Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Comput Biol Med ; 168: 107768, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056207

RESUMEN

For physical-based compression therapeutic modalities, especially compression stockings (CSs), their pressure performances are necessarily evaluated by the standardized cylinder leg mannequins before biological applications. However, the insufficient pressure supply caused by morphological shape diversities between circular leg mannequins and irregular bio-bodies limits the clinical effectiveness and user compliance of CSs. Therefore, an operable and efficiency approach for optimization bio-design and digital development of CSs with enhanced compression performances needs to be proposed. The present study has adopted three-dimensional (3D) body scanning and reverse engineering technologies for lower limb cross-sectional geometric characterization and morphological classification. The irregularity of biological leg circumferential slices was determined and clustered as four levels relating to individual curvature variations. Sequentially, a new pressure prediction model was constructed through characterized geometric variations for bio-based bodies, then its acceptability was validated with good agreement by wearing trials (mean prediction accuracy was 2.53 ± 0.52 mmHg). Thus, the digital pressure reshaped development guidance was obtained based on the classified irregular levels and established pressure prediction models. Consequently, this study provides a novel reliable optimization bio-design solution for manufacturing of therapeutic compression textiles and facilitates the medical efficacy and precision of compression therapy in practical use.


Asunto(s)
Maniquíes , Medias de Compresión , Estudios Transversales , Presión , Resultado del Tratamiento , Pierna
2.
Bioinspir Biomim ; 19(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38176103

RESUMEN

This paper is an invitation to an interdisciplinary dialogue on new possibilities for integrating robotics, design, and nature. I ask: how can new cross-movements between bio-inspired science and design be fostered? How might we envision the future possible intersection between technology and nature? First, I recall key aspects of classical bioinspired engineering and highlight the role of nature in the emergence of technology. Second, I introduce a new approach to bioinspired engineering. In this approach, robots play an active role in design and construction, learning from material properties to form new shapes and thus reshaping design paradigms. The distinctive elements of this approach depart from classical nature-inspired engineering and foster a symbiotic relationship between technology and nature. I conclude by reflecting on the intersections of nature, technology, and design, and envisioning new avenues for interdisciplinary dialogue that foster collaboration and innovation among diverse bio-inspired disciplines.


Asunto(s)
Robótica , Biomimética , Ingeniería
3.
Materials (Basel) ; 16(14)2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37512168

RESUMEN

The need for circular textiles has led to an interest in the production of biologically derived materials, generating new research into the bioproduction of textiles through design and interdisciplinary approaches. Bacterial cellulose has been produced directly from fermentation into sheets but not yet investigated in terms of producing filaments directly from fermentation. This leaves a wealth of material qualities unexplored. Further, by growing the material directly into filaments, production such as wet spinning are made redundant, thus reducing textile manufacturing steps. The aim of this study was to grow the bio-material, namely bacterial cellulose directly into a filament. This was achieved using a method of co-designing with the characteristics of biological materials. The method combines approaches of material-driven textile design and human-centred co-design to investigate co-designing with the characteristics of living materials for biological material production. The project is part of a wider exploration of bio-manufacturing textiles from waste. The practice-based approach brought together biological sciences and material design through a series of iterative experiments. This, in turn, resulted in designing with the inherent characteristics of bacterial cellulose, and by doing so filaments were designed to be fabricated directly from fermentation. In this investigation, creative exploration was encouraged within a biological laboratory space, showing how interdisciplinary collaboration can offer innovative alternative bioproduction routes for textile filament production.

4.
Materials (Basel) ; 16(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36984044

RESUMEN

Mycelium-based composites (MBCs) are alternative biopolymers for designing sustainable furniture and other interior elements. These innovative biocomposites have many ecological advantages but present a new challenge in aesthetics and human product acceptance. Grown products, made using living mycelium and lignocellulosic substrates, are porous, have irregular surfaces and have irregular coloring. The natural origin of these types of materials and the fear of fungus can be a challenge. This research investigated the level of human acceptance of the new material. Respondents were students of architecture who can be considered as people involved in interior design and competent in the design field. Research has been performed on the authors' prototype products made from MBCs. Three complementary consumer tests were performed. The obtained results measured the human reactions and demonstrated to which extents products made of MBCs were "likeable" and their nonobvious aesthetics were acceptable to the public. The results showed that MBC materials generally had a positive or not-negative assessment. The responses after the pairwise comparison of the MBC with wall cladding samples pointed out the advantage of ceramic reference material above the MBC based on an overall assessment. The respondents also believed that the chamotte clay cladding would be easier to fit into the aesthetics of a modern interior and would in better accordance with its style. Although the MBC was less visually appealing, the respondents nevertheless found it more interesting, original, and environmentally friendly. The experiments suggested that the respondents had double standards regarding MBCs. MBCs were generally accepted as ecological, but not in their own homes. All of these results support current and future applications of MBCs for manufacturing items where enhanced aesthetics are required.

5.
Eng Biol ; 7(1-4): 18-28, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38094240

RESUMEN

The field of synthetic biology emerged a few decades ago, following some key works of researchers in the USA, Europe, and the Far East. It reached Israel through academia and a few years later it finally got the attention of industry, venture capitals, and government authorities, especially the Israeli Innovation Authority, hoping to encourage entrepreneurs to establish startups in this field. Here we provide an overview of the activity of the field of synthetic biology in Israel, including historical notes, current strategy, prospects and developments, and further insight that are relevant to any stakeholders in the synthetic biology field.

6.
Materials (Basel) ; 15(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36143594

RESUMEN

Mycelium-Based Composites (MBCs) are innovative engineering materials made from lignocellulosic by-products bonded with fungal mycelium. While some performance characteristics of MBCs are inferior to those of currently used engineering materials, these composites nevertheless prove to be superior in ecological aspects. Improving the properties of MBCs may be achieved using an adequate substrate type, fungus species, and manufacturing technology. This article presents scientifically verified guiding principles for choosing a fungus species to obtain the desired effect. This aim was realized based on analyses of scientific articles concerning MBCs, mycological literature, and patent documents. Based on these analyses, over 70 fungi species used to manufacture MBC have been identified and the most commonly used combinations of fungi species-substrate-manufacturing technology are presented. The main result of this review was to demonstrate the characteristics of the fungi considered optimal in terms of the resulting engineering material properties. Thus, a list of the 11 main fungus characteristics that increase the effectiveness in the engineering material formation include: rapid hyphae growth, high virulence, dimitic or trimitic hyphal system, white rot decay type, high versatility in nutrition, high tolerance to a substrate, environmental parameters, susceptibility to readily controlled factors, easy to deactivate, saprophytic, non-mycotoxic, and capability to biosynthesize natural active substances. An additional analysis result is a list of the names of fungus species, the types of substrates used, the applications of the material produced, and the main findings reported in the scientific literature.

7.
Archit Intell ; 1(1): 13, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186108

RESUMEN

This paper examines how the central contributions of the computational design field can be understood as central steppingstones into an age of sustainability to engage with new renewable, regenerative and restorative material systems. By taking departure in the conceptualisation of an extended digital chain by which architecture can address fabrication at the low scales of the material, this paper asks how these methodological innovations can be transferred to new questions arising from a bio-based material paradigm. The paper outlines the three central contributions of the computational design field: advanced information modelling, functional grading and integrated sensing, and suggests how these can be extended to allow new means of instrumentation for bio-based materials characterised by the heterogeneous, the behaving and the living.

8.
Metab Eng Commun ; 12: e00170, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33850714

RESUMEN

Increasing understanding of metabolic and regulatory networks underlying microbial physiology has enabled creation of progressively more complex synthetic biological systems for biochemical, biomedical, agricultural, and environmental applications. However, despite best efforts, confounding phenotypes still emerge from unforeseen interplay between biological parts, and the design of robust and modular biological systems remains elusive. Such interactions are difficult to predict when designing synthetic systems and may manifest during experimental testing as inefficiencies that need to be overcome. Transforming organisms such as Escherichia coli into microbial factories is achieved via several engineering strategies, used individually or in combination, with the goal of maximizing the production of chosen target compounds. One technique relies on suppressing or overexpressing selected genes; another involves introducing heterologous enzymes into a microbial host. These modifications steer mass flux towards the set of desired metabolites but may create unexpected interactions. In this work, we develop a computational method, termed Metabolic Disruption Workflow (MDFlow), for discovering interactions and network disruptions arising from enzyme promiscuity - the ability of enzymes to act on a wide range of molecules that are structurally similar to their native substrates. We apply MDFlow to two experimentally verified cases where strains with essential genes knocked out are rescued by interactions resulting from overexpression of one or more other genes. We demonstrate how enzyme promiscuity may aid cells in adapting to disruptions of essential metabolic functions. We then apply MDFlow to predict and evaluate a number of putative promiscuous reactions that can interfere with two heterologous pathways designed for 3-hydroxypropionic acid (3-HP) production. Using MDFlow, we can identify putative enzyme promiscuity and the subsequent formation of unintended and undesirable byproducts that are not only disruptive to the host metabolism but also to the intended end-objective of high biosynthetic productivity and yield. As we demonstrate, MDFlow provides an innovative workflow to systematically identify incompatibilities between the native metabolism of the host and its engineered modifications due to enzyme promiscuity.

9.
Polymers (Basel) ; 14(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35012167

RESUMEN

Mycelium-based composites (MBCs) have attracted growing attention due to their role in the development of eco-design methods. We concurrently analysed scientific publications, patent documents, and results of our own feasibility studies to identify the current design issues and technologies used. A literature inquiry in scientific and patent databases (WoS, Scopus, The Lens, Google Patents) pointed to 92 scientific publications and 212 patent documents. As a part of our own technological experiments, we have created several prototype products used in architectural interior design. Following the synthesis, these sources of knowledge can be concluded: 1. MBCs are inexpensive in production, ecological, and offer a high artistic value. Their weaknesses are insufficient load capacity, unfavourable water affinity, and unknown reliability. 2. The scientific literature shows that the material parameters of MBCs can be adjusted to certain needs, but there are almost infinite combinations: properties of the input biomaterials, characteristics of the fungi species, and possible parameters during the growth and subsequent processing of the MBCs. 3. The patent documents show the need for development: an effective method to increase the density and the search for technologies to obtain a more homogeneous internal structure of the composite material. 4. Our own experiments with the production of various everyday objects indicate that some disadvantages of MBCs can be considered advantages. Such an unexpected advantage is the interesting surface texture resulting from the natural inhomogeneity of the internal structure of MBCs, which can be controlled to some extent.

10.
Methods Mol Biol ; 1772: 373-398, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29754240

RESUMEN

High quality DNA design tools are becoming increasingly important as synthetic biology continues to increase the rate and throughput of building and testing genetic constructs. To make effective use of expanded build and test capacity, genotype design tools must not only be efficient enough to allow for many designs to be easily created, but also expressive enough to support the complex design patterns required by scientists on the frontier of genome engineering. Genotype Specification Language (GSL) is a language-based design tool invented at Amyris that enables scientists to quickly create DNA designs using a familiar syntax. This syntax provides a layer of abstraction that moves users away from reading and writing raw DNA sequences toward composing designs in terms of functional parts . GSL increases the speed at which scientists can design DNA constructs, provides a precise and reproducible representation of parts, and achieves these goals while maintaining design flexibility. Finally, the GSL compiler can emit information such as the exact final DNA sequence of the design as well as the reagents (primers and template information) required to physically build the constructs. Since its open-source release in February 2016, the GSL compiler can be freely downloaded and used by genome engineers to efficiently specify genetic designs. This chapter briefly introduces GSL syntax and design principles before examining specific examples of genome engineering tasks with accompanying GSL code.


Asunto(s)
Biología Computacional/métodos , Ingeniería Genética/métodos , Genoma/genética , ADN/genética , Genotipo , Programas Informáticos , Biología Sintética/métodos , Interfaz Usuario-Computador
11.
Sci Adv ; 3(5): e1601984, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28560325

RESUMEN

Cells' biomechanical responses to external stimuli have been intensively studied but rarely implemented into devices that interact with the human body. We demonstrate that the hygroscopic and biofluorescent behaviors of living cells can be engineered to design biohybrid wearables, which give multifunctional responsiveness to human sweat. By depositing genetically tractable microbes on a humidity-inert material to form a heterogeneous multilayered structure, we obtained biohybrid films that can reversibly change shape and biofluorescence intensity within a few seconds in response to environmental humidity gradients. Experimental characterization and mechanical modeling of the film were performed to guide the design of a wearable running suit and a fluorescent shoe prototype with bio-flaps that dynamically modulates ventilation in synergy with the body's need for cooling.


Asunto(s)
Bacterias , Fluorescencia , Humedad , Membranas Artificiales , Saccharomyces cerevisiae , Dispositivos Electrónicos Vestibles , Bacterias/genética , Bacterias/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Zapatos , Sudor/metabolismo
12.
ACS Synth Biol ; 5(6): 471-8, 2016 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-26886161

RESUMEN

We describe here the Genotype Specification Language (GSL), a language that facilitates the rapid design of large and complex DNA constructs used to engineer genomes. The GSL compiler implements a high-level language based on traditional genetic notation, as well as a set of low-level DNA manipulation primitives. The language allows facile incorporation of parts from a library of cloned DNA constructs and from the "natural" library of parts in fully sequenced and annotated genomes. GSL was designed to engage genetic engineers in their native language while providing a framework for higher level abstract tooling. To this end we define four language levels, Level 0 (literal DNA sequence) through Level 3, with increasing abstraction of part selection and construction paths. GSL targets an intermediate language based on DNA slices that translates efficiently into a wide range of final output formats, such as FASTA and GenBank, and includes formats that specify instructions and materials such as oligonucleotide primers to allow the physical construction of the GSL designs by individual strain engineers or an automated DNA assembly core facility.


Asunto(s)
ADN/genética , Ingeniería Genética/métodos , Genotipo , Lenguaje , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA