseovarius oyster disease (ROD), Pseudoroseovarius crassostreae DSM 16950. Additionally, compound 2 acts as a potent partial, ß-arrestin-biased agonist at the medium-chain fatty acid-activated orphan G-protein coupled receptor GPR84, which is highly expressed on immune cells. The genome of Labrenzia sp. 011 was sequenced and bioinformatically compared with those of other Labrenzia spp. This analysis revealed several cyclopropane fatty acid synthases (CFAS) conserved in all Labrenzia strains analyzed and a putative gene cluster encoding for two distinct CFASs is proposed as the biosynthetic origin of 1 and 2.


Asunto(s)
Antibacterianos/farmacología , Organismos Acuáticos/metabolismo , Ciclopropanos/farmacología , Ácidos Grasos/farmacología , Receptores de Superficie Celular/metabolismo , Rhodobacteraceae/metabolismo , Animales , Antibacterianos/metabolismo , Ciclopropanos/metabolismo , Ácidos Grasos/metabolismo , Metiltransferasas/metabolismo , Ostreidae/microbiología , beta-Arrestinas/metabolismo
17.
Handb Exp Pharmacol ; 236: 57-77, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27757764

RESUMEN

Five G protein-coupled receptors (GPCRs) have been identified to be activated by free fatty acids (FFA). Among them, FFA1 (GPR40) and FFA4 (GPR120) bind long-chain fatty acids, FFA2 (GPR43) and FFA3 (GPR41) bind short-chain fatty acids and GPR84 binds medium-chain fatty acids. Free fatty acid receptors have now emerged as potential targets for the treatment of diabetes, obesity and immune diseases. The recent progress in crystallography of GPCRs has now enabled the elucidation of the structure of FFA1 and provided reliable templates for homology modelling of other FFA receptors. Analysis of the crystal structure and improved homology models, along with mutagenesis data and structure activity, highlighted an unusual arginine charge-pairing interaction in FFA1-3 for receptor modulation, distinct structural features for ligand binding to FFA1 and FFA4 and an arginine of the second extracellular loop as a possible anchoring point for FFA at GPR84. Structural data will be helpful for searching novel small-molecule modulators at the FFA receptors.


Asunto(s)
Ácidos Grasos no Esterificados/metabolismo , Modelos Moleculares , Receptores Acoplados a Proteínas G/química , Animales , Cristalografía por Rayos X , Humanos , Simulación del Acoplamiento Molecular , Receptores de Superficie Celular/química
18.
Br J Pharmacol ; 181(10): 1500-1508, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37085331

RESUMEN

GPR84 is an understudied rhodopsin-like class A G protein-coupled receptor, which is arousing particular interest from a therapeutic perspective. Not least this reflects that gpr84 expression is significantly up-regulated following acute inflammatory stimuli and in inflammatory diseases, and that receptor activation plays a role in regulating pro-inflammatory responses and migration of cells of the innate immune system such as neutrophils, monocytes, macrophages and microglia. Although most physiological responses of GPR84 reflect receptor coupling to Gαi/o-proteins, several studies indicate that agonist-activated GPR84 can recruit arrestin adaptor proteins and this regulates receptor internalisation and desensitisation. To date, little is known on the patterns of either basal or ligand regulated GPR84 phosphorylation and how these might control these processes. Here, we consider what is known about the regulation of GPR84 signalling with a focus on how G protein receptor kinase-mediated phosphorylation regulates arrestin protein recruitment and receptor function. LINKED ARTICLES: This article is part of a themed issue GPR84 Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.10/issuetoc.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Receptores Acoplados a Proteínas G/metabolismo , Macrófagos/metabolismo , Fosforilación , Arrestina/metabolismo
19.
Br J Pharmacol ; 181(10): 1536-1549, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-36869866

RESUMEN

Human neutrophils are components of the innate immune system and are the most abundant white blood cells in the circulation. They are professional phagocytes and express several G protein-coupled receptors (GPCRs), which are essential for proper neutrophil functions. So far, the two formyl peptide receptors, FPR1 and FPR2, have been the most extensively studied group of neutrophil GPCRs, but recently, a new group, the free fatty acid (FFA) receptors, has attracted growing attention. Neutrophils express two FFA receptors, GPR84 and FFA2, which sense medium- and short-chain fatty acids respectively, and display similar activation profiles. The exact pathophysiological role of GPR84 is not yet fully understood, but it is generally regarded as a pro-inflammatory receptor that mediates neutrophil activation. In this review, we summarize current knowledge of how GPR84 affects human neutrophil functions and discuss the regulatory mechanisms that control these responses, focusing on the similarities and differences in comparison to the two FPRs and FFA2. LINKED ARTICLES: This article is part of a themed issue GPR84 Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.10/issuetoc.


Asunto(s)
Neutrófilos , Transducción de Señal , Humanos , Receptores de Formil Péptido , Fagocitos , Receptores Acoplados a Proteínas G
20.
Dis Model Mech ; 17(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38131137

RESUMEN

Shigella flexneri is a human-adapted pathovar of Escherichia coli that can invade the intestinal epithelium, causing inflammation and bacillary dysentery. Although an important human pathogen, the host response to S. flexneri has not been fully described. Zebrafish larvae represent a valuable model for studying human infections in vivo. Here, we use a Shigella-zebrafish infection model to generate mRNA expression profiles of host response to Shigella infection at the whole-animal level. Immune response-related processes dominate the signature of early Shigella infection (6 h post-infection). Consistent with its clearance from the host, the signature of late Shigella infection (24 h post-infection) is significantly changed, and only a small set of immune-related genes remain differentially expressed, including acod1 and gpr84. Using mutant lines generated by ENU, CRISPR mutagenesis and F0 crispants, we show that acod1- and gpr84-deficient larvae are more susceptible to Shigella infection. Together, these results highlight the power of zebrafish to model infection by bacterial pathogens and reveal the mRNA expression of the early (acutely infected) and late (clearing) host response to Shigella infection.


Asunto(s)
Disentería Bacilar , Animales , Humanos , Disentería Bacilar/genética , Shigella flexneri/genética , Shigella flexneri/metabolismo , Pez Cebra/genética , Pez Cebra/microbiología , Inflamación/microbiología , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA