Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.134
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 57(2): 349-363.e9, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38309272

RESUMEN

Microglial reactivity to injury and disease is emerging as a heterogeneous, dynamic, and crucial determinant in neurological disorders. However, the plasticity and fate of disease-associated microglia (DAM) remain largely unknown. We established a lineage tracing system, leveraging the expression dynamics of secreted phosphoprotein 1(Spp1) to label and track DAM-like microglia during brain injury and recovery. Fate mapping of Spp1+ microglia during stroke in juvenile mice revealed an irreversible state of DAM-like microglia that were ultimately eliminated from the injured brain. By contrast, DAM-like microglia in the neonatal stroke models exhibited high plasticity, regaining a homeostatic signature and integrating into the microglial network after recovery. Furthermore, neonatal injury had a lasting impact on microglia, rendering them intrinsically sensitized to subsequent immune challenges. Therefore, our findings highlight the plasticity and innate immune memory of neonatal microglia, shedding light on the fate of DAM-like microglia in various neuropathological conditions.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular , Animales , Ratones , Microglía , Encéfalo/metabolismo , Osteopontina/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(19): e2313568121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38648470

RESUMEN

United States (US) Special Operations Forces (SOF) are frequently exposed to explosive blasts in training and combat, but the effects of repeated blast exposure (RBE) on SOF brain health are incompletely understood. Furthermore, there is no diagnostic test to detect brain injury from RBE. As a result, SOF personnel may experience cognitive, physical, and psychological symptoms for which the cause is never identified, and they may return to training or combat during a period of brain vulnerability. In 30 active-duty US SOF, we assessed the relationship between cumulative blast exposure and cognitive performance, psychological health, physical symptoms, blood proteomics, and neuroimaging measures (Connectome structural and diffusion MRI, 7 Tesla functional MRI, [11C]PBR28 translocator protein [TSPO] positron emission tomography [PET]-MRI, and [18F]MK6240 tau PET-MRI), adjusting for age, combat exposure, and blunt head trauma. Higher blast exposure was associated with increased cortical thickness in the left rostral anterior cingulate cortex (rACC), a finding that remained significant after multiple comparison correction. In uncorrected analyses, higher blast exposure was associated with worse health-related quality of life, decreased functional connectivity in the executive control network, decreased TSPO signal in the right rACC, and increased cortical thickness in the right rACC, right insula, and right medial orbitofrontal cortex-nodes of the executive control, salience, and default mode networks. These observations suggest that the rACC may be susceptible to blast overpressure and that a multimodal, network-based diagnostic approach has the potential to detect brain injury associated with RBE in active-duty SOF.


Asunto(s)
Traumatismos por Explosión , Personal Militar , Humanos , Traumatismos por Explosión/diagnóstico por imagen , Adulto , Masculino , Estados Unidos , Imagen por Resonancia Magnética , Femenino , Tomografía de Emisión de Positrones , Cognición/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Adulto Joven
3.
J Neurosci ; 44(12)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38360749

RESUMEN

While originally identified as an antiviral pathway, recent work has implicated that cyclic GMP-AMP-synthase-Stimulator of Interferon Genes (cGAS-STING) signaling is playing a critical role in the neuroinflammatory response to traumatic brain injury (TBI). STING activation results in a robust inflammatory response characterized by the production of inflammatory cytokines called interferons, as well as hundreds of interferon stimulated genes (ISGs). Global knock-out (KO) mice inhibiting this pathway display neuroprotection with evidence that this pathway is active days after injury; yet, the early neuroinflammatory events stimulated by STING signaling remain understudied. Furthermore, the source of STING signaling during brain injury is unknown. Using a murine controlled cortical impact (CCI) model of TBI, we investigated the peripheral immune and microglial response to injury utilizing male chimeric and conditional STING KO animals, respectively. We demonstrate that peripheral and microglial STING signaling contribute to negative outcomes in cortical lesion volume, cell death, and functional outcomes postinjury. A reduction in overall peripheral immune cell and neutrophil infiltration at the injury site is STING dependent in these models at 24 h. Transcriptomic analysis at 2 h, when STING is active, reveals that microglia drive an early, distinct transcriptional program to elicit proinflammatory genes including interleukin 1-ß (IL-1ß), which is lost in conditional knock-out mice. The upregulation of alternative innate immune pathways also occurs after injury in these animals, which supports a complex relationship between brain-resident and peripheral immune cells to coordinate the proinflammatory response and immune cell influx to damaged tissue after injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Microglía , Animales , Masculino , Ratones , Lesiones Traumáticas del Encéfalo/patología , Citocinas/metabolismo , Interferones/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Transducción de Señal
4.
J Neurosci ; 44(21)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38569926

RESUMEN

Proteoglycans containing link domains modify the extracellular matrix (ECM) to regulate cellular homeostasis and can also sensitize tissues/organs to injury and stress. Hypoxic-ischemic (H-I) injury disrupts cellular homeostasis by activating inflammation and attenuating regeneration and repair pathways. In the brain, the main component of the ECM is the glycosaminoglycan hyaluronic acid (HA), but whether HA modifications of the ECM regulate cellular homeostasis and response to H-I injury is not known. In this report, employing both male and female mice, we demonstrate that link-domain-containing proteoglycan, TNFα-stimulated gene-6 (TSG-6), is active in the brain from birth onward and differentially modifies ECM HA during discrete neurodevelopmental windows. ECM HA modification by TSG-6 enables it to serve as a developmental switch to regulate the activity of the Hippo pathway effector protein, yes-associated protein 1 (YAP1), in the maturing brain and in response to H-I injury. Mice that lack TSG-6 expression display dysregulated expression of YAP1 targets, excitatory amino acid transporter 1 (EAAT1; glutamate-aspartate transporter) and 2 (EAAT2; glutamate transporter-1). Dysregulation of YAP1 activation in TSG-6-/- mice coincides with age- and sex-dependent sensitization of the brain to H-I injury such that 1-week-old neonates display an anti-inflammatory response in contrast to an enhanced proinflammatory injury reaction in 3-month-old adult males but not females. Our findings thus support that a key regulator of age- and sex-dependent H-I injury response in the mouse brain is modulation of the Hippo-YAP1 pathway by TSG-6-dependent ECM modifications.


Asunto(s)
Moléculas de Adhesión Celular , Matriz Extracelular , Hipoxia-Isquemia Encefálica , Proteínas Señalizadoras YAP , Animales , Femenino , Masculino , Moléculas de Adhesión Celular/metabolismo , Ratones , Matriz Extracelular/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Proteínas Señalizadoras YAP/metabolismo , Ratones Endogámicos C57BL , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ácido Hialurónico/metabolismo , Ratones Noqueados , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
5.
J Neurosci ; 44(32)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844342

RESUMEN

Sleep slow waves are the hallmark of deeper non-rapid eye movement sleep. It is generally assumed that gray matter properties predict slow-wave density, morphology, and spectral power in healthy adults. Here, we tested the association between gray matter volume (GMV) and slow-wave characteristics in 27 patients with moderate-to-severe traumatic brain injury (TBI, 32.0 ± 12.2 years old, eight women) and compared that with 32 healthy controls (29.2 ± 11.5 years old, nine women). Participants underwent overnight polysomnography and cerebral MRI with a 3 Tesla scanner. A whole-brain voxel-wise analysis was performed to compare GMV between groups. Slow-wave density, morphology, and spectral power (0.4-6 Hz) were computed, and GMV was extracted from the thalamus, cingulate, insula, precuneus, and orbitofrontal cortex to test the relationship between slow waves and gray matter in regions implicated in the generation and/or propagation of slow waves. Compared with controls, TBI patients had significantly lower frontal and temporal GMV and exhibited a subtle decrease in slow-wave frequency. Moreover, higher GMV in the orbitofrontal cortex, insula, cingulate cortex, and precuneus was associated with higher slow-wave frequency and slope, but only in healthy controls. Higher orbitofrontal GMV was also associated with higher slow-wave density in healthy participants. While we observed the expected associations between GMV and slow-wave characteristics in healthy controls, no such associations were observed in the TBI group despite lower GMV. This finding challenges the presumed role of GMV in slow-wave generation and morphology.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Sustancia Gris , Imagen por Resonancia Magnética , Sueño de Onda Lenta , Humanos , Femenino , Masculino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/fisiopatología , Adulto , Sueño de Onda Lenta/fisiología , Lesiones Traumáticas del Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/patología , Adulto Joven , Polisomnografía , Corteza Cerebral/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Persona de Mediana Edad , Lesiones Encefálicas/fisiopatología , Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/patología
6.
J Neurosci ; 44(11)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38326036

RESUMEN

Intercellular adhesion molecule-1 (ICAM-1) is identified as an initiator of neuroinflammatory responses that lead to neurodegeneration and cognitive and sensory-motor deficits in several pathophysiological conditions including traumatic brain injury (TBI). However, the underlying mechanisms of ICAM-1-mediated leukocyte adhesion and transmigration and its link with neuroinflammation and functional deficits following TBI remain elusive. Here, we hypothesize that blocking of ICAM-1 attenuates the transmigration of leukocytes to the brain and promotes functional recovery after TBI. The experimental TBI was induced in vivo by fluid percussion injury (25 psi) in male and female wild-type and ICAM-1-/- mice and in vitro by stretch injury (3 psi) in human brain microvascular endothelial cells (hBMVECs). We treated hBMVECs and animals with ICAM-1 CRISPR/Cas9 and conducted several biochemical analyses and demonstrated that CRISPR/Cas9-mediated ICAM-1 deletion mitigates blood-brain barrier (BBB) damage and leukocyte transmigration to the brain by attenuating the paxillin/focal adhesion kinase (FAK)-dependent Rho GTPase pathway. For analyzing functional outcomes, we used a cohort of behavioral tests that included sensorimotor functions, psychological stress analyses, and spatial memory and learning following TBI. In conclusion, this study could establish the significance of deletion or blocking of ICAM-1 in transforming into a novel preventive approach against the pathophysiology of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Molécula 1 de Adhesión Intercelular , Animales , Femenino , Humanos , Masculino , Ratones , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Sistemas CRISPR-Cas , Células Endoteliales/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Leucocitos , Paxillin , Proteínas de Unión al GTP rho/metabolismo
7.
Brain ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916992

RESUMEN

Cell-based therapies hold great promise for brain repair after stroke. While accumulating evidence confirms the preclinical and clinical benefits of cell therapies, the underlying mechanisms by which they promote brain repair remain unclear. Here, we briefly review endogenous mechanisms of brain repair after ischemic stroke and then focus on how different stem and progenitor cell sources can promote brain repair. Specifically, we examine how transplanted cell grafts contribute to improved functional recovery either through direct cell replacement or by stimulating endogenous repair pathways. Additionally, we discuss recently implemented preclinical refinement methods, such as preconditioning, microcarriers, genetic safety switches, and universal (immune evasive) cell transplants, as well as the therapeutic potential of these pharmacologic and genetic manipulations to further enhance the efficacy and safety of cell therapies. By gaining a deeper understanding of post-ischemic repair mechanisms, prospective clinical trials may be further refined to advance post-stroke cell therapy to the clinic.

8.
Brain ; 147(6): 2214-2229, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38802114

RESUMEN

Mild traumatic brain injury (mTBI) has emerged as a potential risk factor for the development of neurodegenerative conditions such as Alzheimer's disease and chronic traumatic encephalopathy. Blast mTBI, caused by exposure to a pressure wave from an explosion, is predominantly experienced by military personnel and has increased in prevalence and severity in recent decades. Yet the underlying pathology of blast mTBI is largely unknown. We examined the expression and localization of AQP4 in human post-mortem frontal cortex and observed distinct laminar differences in AQP4 expression following blast exposure. We also observed similar laminar changes in AQP4 expression and localization and delayed impairment of glymphatic function that emerged 28 days following blast injury in a mouse model of repetitive blast mTBI. In a cohort of veterans with blast mTBI, we observed that blast exposure was associated with an increased burden of frontal cortical MRI-visible perivascular spaces, a putative neuroimaging marker of glymphatic perivascular dysfunction. These findings suggest that changes in AQP4 and delayed glymphatic impairment following blast injury may render the post-traumatic brain vulnerable to post-concussive symptoms and chronic neurodegeneration.


Asunto(s)
Acuaporina 4 , Traumatismos por Explosión , Sistema Glinfático , Adulto , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Acuaporina 4/metabolismo , Traumatismos por Explosión/complicaciones , Traumatismos por Explosión/patología , Traumatismos por Explosión/metabolismo , Conmoción Encefálica/metabolismo , Conmoción Encefálica/complicaciones , Conmoción Encefálica/patología , Conmoción Encefálica/fisiopatología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/patología , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Lóbulo Frontal/diagnóstico por imagen , Sistema Glinfático/metabolismo , Sistema Glinfático/patología , Imagen por Resonancia Magnética , Ratones Endogámicos C57BL , Veteranos
9.
Brain ; 147(5): 1914-1925, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38181433

RESUMEN

Autologous bone marrow mononuclear cells (BMMNCs) infused after severe traumatic brain injury have shown promise for treating the injury. We evaluated their impact in children, particularly their hypothesized ability to preserve the blood-brain barrier and diminish neuroinflammation, leading to structural CNS preservation with improved outcomes. We performed a randomized, double-blind, placebo-sham-controlled Bayesian dose-escalation clinical trial at two children's hospitals in Houston, TX and Phoenix, AZ, USA (NCT01851083). Patients 5-17 years of age with severe traumatic brain injury (Glasgow Coma Scale score ≤ 8) were randomized to BMMNC or placebo (3:2). Bone marrow harvest, cell isolation and infusion were completed by 48 h post-injury. A Bayesian continuous reassessment method was used with cohorts of size 3 in the BMMNC group to choose the safest between two doses. Primary end points were quantitative brain volumes using MRI and microstructural integrity of the corpus callosum (diffusivity and oedema measurements) at 6 months and 12 months. Long-term functional outcomes and ventilator days, intracranial pressure monitoring days, intensive care unit days and therapeutic intensity measures were compared between groups. Forty-seven patients were randomized, with 37 completing 1-year follow-up (23 BMMNC, 14 placebo). BMMNC treatment was associated with an almost 3-day (23%) reduction in ventilator days, 1-day (16%) reduction in intracranial pressure monitoring days and 3-day (14%) reduction in intensive care unit (ICU) days. White matter volume at 1 year in the BMMNC group was significantly preserved compared to placebo [decrease of 19 891 versus 40 491, respectively; mean difference of -20 600, 95% confidence interval (CI): -35 868 to -5332; P = 0.01], and the number of corpus callosum streamlines was reduced more in placebo than BMMNC, supporting evidence of preserved corpus callosum connectivity in the treated groups (-431 streamlines placebo versus -37 streamlines BMMNC; mean difference of -394, 95% CI: -803 to 15; P = 0.055), but this did not reach statistical significance due to high variability. We conclude that autologous BMMNC infusion in children within 48 h after severe traumatic brain injury is safe and feasible. Our data show that BMMNC infusion led to: (i) shorter intensive care duration and decreased ICU intensity; (ii) white matter structural preservation; and (iii) enhanced corpus callosum connectivity and improved microstructural metrics.


Asunto(s)
Trasplante de Médula Ósea , Lesiones Traumáticas del Encéfalo , Trasplante Autólogo , Humanos , Niño , Lesiones Traumáticas del Encéfalo/terapia , Masculino , Femenino , Adolescente , Método Doble Ciego , Preescolar , Trasplante de Médula Ósea/métodos , Trasplante Autólogo/métodos , Imagen por Resonancia Magnética , Resultado del Tratamiento , Leucocitos Mononucleares/trasplante , Teorema de Bayes
10.
Brain ; 147(4): 1321-1330, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38412555

RESUMEN

The pathophysiological underpinnings of critically disrupted brain connectomes resulting in coma are poorly understood. Inflammation is potentially an important but still undervalued factor. Here, we present a first-in-human prospective study using the 18-kDa translocator protein (TSPO) radioligand 18F-DPA714 for PET imaging to allow in vivo neuroimmune activation quantification in patients with coma (n = 17) following either anoxia or traumatic brain injuries in comparison with age- and sex-matched controls. Our findings yielded novel evidence of an early inflammatory component predominantly located within key cortical and subcortical brain structures that are putatively implicated in consciousness emergence and maintenance after severe brain injury (i.e. mesocircuit and frontoparietal networks). We observed that traumatic and anoxic patients with coma have distinct neuroimmune activation profiles, both in terms of intensity and spatial distribution. Finally, we demonstrated that both the total amount and specific distribution of PET-measurable neuroinflammation within the brain mesocircuit were associated with the patient's recovery potential. We suggest that our results can be developed for use both as a new neuroprognostication tool and as a promising biometric to guide future clinical trials targeting glial activity very early after severe brain injury.


Asunto(s)
Lesiones Encefálicas , Coma Postraumatismo Craneoencefálico , Humanos , Coma/complicaciones , Coma Postraumatismo Craneoencefálico/complicaciones , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Encéfalo/metabolismo , Lesiones Encefálicas/complicaciones , Hipoxia/complicaciones , Receptores de GABA/metabolismo
11.
Brain ; 147(7): 2274-2288, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38387081

RESUMEN

Clinical conversations surrounding the continuation or limitation of life-sustaining therapies (LLST) are both challenging and tragically necessary for patients with disorders of consciousness (DoC) following severe brain injury. Divergent cultural, philosophical and religious perspectives contribute to vast heterogeneity in clinical approaches to LLST-as reflected in regional differences and inter-clinician variability. Here we provide an ethical analysis of factors that inform LLST decisions among patients with DoC. We begin by introducing the clinical and ethical challenge and clarifying the distinction between withdrawing and withholding life-sustaining therapy. We then describe relevant factors that influence LLST decision-making including diagnostic and prognostic uncertainty, perception of pain, defining a 'good' outcome, and the role of clinicians. In concluding sections, we explore global variation in LLST practices as they pertain to patients with DoC and examine the impact of cultural and religious perspectives on approaches to LLST. Understanding and respecting the cultural and religious perspectives of patients and surrogates is essential to protecting patient autonomy and advancing goal-concordant care during critical moments of medical decision-making involving patients with DoC.


Asunto(s)
Trastornos de la Conciencia , Cuidados para Prolongación de la Vida , Privación de Tratamiento , Humanos , Trastornos de la Conciencia/terapia , Cuidados para Prolongación de la Vida/ética , Privación de Tratamiento/ética , Toma de Decisiones Clínicas/ética
12.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629798

RESUMEN

The prevalence of posttraumatic olfactory dysfunction in children after mild traumatic brain injury ranges from 3 to 58%, with potential factors influencing this variation, including traumatic brain injury severity and assessment methods. This prospective longitudinal study examines the association between mild traumatic brain injury and olfactory dysfunction in children. Seventy-five pediatric patients with mild traumatic brain injury and an age-matched healthy control group were enrolled. Olfactory function was assessed using the Sniffin' Sticks battery, which focuses on olfactory threshold and odor identification. The study found that children with mild traumatic brain injury had impaired olfactory function compared with healthy controls, particularly in olfactory threshold scores. The prevalence of olfactory dysfunction in the patient group was 33% and persisted for 1 yr. No significant association was found between traumatic brain injury symptoms (e.g. amnesia, loss of consciousness) and olfactory dysfunction. The study highlights the importance of assessing olfactory function in children after mild traumatic brain injury, given its potential impact on daily life. Although most olfactory dysfunction appears transient, long-term follow-up is essential to fully understand the recovery process. The findings add valuable insights to the limited literature on this topic and urge the inclusion of olfactory assessments in the management of pediatric mild traumatic brain injury.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Trastornos del Olfato , Humanos , Niño , Conmoción Encefálica/complicaciones , Estudios de Casos y Controles , Trastornos del Olfato/etiología , Estudios Prospectivos , Estudios Longitudinales , Olfato , Odorantes , Lesiones Traumáticas del Encéfalo/complicaciones
13.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39077916

RESUMEN

The lifetime effects of repetitive head impacts have captured considerable public and scientific interest over the past decade, yet a knowledge gap persists in our understanding of midlife neurological well-being, particularly in amateur level athletes. This study aimed to identify the effects of lifetime exposure to sports-related head impacts on brain morphology in retired, amateur athletes. This cross-sectional study comprised of 37 former amateur contact sports athletes and 21 age- and sex-matched noncontact athletes. High-resolution anatomical, T1 scans were analyzed for the cortical morphology, including cortical thickness, sulcal depth, and sulcal curvature, and cognitive function was assessed using the Dementia Rating Scale-2. Despite no group differences in cognitive functions, the contact group exhibited significant cortical thinning particularly in the bilateral frontotemporal regions and medial brain regions, such as the cingulate cortex and precuneus, compared to the noncontact group. Deepened sulcal depth and increased sulcal curvature across all four lobes of the brain were also notable in the contact group. These data suggest that brain morphology of middle-aged former amateur contact athletes differs from that of noncontact athletes and that lifetime exposure to repetitive head impacts may be associated with neuroanatomical changes.


Asunto(s)
Atletas , Corteza Cerebral , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/anatomía & histología , Estudios Transversales , Persona de Mediana Edad , Traumatismos en Atletas/patología , Traumatismos en Atletas/diagnóstico por imagen , Anciano , Conmoción Encefálica/patología , Conmoción Encefálica/diagnóstico por imagen , Cognición/fisiología
14.
Am J Respir Crit Care Med ; 210(2): 155-166, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38687499

RESUMEN

Critical care uses syndromic definitions to describe patient groups for clinical practice and research. There is growing recognition that a "precision medicine" approach is required and that integrated biologic and physiologic data identify reproducible subpopulations that may respond differently to treatment. This article reviews the current state of the field and considers how to successfully transition to a precision medicine approach. To impact clinical care, identification of subpopulations must do more than differentiate prognosis. It must differentiate response to treatment, ideally by defining subgroups with distinct functional or pathobiological mechanisms (endotypes). There are now multiple examples of reproducible subpopulations of sepsis, acute respiratory distress syndrome, and acute kidney or brain injury described using clinical, physiological, and/or biological data. Many of these subpopulations have demonstrated the potential to define differential treatment response, largely in retrospective studies, and that the same treatment-responsive subpopulations may cross multiple clinical syndromes (treatable traits). To bring about a change in clinical practice, a precision medicine approach must be evaluated in prospective clinical studies requiring novel adaptive trial designs. Several such studies are underway, but there are multiple challenges to be tackled. Such subpopulations must be readily identifiable and be applicable to all critically ill populations around the world. Subdividing clinical syndromes into subpopulations will require large patient numbers. Global collaboration of investigators, clinicians, industry, and patients over many years will therefore be required to transition to a precision medicine approach and ultimately realize treatment advances seen in other medical fields.


Asunto(s)
Cuidados Críticos , Unidades de Cuidados Intensivos , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Cuidados Críticos/métodos , Cuidados Críticos/normas , Consenso , Síndrome , Enfermedad Crítica/terapia , Fenotipo , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/clasificación
15.
Physiol Genomics ; 56(4): 301-316, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38145288

RESUMEN

The gut-brain axis interconnects the central nervous system (CNS) and the commensal bacteria of the gastrointestinal tract. The composition of the diet consumed by the host influences the richness of the microbial populations. Traumatic brain injury (TBI) produces profound neurocognitive damage, but it is unknown how diet influences the microbiome following TBI. The present work investigates the impact of a chow diet versus a 60% fat diet (HFD) on fecal microbiome populations in juvenile rats following TBI. Twenty-day-old male rats were placed on one of two diets for 9 days before sustaining either a Sham or TBI via the Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA). Fecal samples were collected at both 1- and 9-days postinjury. Animals were cognitively assessed in the novel object recognition tests at 8 days postinjury. Fecal microbiota DNA was isolated and sequenced. Twenty days of HFD feeding did not alter body weight, but fat mass was elevated in HFD compared with Chow rats. TBI animals had a greater percentage of entries to the novel object quadrant than Sham counterparts, P < 0.05. The Firmicutes/Bacteroidetes ratio was significantly higher in TBI than in the Sham, P < 0.05. Microbiota of the Firmicutes lineage exhibited perturbations by both injury and diet that were sustained at both time points. Linear regression analyses were performed to associate bacteria with metabolic and neurocognitive endpoints. For example, counts of Lachnospiraceae were negatively associated with percent entries into the novel object quadrant. Taken together, these data suggest that both diet and injury produce robust shifts in microbiota, which may have long-term implications for chronic health.NEW & NOTEWORTHY Traumatic brain injury (TBI) produces memory and learning difficulties. Diet profoundly influences the populations of gut microbiota. Following traumatic brain injury in a pediatric model consuming either a healthy or high-fat diet (HFD), significant shifts in bacterial populations occur, of which, some are associated with diet, whereas others are associated with neurocognitive performance. More work is needed to determine whether these microbes can therapeutically improve learning following trauma to the brain.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Disfunción Cognitiva , Microbioma Gastrointestinal , Humanos , Niño , Ratas , Masculino , Animales , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/genética , Bacterias , Lesiones Traumáticas del Encéfalo/microbiología
16.
Glia ; 72(2): 411-432, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37904612

RESUMEN

Astrocytes, a type of glial cells, play critical roles in promoting the protection and repair of damaged tissues after brain injury. Inflammatory cytokines and growth factors can affect gene expression in astrocytes in injured brains, but signaling pathways and transcriptional mechanisms that regulate tissue protective functions of astrocytes are still poorly understood. In this study, we investigated the molecular mechanisms regulating the function of reactive astrocytes induced in mouse models of stab wound (SW) brain injury and collagenase-induced intracerebral hemorrhage (ICH). We show that basic fibroblast growth factor (bFGF), whose expression is up-regulated in mouse brains after SW injury and ICH, acts synergistically with inflammatory cytokines to activate E2F1-mediated transcription of a gene encoding the Ror-family protein Ror2, a receptor for Wnt5a, in cultured astrocytes. We also found that subsequent activation of Wnt5a/Ror2 signaling in astrocytes results in nuclear accumulation of antioxidative transcription factor Nrf2 at least partly by increased expression of p62/Sqstm1, leading to promoted expression of several Nrf2 target genes, including heme oxygenase 1. Finally, we provide evidence demonstrating that enhanced activation of Wnt5a/Ror2 signaling in astrocytes reduces cellular damage caused by hemin, a degradation product of hemoglobin, and promotes repair of the damaged blood brain barrier after brain hemorrhage.


Asunto(s)
Lesiones Encefálicas , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Astrocitos/metabolismo , Lesiones Encefálicas/genética , Lesiones Encefálicas/metabolismo , Citocinas/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Transducción de Señal , Proteína Wnt-5a/metabolismo
17.
Glia ; 72(4): 728-747, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38180164

RESUMEN

Senescence is a negative prognostic factor for outcome and recovery following traumatic brain injury (TBI). TBI-induced white matter injury may be partially due to oligodendrocyte demise. We hypothesized that the regenerative capacity of oligodendrocyte precursor cells (OPCs) declines with age. To test this hypothesis, the regenerative capability of OPCs in young [(10 weeks ±2 (SD)] and aged [(62 weeks ±10 (SD)] mice was studied in mice subjected to central fluid percussion injury (cFPI), a TBI model causing widespread white matter injury. Proliferating OPCs were assessed by immunohistochemistry for the proliferating cell nuclear antigen (PCNA) marker and labeled by 5-ethynyl-2'-deoxyuridine (EdU) administered daily through intraperitoneal injections (50 mg/kg) from day 2 to day 6 after cFPI. Proliferating OPCs were quantified in the corpus callosum and external capsule on day 2 and 7 post-injury (dpi). The number of PCNA/Olig2-positive and EdU/Olig2-positive cells were increased at 2dpi (p < .01) and 7dpi (p < .01), respectively, in young mice subjected to cFPI, changes not observed in aged mice. Proliferating Olig2+/Nestin+ cells were less common (p < .05) in the white matter of brain-injured aged mice, without difference in proliferating Olig2+/PDGFRα+ cells, indicating a diminished proliferation of progenitors with different spatial origin. Following TBI, co-staining for EdU/CC1/Olig2 revealed a reduced number of newly generated mature oligodendrocytes in the white matter of aged mice when compared to the young, brain-injured mice (p < .05). We observed an age-related decline of oligodendrogenesis following experimental TBI that may contribute to the worse outcome of elderly patients following TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Sustancia Blanca , Humanos , Anciano , Ratones , Animales , Antígeno Nuclear de Célula en Proliferación , Encéfalo , Oligodendroglía , Ratones Endogámicos C57BL
18.
Neuroimage ; 297: 120751, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048043

RESUMEN

BACKGROUND: Convolutional neural network (CNN) can capture the structural features changes of brain aging based on MRI, thus predict brain age in healthy individuals accurately. However, most studies use single feature to predict brain age in healthy individuals, ignoring adding information from multiple sources and the changes in brain aging patterns after mild traumatic brain injury (mTBI) were still unclear. METHODS: Here, we leveraged the structural data from a large, heterogeneous dataset (N = 1464) to implement an interpretable 3D combined CNN model for brain-age prediction. In addition, we also built an atlas-based occlusion analysis scheme with a fine-grained human Brainnetome Atlas to reveal the age-sstratified contributed brain regions for brain-age prediction in healthy controls (HCs) and mTBI patients. The correlations between brain predicted age gaps (brain-PAG) following mTBI and individual's cognitive impairment, as well as the level of plasma neurofilament light were also examined. RESULTS: Our model utilized multiple 3D features derived from T1w data as inputs, and reduced the mean absolute error (MAE) of age prediction to 3.08 years and improved Pearson's r to 0.97 on 154 HCs. The strong generalizability of our model was also validated across different centers. Regions contributing the most significantly to brain age prediction were the caudate and thalamus for HCs and patients with mTBI, and the contributive regions were mostly located in the subcortical areas throughout the adult lifespan. The left hemisphere was confirmed to contribute more in brain age prediction throughout the adult lifespan. Our research showed that brain-PAG in mTBI patients was significantly higher than that in HCs in both acute and chronic phases. The increased brain-PAG in mTBI patients was also highly correlated with cognitive impairment and a higher level of plasma neurofilament light, a marker of neurodegeneration. The higher brain-PAG and its correlation with severe cognitive impairment showed a longitudinal and persistent nature in patients with follow-up examinations. CONCLUSION: We proposed an interpretable deep learning framework on a relatively large dataset to accurately predict brain age in both healthy individuals and mTBI patients. The interpretable analysis revealed that the caudate and thalamus became the most contributive role across the adult lifespan in both HCs and patients with mTBI. The left hemisphere contributed significantly to brain age prediction may enlighten us to be concerned about the lateralization of brain abnormality in neurological diseases in the future. The proposed interpretable deep learning framework might also provide hope for testing the performance of related drugs and treatments in the future.


Asunto(s)
Envejecimiento , Conmoción Encefálica , Encéfalo , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Humanos , Adulto , Masculino , Femenino , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Conmoción Encefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Adulto Joven , Anciano , Disfunción Cognitiva/diagnóstico por imagen , Aprendizaje Profundo
19.
J Neurophysiol ; 131(4): 598-606, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38380844

RESUMEN

The transplantation of neonatal microglia suppresses neuroinflammation caused by traumatic brain injury (TBI). This research aimed to explore the optimal time point of neonatal microglia transplantation for the best effect on the improvement of long-term cognitive function and inflammatory response in mouse models. qPCR and immunoblotting showed that the level of Iba1 gradually increased to the highest on day 7 and then gradually declined in TBI mice. Furthermore, it was observed that the level of CD86 and TNF-α increased to the highest after 7 days and subsequently was maintained until day 21, whereas the level of CD206 and IL-10 increased to the highest after 24 h and subsequently decreased until day 21 by qPCR and enzyme-linked immunosorbent assay. Afterward, it was shown that the neonatal microglia transplantation within 1 h significantly attenuated anxiety-like behavior and improved cognitive impairments in TBI mice. Mechanism exploration showed that the neonatal microglia could significantly decrease the level of cleaved caspase-3, M1/M2 polarization, and inflammatory cytokine (TNF-α) while increasing the level of anti-inflammatory factor IL-10 in TBI mice after transplantation within 1 h. Here, our findings demonstrated that neonatal microglia transplantation within 1 h significantly attenuated anxiety-like behavior and cognitive impairments caused by TBI.NEW & NOTEWORTHY The study demonstrated that neonatal microglia transplantation within 1 h significantly inhibited the pathogenesis of traumatic brain injury (TBI) in mouse models through inhibition of M1 polarization and promotion of M2 polarization.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Microglía , Ratones , Animales , Interleucina-10/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Antiinflamatorios/farmacología , Ratones Endogámicos C57BL
20.
J Neurochem ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770668

RESUMEN

A potential source of novel biomarkers for mTBI is the kynurenine pathway (KP), a metabolic pathway of tryptophan (Trp), that is up-regulated by neuroinflammation and stress. Considering that metabolites of the KP (kynurenines) are implicated in various neuropsychiatric diseases, exploration of this pathway could potentially bridge the gap between physiological and psychological factors in the recovery process after mTBI. This study, therefore, set out to characterize the KP after mTBI and to examine associations with long-term outcome. Patients were prospectively recruited at the emergency department (ED), and blood samples were obtained in the acute phase (<24 h; N = 256) and at 1-month follow-up (N = 146). A comparison group of healthy controls (HC; N = 32) was studied at both timepoints. Trp, kynurenines, and interleukin (IL)-6 and IL-10 were quantified in plasma. Clinical outcome was measured at six months post-injury. Trp, xanthurenic acid (XA), and picolinic acid (PA) were significantly reduced in patients with mTBI relative to HC, corrected for age and sex. For Trp (d = -0.57 vs. d = -0.29) and XA (d = -0.98 vs. d = -0.32), larger effects sizes were observed during the acute phase compared to one-month follow-up, while for PA (d = -0.49 vs. d = -0.52) effect sizes remained consistent. Findings for other kynurenines (e.g., kynurenine, kynurenic acid, and quinolinic acid) were non-significant after correction for multiple testing. Within the mTBI group, lower acute Trp levels were significantly related to incomplete functional recovery and higher depression scores at 6 months post-injury. No significant relationships were found for Trp, XA, and PA with IL-6 or IL-10 concentrations. In conclusion, our findings indicate that perturbations of the plasma KP in the hyperacute phase of mTBI and 1 month later are limited to the precursor Trp, and glutamate system modulating kynurenines XA and PA. Correlations between acute reductions of Trp and unfavorable outcomes may suggest a potential substrate for pharmacological intervention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA