Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.529
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(5): 940-956.e20, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36764291

RESUMEN

Fingerprints are complex and individually unique patterns in the skin. Established prenatally, the molecular and cellular mechanisms that guide fingerprint ridge formation and their intricate arrangements are unknown. Here we show that fingerprint ridges are epithelial structures that undergo a truncated hair follicle developmental program and fail to recruit a mesenchymal condensate. Their spatial pattern is established by a Turing reaction-diffusion system, based on signaling between EDAR, WNT, and antagonistic BMP pathways. These signals resolve epithelial growth into bands of focalized proliferation under a precociously differentiated suprabasal layer. Ridge formation occurs as a set of waves spreading from variable initiation sites defined by the local signaling environments and anatomical intricacies of the digit, with the propagation and meeting of these waves determining the type of pattern that forms. Relying on a dynamic patterning system triggered at spatially distinct sites generates the characteristic types and unending variation of human fingerprint patterns.


Asunto(s)
Transducción de Señal , Piel , Humanos , Piel/metabolismo
2.
Cell ; 184(18): 4669-4679.e13, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34390643

RESUMEN

Hearing involves two fundamental processes: mechano-electrical transduction and signal amplification. Despite decades of studies, the molecular bases for both remain elusive. Here, we show how prestin, the electromotive molecule of outer hair cells (OHCs) that senses both voltage and membrane tension, mediates signal amplification by coupling conformational changes to alterations in membrane surface area. Cryoelectron microscopy (cryo-EM) structures of human prestin bound with chloride or salicylate at a common "anion site" adopt contracted or expanded states, respectively. Prestin is ensconced within a perimeter of well-ordered lipids, through which it induces dramatic deformation in the membrane and couples protein conformational changes to the bulk membrane. Together with computational studies, we illustrate how the anion site is allosterically coupled to changes in the transmembrane domain cross-sectional area and the surrounding membrane. These studies provide insight into OHC electromotility by providing a structure-based mechanism of the membrane motor prestin.


Asunto(s)
Fenómenos Electrofisiológicos , Transportadores de Sulfato/metabolismo , Aniones , Sitios de Unión , Cloruros/metabolismo , Microscopía por Crioelectrón , Células HEK293 , Humanos , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica , Ácido Salicílico/metabolismo , Homología Estructural de Proteína , Transportadores de Sulfato/química , Transportadores de Sulfato/ultraestructura
3.
Cell ; 182(3): 578-593.e19, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32679029

RESUMEN

Piloerection (goosebumps) requires concerted actions of the hair follicle, the arrector pili muscle (APM), and the sympathetic nerve, providing a model to study interactions across epithelium, mesenchyme, and nerves. Here, we show that APMs and sympathetic nerves form a dual-component niche to modulate hair follicle stem cell (HFSC) activity. Sympathetic nerves form synapse-like structures with HFSCs and regulate HFSCs through norepinephrine, whereas APMs maintain sympathetic innervation to HFSCs. Without norepinephrine signaling, HFSCs enter deep quiescence by down-regulating the cell cycle and metabolism while up-regulating quiescence regulators Foxp1 and Fgf18. During development, HFSC progeny secretes Sonic Hedgehog (SHH) to direct the formation of this APM-sympathetic nerve niche, which in turn controls hair follicle regeneration in adults. Our results reveal a reciprocal interdependence between a regenerative tissue and its niche at different stages and demonstrate sympathetic nerves can modulate stem cells through synapse-like connections and neurotransmitters to couple tissue production with demands.


Asunto(s)
Nervio Accesorio/fisiología , Folículo Piloso/citología , Cabello/crecimiento & desarrollo , Proteínas Hedgehog/metabolismo , Norepinefrina/metabolismo , Transducción de Señal/genética , Células Madre/metabolismo , Células Madre/fisiología , Nervio Accesorio/citología , Animales , Ciclo Celular/genética , Frío , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Cabello/citología , Cabello/fisiología , Folículo Piloso/crecimiento & desarrollo , Folículo Piloso/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Piloerección , RNA-Seq , Receptores Adrenérgicos beta 2/deficiencia , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Nicho de Células Madre , Células Madre/citología , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/fisiología , Sinapsis/fisiología
4.
Immunity ; 57(5): 1071-1086.e7, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38677291

RESUMEN

Following tissue damage, epithelial stem cells (SCs) are mobilized to enter the wound, where they confront harsh inflammatory environments that can impede their ability to repair the injury. Here, we investigated the mechanisms that protect skin SCs within this inflammatory environment. Characterization of gene expression profiles of hair follicle SCs (HFSCs) that migrated into the wound site revealed activation of an immune-modulatory program, including expression of CD80, major histocompatibility complex class II (MHCII), and CXC motif chemokine ligand 5 (CXCL5). Deletion of CD80 in HFSCs impaired re-epithelialization, reduced accumulation of peripherally generated Treg (pTreg) cells, and increased infiltration of neutrophils in wounded skin. Importantly, similar wound healing defects were also observed in mice lacking pTreg cells. Our findings suggest that upon skin injury, HFSCs establish a temporary protective network by promoting local expansion of Treg cells, thereby enabling re-epithelialization while still kindling inflammation outside this niche until the barrier is restored.


Asunto(s)
Antígeno B7-1 , Folículo Piloso , Inflamación , Piel , Células Madre , Linfocitos T Reguladores , Cicatrización de Heridas , Animales , Linfocitos T Reguladores/inmunología , Ratones , Cicatrización de Heridas/inmunología , Piel/inmunología , Piel/lesiones , Piel/patología , Células Madre/inmunología , Células Madre/metabolismo , Inflamación/inmunología , Folículo Piloso/inmunología , Antígeno B7-1/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Repitelización/inmunología , Movimiento Celular/inmunología , Proliferación Celular
5.
Cell ; 174(3): 536-548.e21, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29961578

RESUMEN

The DNA-binding protein REST forms complexes with histone deacetylases (HDACs) to repress neuronal genes in non-neuronal cells. In differentiating neurons, REST is downregulated predominantly by transcriptional silencing. Here we report that post-transcriptional inactivation of REST by alternative splicing is required for hearing in humans and mice. We show that, in the mechanosensory hair cells of the mouse ear, regulated alternative splicing of a frameshift-causing exon into the Rest mRNA is essential for the derepression of many neuronal genes. Heterozygous deletion of this alternative exon of mouse Rest causes hair cell degeneration and deafness, and the HDAC inhibitor SAHA (Vorinostat) rescues the hearing of these mice. In humans, inhibition of the frameshifting splicing event by a novel REST variant is associated with dominantly inherited deafness. Our data reveal the necessity for alternative splicing-dependent regulation of REST in hair cells, and they identify a potential treatment for a group of hereditary deafness cases.


Asunto(s)
Sordera/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Empalme Alternativo/genética , Animales , Línea Celular , Exones , Regulación de la Expresión Génica/genética , Células HEK293 , Células Ciliadas Auditivas/fisiología , Audición/genética , Audición/fisiología , Inhibidores de Histona Desacetilasas/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas , Empalme del ARN/genética , Proteínas Represoras/fisiología , Factores de Transcripción , Vorinostat/farmacología
6.
Cell ; 174(5): 1247-1263.e15, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30078710

RESUMEN

Type I spiral ganglion neurons (SGNs) transmit sound information from cochlear hair cells to the CNS. Using transcriptome analysis of thousands of single neurons, we demonstrate that murine type I SGNs consist of subclasses that are defined by the expression of subsets of transcription factors, cell adhesion molecules, ion channels, and neurotransmitter receptors. Subtype specification is initiated prior to the onset of hearing during the time period when auditory circuits mature. Gene mutations linked to deafness that disrupt hair cell mechanotransduction or glutamatergic signaling perturb the firing behavior of SGNs prior to hearing onset and disrupt SGN subtype specification. We thus conclude that an intact hair cell mechanotransduction machinery is critical during the pre-hearing period to regulate the firing behavior of SGNs and their segregation into subtypes. Because deafness is frequently caused by defects in hair cells, our findings have significant ramifications for the etiology of hearing loss and its treatment.


Asunto(s)
Células Ciliadas Auditivas/fisiología , Audición/fisiología , Mecanotransducción Celular , Neuronas/fisiología , Transducción de Señal , Ganglio Espiral de la Cóclea/fisiología , Animales , Análisis por Conglomerados , Marcadores Genéticos , Masculino , Ratones , Ratones Endogámicos CBA , Ratones Noqueados , Mutación , Neuroglía/fisiología , Análisis de Secuencia de ARN
7.
Annu Rev Cell Dev Biol ; 35: 567-589, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31553635

RESUMEN

Deafness or hearing deficits are debilitating conditions. They are often caused by loss of sensory hair cells or defects in their function. In contrast to mammals, nonmammalian vertebrates robustly regenerate hair cells after injury. Studying the molecular and cellular basis of nonmammalian vertebrate hair cell regeneration provides valuable insights into developing cures for human deafness. In this review, we discuss the current literature on hair cell regeneration in the context of other models for sensory cell regeneration, such as the retina and the olfactory epithelium. This comparison reveals commonalities with, as well as differences between, the different regenerating systems, which begin to define a cellular and molecular blueprint of regeneration. In addition, we propose how new technical advances can address outstanding questions in the field.


Asunto(s)
Células Madre Adultas/metabolismo , Oído Interno/metabolismo , Células Ciliadas Auditivas/fisiología , Mucosa Olfatoria/metabolismo , Regeneración/fisiología , Retina/metabolismo , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Citocinas/metabolismo , Oído Interno/citología , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Macrófagos/metabolismo , Regeneración/genética , Retina/citología , Transducción de Señal/genética , Transducción de Señal/fisiología , Heridas y Lesiones/genética , Heridas y Lesiones/metabolismo
8.
Cell ; 169(6): 1119-1129.e11, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28552347

RESUMEN

The maintenance of tissue homeostasis is critically dependent on the function of tissue-resident immune cells and the differentiation capacity of tissue-resident stem cells (SCs). How immune cells influence the function of SCs is largely unknown. Regulatory T cells (Tregs) in skin preferentially localize to hair follicles (HFs), which house a major subset of skin SCs (HFSCs). Here, we mechanistically dissect the role of Tregs in HF and HFSC biology. Lineage-specific cell depletion revealed that Tregs promote HF regeneration by augmenting HFSC proliferation and differentiation. Transcriptional and phenotypic profiling of Tregs and HFSCs revealed that skin-resident Tregs preferentially express high levels of the Notch ligand family member, Jagged 1 (Jag1). Expression of Jag1 on Tregs facilitated HFSC function and efficient HF regeneration. Taken together, our work demonstrates that Tregs in skin play a major role in HF biology by promoting the function of HFSCs.


Asunto(s)
Folículo Piloso/citología , Células Madre/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Células Epiteliales/metabolismo , Folículo Piloso/metabolismo , Humanos , Inflamación/metabolismo , Proteína Jagged-1/metabolismo , Ratones
9.
Immunity ; 55(10): 1891-1908.e12, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36044899

RESUMEN

Demodex mites are commensal parasites of hair follicles (HFs). Normally asymptomatic, inflammatory outgrowth of mites can accompany malnutrition, immune dysfunction, and aging, but mechanisms restricting Demodex outgrowth are not defined. Here, we show that control of mite HF colonization in mice required group 2 innate lymphoid cells (ILC2s), interleukin-13 (IL-13), and its receptor, IL-4Ra-IL-13Ra1. HF-associated ILC2s elaborated IL-13 that attenuated HFs and epithelial proliferation at anagen onset; in their absence, Demodex colonization led to increased epithelial proliferation and replacement of gene programs for repair by aberrant inflammation, leading to the loss of barrier function and HF exhaustion. Humans with rhinophymatous acne rosacea, an inflammatory condition associated with Demodex, had increased HF inflammation with decreased type 2 cytokines, consistent with the inverse relationship seen in mice. Our studies uncover a key role for skin ILC2s and IL-13, which comprise an immune checkpoint that sustains cutaneous integrity and restricts pathologic infestation by colonizing HF mites.


Asunto(s)
Infestaciones por Ácaros , Ácaros , Animales , Citocinas , Folículo Piloso/patología , Humanos , Inmunidad Innata , Inflamación , Interleucina-13 , Linfocitos/patología , Ratones , Infestaciones por Ácaros/complicaciones , Infestaciones por Ácaros/parasitología , Infestaciones por Ácaros/patología , Simbiosis
10.
Immunity ; 54(10): 2321-2337.e10, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34582748

RESUMEN

Hair follicles (HFs) function as hubs for stem cells, immune cells, and commensal microbes, which must be tightly regulated during homeostasis and transient inflammation. Here we found that transmembrane endopeptidase ADAM10 expression in upper HFs was crucial for regulating the skin microbiota and protecting HFs and their stem cell niche from inflammatory destruction. Ablation of the ADAM10-Notch signaling axis impaired the innate epithelial barrier and enabled Corynebacterium species to predominate the microbiome. Dysbiosis triggered group 2 innate lymphoid cell-mediated inflammation in an interleukin-7 (IL-7) receptor-, S1P receptor 1-, and CCR6-dependent manner, leading to pyroptotic cell death of HFs and irreversible alopecia. Double-stranded RNA-induced ablation models indicated that the ADAM10-Notch signaling axis bolsters epithelial innate immunity by promoting ß-defensin-6 expression downstream of type I interferon responses. Thus, ADAM10-Notch signaling axis-mediated regulation of host-microbial symbiosis crucially protects HFs from inflammatory destruction, which has implications for strategies to sustain tissue integrity during chronic inflammation.


Asunto(s)
Proteína ADAM10/inmunología , Secretasas de la Proteína Precursora del Amiloide/inmunología , Disbiosis/inmunología , Folículo Piloso/patología , Linfocitos/inmunología , Proteínas de la Membrana/inmunología , Receptores Notch/inmunología , Piel/microbiología , Alopecia/inmunología , Alopecia/patología , Animales , Corynebacterium , Disbiosis/patología , Femenino , Folículo Piloso/inmunología , Inmunidad Innata , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Ratones , Transducción de Señal/inmunología , Piel/inmunología , Piel/patología
11.
Immunity ; 50(3): 655-667.e4, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893588

RESUMEN

Restoration of barrier-tissue integrity after injury is dependent on the function of immune cells and stem cells (SCs) residing in the tissue. In response to skin injury, hair-follicle stem cells (HFSCs), normally poised for hair generation, are recruited to the site of injury and differentiate into cells that repair damaged epithelium. We used a SC fate-mapping approach to examine the contribution of regulatory T (Treg) cells to epidermal-barrier repair after injury. Depletion of Treg cells impaired skin-barrier regeneration and was associated with a Th17 inflammatory response and failed HFSC differentiation. In this setting, damaged epithelial cells preferentially expressed the neutrophil chemoattractant CXCL5, and blockade of CXCL5 or neutrophil depletion restored barrier function and SC differentiation after epidermal injury. Thus, Treg-cell regulation of localized inflammation enables HFSC differentiation and, thereby, skin-barrier regeneration, with implications for the maintenance and repair of other barrier tissues.


Asunto(s)
Diferenciación Celular/fisiología , Quimiocina CXCL5/metabolismo , Epidermis/metabolismo , Folículo Piloso/metabolismo , Interleucina-17/metabolismo , Regeneración/fisiología , Linfocitos T Reguladores/metabolismo , Animales , Células Epidérmicas/metabolismo , Células Epiteliales/metabolismo , Cabello/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre/metabolismo
12.
EMBO J ; 42(4): e112118, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36594367

RESUMEN

Sensory-independent Ca2+ spiking regulates the development of mammalian sensory systems. In the immature cochlea, inner hair cells (IHCs) fire spontaneous Ca2+ action potentials (APs) that are generated either intrinsically or by intercellular Ca2+ waves in the nonsensory cells. The extent to which either or both of these Ca2+ signalling mechansims are required for IHC maturation is unknown. We find that intrinsic Ca2+ APs in IHCs, but not those elicited by Ca2+ waves, regulate the maturation and maintenance of the stereociliary hair bundles. Using a mouse model in which the potassium channel Kir2.1 is reversibly overexpressed in IHCs (Kir2.1-OE), we find that IHC membrane hyperpolarization prevents IHCs from generating intrinsic Ca2+ APs but not APs induced by Ca2+ waves. Absence of intrinsic Ca2+ APs leads to the loss of mechanoelectrical transduction in IHCs prior to hearing onset due to progressive loss or fusion of stereocilia. RNA-sequencing data show that pathways involved in morphogenesis, actin filament-based processes, and Rho-GTPase signaling are upregulated in Kir2.1-OE mice. By manipulating in vivo expression of Kir2.1 channels, we identify a "critical time period" during which intrinsic Ca2+ APs in IHCs regulate hair-bundle function.


Asunto(s)
Células Ciliadas Auditivas Internas , Transducción de Señal , Animales , Células Ciliadas Auditivas Internas/fisiología , Potenciales de Acción/fisiología , Cóclea/fisiología , Mamíferos
13.
EMBO J ; 42(23): e114587, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37800695

RESUMEN

Our sense of hearing enables the processing of stimuli that differ in sound pressure by more than six orders of magnitude. How to process a wide range of stimulus intensities with temporal precision is an enigmatic phenomenon of the auditory system. Downstream of dynamic range compression by active cochlear micromechanics, the inner hair cells (IHCs) cover the full intensity range of sound input. Yet, the firing rate in each of their postsynaptic spiral ganglion neurons (SGNs) encodes only a fraction of it. As a population, spiral ganglion neurons with their respective individual coding fractions cover the entire audible range. How such "dynamic range fractionation" arises is a topic of current research and the focus of this review. Here, we discuss mechanisms for generating the diverse functional properties of SGNs and formulate testable hypotheses. We postulate that an interplay of synaptic heterogeneity, molecularly distinct subtypes of SGNs, and efferent modulation serves the neural decomposition of sound information and thus contributes to a population code for sound intensity.


Asunto(s)
Cóclea , Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas Internas/fisiología , Sonido , Sinapsis/fisiología , Ganglio Espiral de la Cóclea
14.
EMBO J ; 42(10): e112196, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36994549

RESUMEN

Blood vessels can play dual roles in tissue growth by transporting gases and nutrients and by regulating tissue stem cell activity via signaling. Correlative evidence implicates skin endothelial cells (ECs) as signaling niches of hair follicle stem cells (HFSCs), but functional demonstration from gene depletion of signaling molecules in ECs is missing to date. Here, we show that depletion of the vasculature-factor Alk1 increases BMP4 secretion from ECs, which delays HFSC activation. Furthermore, while previous evidence suggests a lymphatic vessel role in adult HFSC activation possibly through tissue drainage, a blood vessel role has not yet been addressed. Genetic perturbation of the ALK1-BMP4 axis in all ECs or the lymphatic ECs specifically unveils inhibition of HFSC activation by blood vessels. Our work suggests a broader relevance of blood vessels, adding adult HFSCs to the EC functional repertoire as signaling niches for the adult stem cells.


Asunto(s)
Receptores de Activinas Tipo II , Células Madre Adultas , Proteína Morfogenética Ósea 4 , Folículo Piloso , Animales , Ratones , Células Endoteliales , Transducción de Señal , Células Madre , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo
15.
Annu Rev Neurosci ; 42: 67-86, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-30699050

RESUMEN

The genetic approach, based on the study of inherited forms of deafness, has proven to be particularly effective for deciphering the molecular mechanisms underlying the development of the peripheral auditory system, the cochlea and its afferent auditory neurons, and how this system extracts the physical parameters of sound. Although this genetic dissection has provided little information about the central auditory system, scattered data suggest that some genes may have a critical role in both the peripheral and central auditory systems. Here, we review the genes controlling the development and function of the peripheral and central auditory systems, focusing on those with demonstrated intrinsic roles in both systems and highlighting the current underappreciation of these genes. Their encoded products are diverse, from transcription factors to ion channels, as are their roles in the central auditory system, mostly evaluated in brainstem nuclei. We examine the ontogenetic and evolutionary mechanisms that may underlie their expression at different sites.


Asunto(s)
Vías Auditivas/fisiología , Regulación del Desarrollo de la Expresión Génica , Genes , Neurogénesis/genética , Animales , Vías Auditivas/crecimiento & desarrollo , Evolución Biológica , Cóclea/embriología , Cóclea/crecimiento & desarrollo , Cóclea/fisiología , Ontología de Genes , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/fisiología , Trastornos de la Audición/genética , Humanos , Canales Iónicos/genética , Canales Iónicos/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Rombencéfalo/embriología , Rombencéfalo/crecimiento & desarrollo , Rombencéfalo/fisiología , Células Receptoras Sensoriales/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
16.
Development ; 151(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38276966

RESUMEN

Cell shape is a powerful readout of cell state, fate and function. We describe a custom workflow to perform semi-automated, 3D cell and nucleus segmentation, and spherical harmonics and principal components analysis to distill cell and nuclear shape variation into discrete biologically meaningful parameters. We apply these methods to analyze shape in the neuromast cells of the zebrafish lateral line system, finding that shapes vary with cell location and identity. The distinction between hair cells and support cells accounted for much of the variation, which allowed us to train classifiers to predict cell identity from shape features. Using transgenic markers for support cell subpopulations, we found that subtypes had different shapes from each other. To investigate how loss of a neuromast cell type altered cell shape distributions, we examined atoh1a mutants that lack hair cells. We found that mutant neuromasts lacked the cell shape phenotype associated with hair cells, but did not exhibit a mutant-specific cell shape. Our results demonstrate the utility of using 3D cell shape features to characterize, compare and classify cells in a living developing organism.


Asunto(s)
Sistema de la Línea Lateral , Pez Cebra , Animales , Pez Cebra/genética , Forma de la Célula , Animales Modificados Genéticamente , Células Ciliadas Auditivas/fisiología
17.
Development ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39045613

RESUMEN

Death of mechanosensory hair cells in the inner ear is a common cause of auditory and vestibular impairment in mammals, which have a limited ability to regrow these cells after damage. In contrast, non-mammalian vertebrates including zebrafish can robustly regenerate hair cells following severe organ damage. The zebrafish inner ear provides an understudied model system for understanding hair cell regeneration in organs that are highly conserved with their mammalian counterparts. Here we quantitatively examine hair cell addition during growth and regeneration of the larval zebrafish inner ear. We used a genetically encoded ablation method to induce hair cell death and observed gradual regeneration with correct spatial patterning over two weeks following ablation. Supporting cells, which surround and are a source of new hair cells, divide in response to hair cell ablation, expanding the possible progenitor pool. In parallel, nascent hair cells arise from direct transdifferentiation of progenitor pool cells temporally uncoupled from supporting cell division. These findings reveal a previously unrecognized mechanism of hair cell regeneration with implications for how hair cells may be encouraged to regenerate in the mammalian ear.

18.
Development ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037017

RESUMEN

Following up on our previous observation that early B cell factor (EBF) sites are enriched in open chromatin of the developing sensory epithelium of the mouse cochlea, we investigated the effect of deletion of Ebf1 on inner ear development. We used a Cre driver to delete Ebf1 at the otocyst stage prior to development of the cochlea. We examined the cochlea at postnatal day (P) 1 and found that the sensory epithelium had doubled in size but the length of the cochlear duct was unaffected. We also found that deletion of Ebf1 led to ectopic sensory patches in the Kölliker's organ. Innervation of the developing organ of Corti was disrupted with no obvious spiral bundles. The ectopic patches were also innervated. All the extra hair cells (HCs) within the sensory epithelium and Kölliker's organ contained mechanoelectrical transduction channels as indicated by rapid uptake of FM1-43. The excessive numbers of HCs were still present in the adult Ebf1 conditional knockout (cKO) animal. The animals had no detectable auditory brainstem response (ABR) suggesting that this gene is essential for hearing development.

19.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682291

RESUMEN

The planar polarized organization of hair cells in the vestibular maculae is unique because these sensory organs contain two groups of cells with oppositely oriented stereociliary bundles that meet at a line of polarity reversal (LPR). EMX2 is a transcription factor expressed by one hair cell group that reverses the orientation of their bundles, thereby forming the LPR. We generated Emx2-CreERt2 transgenic mice for genetic lineage tracing and demonstrate Emx2 expression before hair cell specification when the nascent utricle and saccule constitute a continuous prosensory domain. Precursors labeled by Emx2-CreERt2 at this stage give rise to hair cells located along one side of the LPR in the mature utricle or saccule, indicating that this boundary is first established in the prosensory domain. Consistent with this, Emx2-CreERt2 lineage tracing in Dreher mutants, where the utricle and saccule fail to segregate, labels a continuous field of cells along one side of a fused utriculo-saccular-cochlear organ. These observations reveal that LPR positioning is pre-determined in the developing prosensory domain, and that EMX2 expression defines lineages of hair cells with oppositely oriented stereociliary bundles.


Asunto(s)
Linaje de la Célula , Polaridad Celular , Oído Interno , Proteínas de Homeodominio , Factores de Transcripción , Animales , Ratones , Linaje de la Célula/genética , Polaridad Celular/genética , Oído Interno/metabolismo , Oído Interno/embriología , Oído Interno/citología , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/citología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Ratones Transgénicos , Sáculo y Utrículo/citología , Sáculo y Utrículo/metabolismo , Sáculo y Utrículo/embriología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
20.
Immunity ; 48(2): 271-285.e5, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29466757

RESUMEN

Stem cells are critical for the maintenance of many tissues, but whether their integrity is maintained in the face of immunity is unclear. Here we found that cycling epithelial stem cells, including Lgr5+ intestinal stem cells, as well as ovary and mammary stem cells, were eliminated by activated T cells, but quiescent stem cells in the hair follicle and muscle were resistant to T cell killing. Immune evasion was an intrinsic property of the quiescent stem cells resulting from systemic downregulation of the antigen presentation machinery, including MHC class I and TAP proteins, and is mediated by the transactivator NLRC5. This process was reversed upon stem cell entry into the cell cycle. These studies identify a link between stem cell quiescence, antigen presentation, and immune evasion. As cancer-initiating cells can derive from stem cells, these findings may help explain how the earliest cancer cells evade immune surveillance.


Asunto(s)
Folículo Piloso/citología , Evasión Inmune , Vigilancia Inmunológica , Células Madre/inmunología , Animales , Presentación de Antígeno , Péptidos y Proteínas de Señalización Intracelular/fisiología , Células Asesinas Naturales/inmunología , Ratones , Ratones Endogámicos C57BL , Músculos/citología , Receptores Acoplados a Proteínas G/fisiología , Escape del Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA