Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 524
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(3): 622-638.e22, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31002797

RESUMEN

DNA repair has been hypothesized to be a longevity determinant, but the evidence for it is based largely on accelerated aging phenotypes of DNA repair mutants. Here, using a panel of 18 rodent species with diverse lifespans, we show that more robust DNA double-strand break (DSB) repair, but not nucleotide excision repair (NER), coevolves with longevity. Evolution of NER, unlike DSB, is shaped primarily by sunlight exposure. We further show that the capacity of the SIRT6 protein to promote DSB repair accounts for a major part of the variation in DSB repair efficacy between short- and long-lived species. We dissected the molecular differences between a weak (mouse) and a strong (beaver) SIRT6 protein and identified five amino acid residues that are fully responsible for their differential activities. Our findings demonstrate that DSB repair and SIRT6 have been optimized during the evolution of longevity, which provides new targets for anti-aging interventions.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Longevidad/genética , Sirtuinas/metabolismo , Secuencia de Aminoácidos , Animales , Peso Corporal , Roturas del ADN de Doble Cadena/efectos de la radiación , Evolución Molecular , Fibroblastos/citología , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Cinética , Masculino , Mutagénesis , Filogenia , Roedores/clasificación , Alineación de Secuencia , Sirtuinas/química , Sirtuinas/genética , Rayos Ultravioleta
2.
Mol Cell ; 82(21): 4099-4115.e9, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36208627

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive hepatic lipid accumulation, which can progress to nonalcoholic steatohepatitis (NASH). Histone deacetylase Sirtuin 6 (SIRT6) regulates NAFLD by regulating metabolism-related gene expression, but an extrachromosomal role for SIRT6 in NAFLD development remains elusive. We investigated whether SIRT6 functions on NAFLD in the cytoplasm. We found that SIRT6 binds saturated fatty acids, especially palmitic acid. This binding leads to its nuclear export, where it deacetylates long-chain acyl-CoA synthase 5 (ACSL5), thereby facilitating fatty acid oxidation. High-fat diet-induced NAFLD is suppressed by ACSL5 hepatic overexpression but is exacerbated by its depletion. As confirmation, overexpression of a deacetylated ACSL5 mimic attenuated NAFLD in Sirt6 liver-specific knockout mice. Moreover, NASH-hepatic tissues from both patients and diet-fed mice exhibited significantly reduced cytoplasmic SIRT6 levels and increased ACSL5 acetylation. The SIRT6/ACSL5 signaling pathway has a critical role in NAFLD progression and might constitute an avenue for therapeutic intervention.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Sirtuinas , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Acilcoenzima A/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Metabolismo de los Lípidos , Ratones Noqueados , Ácidos Grasos/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Citoplasma/metabolismo
3.
Physiol Rev ; 100(1): 145-169, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31437090

RESUMEN

Mammalian sirtuins have emerged in recent years as critical modulators of multiple biological processes, regulating cellular metabolism, DNA repair, gene expression, and mitochondrial biology. As such, they evolved to play key roles in organismal homeostasis, and defects in these proteins have been linked to a plethora of diseases, including cancer, neurodegeneration, and aging. In this review, we describe the multiple roles of SIRT6, a chromatin deacylase with unique and important functions in maintaining cellular homeostasis. We attempt to provide a framework for such different functions, for the ability of SIRT6 to interconnect chromatin dynamics with metabolism and DNA repair, and the open questions the field will face in the future, particularly in the context of putative therapeutic opportunities.


Asunto(s)
Cromatina/metabolismo , Sirtuinas/metabolismo , Animales , ADN/metabolismo , Reparación del ADN , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Neoplasias/metabolismo
4.
Mol Cell ; 75(4): 683-699.e7, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31399344

RESUMEN

Transcriptional regulation in eukaryotes occurs at promoter-proximal regions wherein transcriptionally engaged RNA polymerase II (Pol II) pauses before proceeding toward productive elongation. The role of chromatin in pausing remains poorly understood. Here, we demonstrate that the histone deacetylase SIRT6 binds to Pol II and prevents the release of the negative elongation factor (NELF), thus stabilizing Pol II promoter-proximal pausing. Genetic depletion of SIRT6 or its chromatin deficiency upon glucose deprivation causes intragenic enrichment of acetylated histone H3 at lysines 9 (H3K9ac) and 56 (H3K56ac), activation of cyclin-dependent kinase 9 (CDK9)-that phosphorylates NELF and the carboxyl terminal domain of Pol II-and enrichment of the positive transcription elongation factors MYC, BRD4, PAF1, and the super elongation factors AFF4 and ELL2. These events lead to increased expression of genes involved in metabolism, protein synthesis, and embryonic development. Our results identified SIRT6 as a Pol II promoter-proximal pausing-dedicated histone deacetylase.


Asunto(s)
Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Sirtuinas/metabolismo , Elongación de la Transcripción Genética , Acetilación , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Eliminación de Gen , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Polimerasa II/genética , Sirtuinas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
5.
Mol Cell ; 75(4): 807-822.e8, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442424

RESUMEN

mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.


Asunto(s)
Adipocitos Marrones/metabolismo , Proteína Forkhead Box O1/metabolismo , Lipólisis , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Sirtuinas/metabolismo , Adipocitos Marrones/citología , Animales , Proteína Forkhead Box O1/genética , Células HEK293 , Células HeLa , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones , Ratones Transgénicos , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Sirtuinas/genética
6.
EMBO J ; 41(21): e110393, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36215696

RESUMEN

Sirtuin 6 (SIRT6) is a deacylase and mono-ADP ribosyl transferase (mADPr) enzyme involved in multiple cellular pathways implicated in aging and metabolism regulation. Targeted sequencing of SIRT6 locus in a population of 450 Ashkenazi Jewish (AJ) centenarians and 550 AJ individuals without a family history of exceptional longevity identified enrichment of a SIRT6 allele containing two linked substitutions (N308K/A313S) in centenarians compared with AJ control individuals. Characterization of this SIRT6 allele (centSIRT6) demonstrated it to be a stronger suppressor of LINE1 retrotransposons, confer enhanced stimulation of DNA double-strand break repair, and more robustly kill cancer cells compared with wild-type SIRT6. Surprisingly, centSIRT6 displayed weaker deacetylase activity, but stronger mADPr activity, over a range of NAD+ concentrations and substrates. Additionally, centSIRT6 displayed a stronger interaction with Lamin A/C (LMNA), which was correlated with enhanced ribosylation of LMNA. Our results suggest that enhanced SIRT6 function contributes to human longevity by improving genome maintenance via increased mADPr activity and enhanced interaction with LMNA.


Asunto(s)
Lamina Tipo A , Sirtuinas , Anciano de 80 o más Años , Humanos , Centenarios , Alelos , Inestabilidad Genómica
7.
EMBO Rep ; 25(8): 3263-3275, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38866979

RESUMEN

As a hallmark of senescent cells, the derepression of Long Interspersed Elements 1 (LINE1) transcription results in accumulated LINE1 cDNA, which triggers the secretion of the senescence-associated secretory phenotype (SASP) and paracrine senescence in a cGAS-STING pathway-dependent manner. However, transcription factors that govern senescence-associated LINE1 reactivation remain ill-defined. Here, we predict several transcription factors that bind to human LINE1 elements to regulate their transcription by analyzing the conserved binding motifs in the 5'-untranslated regions (UTR) of the commonly upregulated LINE1 elements in different types of senescent cells. Further analysis reveals that PAX5 directly binds to LINE1 5'-UTR and the binding is enhanced in senescent cells. The enrichment of PAX5 at the 5'-UTR promotes cellular senescence and SASP by activating LINE1. We also demonstrate that the longevity gene SIRT6 suppresses PAX5 transcription by directly binding to the PAX5 promoter, and overexpressing PAX5 abrogates the suppressive effect of SIRT6 on stress-dependent cellular senescence. Our work suggests that PAX5 could serve as a potential target for drug development aiming to suppress LINE1 activation and treat senescence-associated diseases.


Asunto(s)
Senescencia Celular , Elementos de Nucleótido Esparcido Largo , Factor de Transcripción PAX5 , Humanos , Regiones no Traducidas 5'/genética , Regulación de la Expresión Génica , Factor de Transcripción PAX5/genética , Factor de Transcripción PAX5/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Retroelementos/genética , Fenotipo Secretor Asociado a la Senescencia/genética
8.
EMBO Rep ; 25(3): 1361-1386, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332150

RESUMEN

Non-alcoholic fatty liver disease is a chronic liver abnormality that exhibits high variability and can lead to liver cancer in advanced stages. Hepatic ablation of SIRT6 results in fatty liver disease, yet the potential mechanism of SIRT6 deficiency, particularly in relation to downstream mediators for NAFLD, remains elusive. Here we identify Serpina12 as a key gene regulated by Sirt6 that plays a crucial function in energy homeostasis. Specifically, Sirt6 suppresses Serpina12 expression through histone deacetylation at its promoter region, after which the transcription factor, Cebpα, binds to and regulates its expression. Sirt6 deficiency results in an increased expression of Serpina12 in hepatocytes, which enhances insulin signaling and promotes lipid accumulation. Importantly, CRISPR-Cas9 mediated Serpina12 knockout in the liver ameliorated fatty liver disease caused by Sirt6 ablation. Finally, we demonstrate that Sirt6 functions as a tumor suppressor in the liver, and consequently, deletion of Sirt6 in the liver leads to not only the spontaneous development of tumors but also enhanced tumorigenesis in response to DEN treatment or under conditions of obesity.


Asunto(s)
Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Sirtuinas , Humanos , Sirtuinas/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Hepatocitos/metabolismo , Neoplasias Hepáticas/metabolismo
9.
Genes Dev ; 32(5-6): 373-388, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29555651

RESUMEN

It has been well established that histone and DNA modifications are critical to maintaining the equilibrium between pluripotency and differentiation during early embryogenesis. Mutations in key regulators of DNA methylation have shown that the balance between gene regulation and function is critical during neural development in early years of life. However, there have been no identified cases linking epigenetic regulators to aberrant human development and fetal demise. Here, we demonstrate that a homozygous inactivating mutation in the histone deacetylase SIRT6 results in severe congenital anomalies and perinatal lethality in four affected fetuses. In vitro, the amino acid change at Asp63 to a histidine results in virtually complete loss of H3K9 deacetylase and demyristoylase functions. Functionally, SIRT6 D63H mouse embryonic stem cells (mESCs) fail to repress pluripotent gene expression, direct targets of SIRT6, and exhibit an even more severe phenotype than Sirt6-deficient ESCs when differentiated into embryoid bodies (EBs). When terminally differentiated toward cardiomyocyte lineage, D63H mutant mESCs maintain expression of pluripotent genes and fail to form functional cardiomyocyte foci. Last, human induced pluripotent stem cells (iPSCs) derived from D63H homozygous fetuses fail to differentiate into EBs, functional cardiomyocytes, and neural progenitor cells due to a failure to repress pluripotent genes. Altogether, our study described a germline mutation in SIRT6 as a cause for fetal demise, defining SIRT6 as a key factor in human development and identifying the first mutation in a chromatin factor behind a human syndrome of perinatal lethality.


Asunto(s)
Mutación/genética , Sirtuinas/genética , Animales , Diferenciación Celular/genética , Cuerpos Embrioides , Células Madre Embrionarias , Muerte Fetal , Expresión Génica/genética , Humanos , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
10.
FASEB J ; 38(15): e23859, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39082187

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is strongly associated with insulin resistance development. Hepatic lipid accumulation and inflammation are considered the main drivers of hepatic insulin resistance in MASLD. Cysteine-rich 61 (Cyr61 also called CCN1), a novel secretory matricellular protein, is implicated in liver inflammation, and its role in MASLD is not clearly understood. Therefore, we investigated the role of Cyr61 in hepatic insulin resistance and lipid metabolism as major factors in MASLD pathogenesis. In high-fat diet (HFD)-fed C57BL/6J mice, Cyr61 was downregulated or upregulated via viral transduction. Measurements of glucose homeostasis, histological assessment of liver tissues, and gene expression and signaling pathways of lipogenesis, fatty acid oxidation, and inflammation were performed using liver samples from these mice. Cyr61 levels in HepG2 cells were reduced using RNAi-mediated gene knockdown. Inflammation and insulin resistance were evaluated using real-time polymerase chain reaction and western blotting. HFD/AAV-shCyr61 mice exhibited enhanced glucose tolerance via the protein kinase B pathway, reduced hepatic inflammation, decreased lipogenesis, and increased fatty acid oxidation. Notably, HFD/AAV-shCyr61 mice showed elevated protein expression of sirtuin 6 and phosphorylated-AMP-activated protein kinase. In vitro experiments demonstrated that inhibition of Cyr61 downregulated pro-inflammatory cytokines such as interleukin-1 beta, IL-6, and tumor necrosis factor-alpha via the nuclear factor kappa B/c-Jun N-terminal kinase pathway, and alleviated insulin resistance. Cyr61 affected hepatic inflammation, lipid metabolism, and insulin resistance. Inhibition of Cyr61 reduced inflammation, recovered insulin resistance, and altered lipid metabolism in vivo and in vitro. Therefore, Cyr61 is a potential therapeutic target in MASLD.


Asunto(s)
Proteína 61 Rica en Cisteína , Dieta Alta en Grasa , Resistencia a la Insulina , Metabolismo de los Lípidos , Hígado , Ratones Endogámicos C57BL , Animales , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/genética , Células Hep G2 , Humanos , Ratones , Dieta Alta en Grasa/efectos adversos , Masculino , Hígado/metabolismo , Lipogénesis
11.
Mol Ther ; 32(6): 1760-1778, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38659223

RESUMEN

Glaucoma is characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons, and its risk increases with aging. Yet comprehensive insights into the complex mechanisms are largely unknown. Here, we found that anti-aging molecule Sirt6 was highly expressed in RGCs. Deleting Sirt6 globally or specifically in RGCs led to progressive RGC loss and optic nerve degeneration during aging, despite normal intraocular pressure (IOP), resembling a phenotype of normal-tension glaucoma. These detrimental effects were potentially mediated by accelerated RGC senescence through Caveolin-1 upregulation and by the induction of mitochondrial dysfunction. In mouse models of high-tension glaucoma, Sirt6 level was decreased after IOP elevation. Genetic overexpression of Sirt6 globally or specifically in RGCs significantly attenuated high tension-induced degeneration of RGCs and their axons, whereas partial or RGC-specific Sirt6 deletion accelerated RGC loss. Importantly, therapeutically targeting Sirt6 with pharmacological activator or AAV2-mediated gene delivery ameliorated high IOP-induced RGC degeneration. Together, our studies reveal a critical role of Sirt6 in preventing RGC and optic nerve degeneration during aging and glaucoma, setting the stage for further exploration of Sirt6 activation as a potential therapy for glaucoma.


Asunto(s)
Envejecimiento , Modelos Animales de Enfermedad , Glaucoma , Nervio Óptico , Células Ganglionares de la Retina , Sirtuinas , Animales , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Ratones , Sirtuinas/metabolismo , Sirtuinas/genética , Glaucoma/metabolismo , Glaucoma/genética , Glaucoma/patología , Glaucoma/etiología , Nervio Óptico/metabolismo , Nervio Óptico/patología , Envejecimiento/metabolismo , Envejecimiento/genética , Presión Intraocular , Humanos , Axones/metabolismo , Axones/patología , Ratones Noqueados , Degeneración Nerviosa/metabolismo
12.
Cell Mol Life Sci ; 81(1): 69, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294557

RESUMEN

Fibrosis is a typical aging-related pathological process involving almost all organs, including the heart, kidney, liver, lung, and skin. Fibrogenesis is a highly orchestrated process defined by sequences of cellular response and molecular signals mechanisms underlying the disease. In pathophysiologic conditions associated with organ fibrosis, a variety of injurious stimuli such as metabolic disorders, epigenetic changes, and aging may induce the progression of fibrosis. Sirtuins protein is a kind of deacetylase which can regulate cell metabolism and participate in a variety of cell physiological functions. In this review, we outline our current understanding of common principles of fibrogenic mechanisms and the functional role of SIRT3/6 in aging-related fibrosis. In addition, sequences of novel protective strategies have been identified directly or indirectly according to these mechanisms. Here, we highlight the role and biological function of SIRT3/6 focus on aging fibrosis, as well as their inhibitors and activators as novel preventative or therapeutic interventions for aging-related tissue fibrosis.


Asunto(s)
Sirtuina 3 , Sirtuinas , Humanos , Hígado , Fibrosis
13.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091469

RESUMEN

Sirt6 is a multifunctional enzyme that regulates diverse cellular processes such as metabolism, DNA repair, and aging. Overexpressing Sirt6 extends lifespan in mice, but the underlying cellular mechanisms are unclear. Drosophila melanogaster are an excellent model to study genetic regulation of lifespan; however, despite extensive study in mammals, very little is known about Sirt6 function in flies. Here, we characterized the Drosophila ortholog of Sirt6, dSirt6, and examined its role in regulating longevity; dSirt6 is a nuclear and chromatin-associated protein with NAD+-dependent histone deacetylase activity. dSirt6 overexpression (OE) in flies produces robust lifespan extension in both sexes, while reducing dSirt6 levels shortens lifespan. dSirt6 OE flies have normal food consumption and fertility but increased resistance to oxidative stress and reduced protein synthesis rates. Transcriptomic analyses reveal that dSirt6 OE reduces expression of genes involved in ribosome biogenesis, including many dMyc target genes. dSirt6 OE partially rescues many effects of dMyc OE, including increased nuclear size, up-regulation of ribosome biogenesis genes, and lifespan shortening. Last, dMyc haploinsufficiency does not convey additional lifespan extension to dSirt6 OE flies, suggesting dSirt6 OE is upstream of dMyc in regulating lifespan. Our results provide insight into the mechanisms by which Sirt6 OE leads to longer lifespan.


Asunto(s)
Longevidad/genética , Sirtuinas/metabolismo , Envejecimiento/fisiología , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Haploinsuficiencia/genética , Histona Desacetilasas/economía , Histona Desacetilasas/metabolismo , Masculino , Sirtuinas/genética
14.
J Cell Mol Med ; 28(12): e18407, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38894630

RESUMEN

Chronic intermittent hypoxia (CIH) is associated with an increased risk of cardiovascular diseases. Previously, we have shown that berberine (BBR) is a potential cardioprotective agent. However, its effect and mechanism on CIH-induced cardiomyopathy remain uncovered. This study was designed to determine the effects of BBR against CIH-induced cardiac damage and to explore the molecular mechanisms. Mice were exposed to 5 weeks of CIH with or without the treatment of BBR and adeno-associated virus 9 (AAV9) carrying SIRT6 or SIRT6-specific short hairpin RNA. The effect of BBR was evaluated by echocardiography, histological analysis and western blot analysis. CIH caused the inactivation of myocardial SIRT6 and AMPK-FOXO3a signalling. BBR dose-dependently ameliorated cardiac injury in CIH-induced mice, as evidenced by increased cardiac function and decreased fibrosis. Notably, SIRT6 overexpression mimicked these beneficial effects, whereas infection with recombinant AAV9 carrying SIRT6-specific short hairpin RNA abrogated them. Mechanistically, BBR reduced oxidative stress damage and preserved mitochondrial function via activating SIRT6-AMPK-FOXO3a signalling, enhancing mitochondrial biogenesis as well as PINK1-Parkin-mediated mitophagy. Taken together, these data demonstrate that SIRT6 activation protects against the pathogenesis of CIH-induced cardiac dysfunction. BBR attenuates CIH-induced myocardial injury by improving mitochondrial biogenesis and PINK1-Parkin-dependent mitophagy via the SIRT6-AMPK-FOXO3a signalling pathway.


Asunto(s)
Berberina , Proteína Forkhead Box O3 , Hipoxia , Transducción de Señal , Sirtuinas , Berberina/farmacología , Berberina/uso terapéutico , Animales , Sirtuinas/metabolismo , Sirtuinas/genética , Transducción de Señal/efectos de los fármacos , Hipoxia/metabolismo , Ratones , Masculino , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por AMP/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Modelos Animales de Enfermedad
15.
J Cell Mol Med ; 28(17): e70053, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39224032

RESUMEN

MitoAMPK was proved to inhibit the Warburg effect, but the specific mechanisms on non-small-cell lung cancer remain unclear. Here, we selected SIRT6 and MZF1 to clarify the mechanism. By western blotting, quantitative polymerase chain reaction, the CCK-8 assay, and immunohistochemistry assays, we found SIRT6 expression was lower in NSCLC tissues and cell lines than normal tissues and cells. Moreover, SIRT6 could inhibit the Warburg effect by regulating glycolysis-related genes of SLC2A2, SLC2A4 and PKM2. Finally, we demonstrated the interaction between SIRT6 and MZF1 using ChIP-qPCR. In conclusion, mitoAMPK inhibits the Warburg effect by regulating the expression of the MZF1-SIRT6 complex.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción de Tipo Kruppel , Neoplasias Pulmonares , Sirtuinas , Efecto Warburg en Oncología , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Sirtuinas/metabolismo , Sirtuinas/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Línea Celular Tumoral , Glucólisis/genética , Femenino , Masculino
16.
Biochem Biophys Res Commun ; 730: 150387, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39002201

RESUMEN

Uvaol (UV), a pentacyclic triterpene found in olives and virgin olive oil, is known for its anti-inflammatory and antioxidant effects in various disease models. While olive oil is reported to reduce obesity and insulin resistance, the specific impact of UV on liver lipid metabolism and its molecular mechanisms are not fully understood. In this study, hepatic lipid accumulation was measured using oil red O staining, and protein expression levels in liver cells were assessed via Western blot analysis. Apoptosis was evaluated through cell viability and caspase 3 activity assays. UV treatment reduced lipid accumulation, fatty acid uptake, apoptosis, and ER stress in palmitate-treated liver cells. Additionally, UV enhanced fatty acid oxidation. Mechanistically, increased SIRT6 expression and autophagy were observed in UV-treated cells. SIRT6-targeted siRNA or 3-methyladenine blocked the effects of UV in hyperlipidemic cells. In conclusion, UV improves SIRT6/autophagy signaling, reducing lipid deposition and apoptosis in liver cells under high lipid conditions. This in vitro study provides strong evidence for potential therapeutic strategies for hepatic steatosis.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Hepatocitos , Hiperlipidemias , Metabolismo de los Lípidos , Transducción de Señal , Sirtuinas , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/efectos de la radiación , Metabolismo de los Lípidos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hiperlipidemias/metabolismo , Hiperlipidemias/tratamiento farmacológico , Sirtuinas/metabolismo , Sirtuinas/genética , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Autofagia/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Humanos , Animales , Triterpenos Pentacíclicos/farmacología
17.
Biochem Biophys Res Commun ; 726: 150235, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-38908345

RESUMEN

BACKGROUND: Diabetic ulcers (DUs) are characterized by chronic inflammation and delayed re-epithelialization, with a high incidence and weighty economic burden. The primary therapeutic strategies for refractory wounds include surgery, non-invasive wound therapy, and drugs, while the optimum regimen remains controversial. Sirtuin-6 (SIRT6) is a histone deacetylase and a key epigenetic factor that exerts anti-inflammatory and pro-proliferatory effects in wound healing. However, the exact function of SIRT6 in DUs remains unclear. METHODS: We generated tamoxifen-inducible SIRT6 knockout mice by crossing SIRT6flox/flox homozygous mice with UBC-creERT2+ transgenic mice. Systemic SIRT6 null mice, under either normal or diabetic conditions, were utilized to assess the effects of SIRT6 in DUs treatment. Gene and protein expressions of SIRT6 and inflammatory cytokines were measured by Western blotting and RT-qPCR. Histopathological examination confirmed the altered re-epithelialization (PCNA), inflammation (NF-κB p50 and F4/80), and angiogenesis (CD31) markers during DUs restoration. RESULTS: Knockout of SIRT6 inhibited the healing ability of DUs, presenting attenuated re-epithelialization (PCNA), exacerbated inflammation responses (NF-κB p50, F4/80, Il-1ß, Tnf-α, Il-6, Il-10, and Il-4), and hyperplasia vascular (CD31) compared with control mice. CONCLUSIONS: SIRT6 could boost impaired wound healing through improving epidermal proliferation, inflammation, and angiogenesis. Our study highlighted the therapeutic potential of the SIRT6 agonist for DUs treatment.


Asunto(s)
Ratones Noqueados , Sirtuinas , Cicatrización de Heridas , Animales , Cicatrización de Heridas/genética , Sirtuinas/genética , Sirtuinas/metabolismo , Sirtuinas/deficiencia , Ratones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Citocinas/metabolismo , Ratones Endogámicos C57BL , Inflamación/genética , Inflamación/patología , Inflamación/metabolismo , Masculino
18.
Biochem Biophys Res Commun ; 691: 149293, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38016337

RESUMEN

CTRP4, identified as an adipokine, has demonstrated notable anti-inflammatory and anti-obesity effects in various disease models. Consequently, our research sought to explore the impact of CTRP4 on inflammation and the interaction between endothelial cells and monocytes in hyperlipidemic conditions. Using Western blotting, we assessed the expression levels of various proteins in HUVECs and THP-1 monocytes. Our study findings indicate that treatment with CTRP4 effectively mitigated the attachment of THP-1 monocytes to HUVECs. Furthermore, it reduced the expression of adhesion molecules and inflammation indicators in experimental cells exposed to hyperlipidemic conditions. Notably, CTRP4 treatment led to an increase in SIRT6 expression and the nuclear translocation of Nrf2. Interestingly, when SIRT6 or Nrf2 was silenced using siRNA, the positive effects of CTRP4 in HUVECs and THP-1 cells were nullified. Our results suggest that CTRP4 exhibits anti-inflammatory properties, thereby improving the interaction between endothelial cells and monocytes through the SIRT6/Nrf2-dependent pathway. This study provides insights into CTRP4 as a potential therapeutic target for mitigating obesity-related atherosclerosis.


Asunto(s)
Monocitos , Sirtuinas , Humanos , Monocitos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Adhesión Celular , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Sirtuinas/metabolismo
19.
Biochem Biophys Res Commun ; 694: 149407, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38154209

RESUMEN

Interleukin-38 (IL-38), a member of the IL-1 family, is known for its anti-inflammatory properties mediated through ligand signaling in various disease models. It plays a significant role in atherosclerosis development, forming a theoretical basis for therapeutic strategies. However, the direct effects of IL-38 on atherogenic responses in the vascular endothelium and monocytes remain unclear. In this investigation, IL-38 treatment reduced THP-1 monocyte adhesion to HUVECs, decreased the expression of vascular adhesion molecules, and mitigated inflammation in the presence of palmitate. IL-38 treatment upregulated SIRT6 expression and enhanced autophagy markers such as LC3 conversion and p62 degradation. The effects of IL-38 were nullified by siRNA-mediated suppression of SIRT6 or heme oxygenase-1 (HO-1) in HUVECs and palmitate-treated THP-1 cells. These findings reveal that IL-38 mitigates inflammation through the SIRT6/HO-1 pathway, offering a potential therapeutic approach for addressing obesity-related atherosclerosis.


Asunto(s)
Aterosclerosis , Sirtuinas , Humanos , Aterosclerosis/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Inflamación/metabolismo , Interleucinas , Obesidad/complicaciones , Palmitatos , Sirtuinas/genética , Sirtuinas/metabolismo
20.
J Neuroinflammation ; 21(1): 243, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342313

RESUMEN

Demyelination occurs widely in the central nervous system (CNS) neurodegenerative diseases, especially the multiple sclerosis (MS), which with a complex and inflammatory lesion microenvironment inhibiting remyelination. Sirtuin6 (SIRT6), a histone/protein deacetylase is of interest for its promising effect in transcriptional regulation, cell cycling, inflammation, metabolism and longevity. Here we show that SIRT6 participates in the remyelination process in mice subjected to LPC-induced demyelination. Using pharmacological SIRT6 inhibitor or activator, we found that SIRT6 modulated LPC-induced damage in motor or cognitive function. Inhibition of SIRT6 impaired myelin regeneration, exacerbated neurological deficits, and decreased oligodendrocyte precursor cells (OPCs) proliferation and differentiation, whereas activation of SIRT6 reversed behavioral performance in mice, demonstrating a beneficial effect of SIRT6. Importantly, based on RNA sequencing analysis of the corpus callosum tissues, it was further revealed that SIRT6 took charge in regulation of glial activation during remyelination, and significant alterations in CHI3L1 were obtained, a glycoprotein specifically secreted by astrocytes. Impaired proliferation and differentiation of OPCs could be induced in vitro using supernatants from reactive astrocyte, especially when SIRT6 was inhibited. Mechanistically, SIRT6 regulates the secretion of CHI3L1 from reactive astrocytes by histone-H3-lysine-9 acetylation (H3K9Ac). Adeno-associated virus-overexpression of SIRT6 (AAV-SIRT6-OE) in astrocytes improved remyelination and functional recovery after LPC-induced demyelination, whereas together with AAV-CHI3L1-OE inhibits this therapeutic effect. Collectively, our data elucidate the role of SIRT6 in remyelination and further reveal astrocytic SIRT6/CHI3L1 as the key regulator for improving the remyelination environment, which may be a potential target for MS therapy.


Asunto(s)
Astrocitos , Enfermedades Desmielinizantes , Sirtuinas , Animales , Masculino , Ratones , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/patología , Células Cultivadas , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Lisofosfatidilcolinas/toxicidad , Ratones Endogámicos C57BL , Remielinización/efectos de los fármacos , Remielinización/fisiología , Sirtuinas/metabolismo , Sirtuinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA