Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Appl Clin Med Phys ; 21(1): 158-165, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31816183

RESUMEN

Continuous bed motion (CBM) was recently introduced as an alternative to step-and-shoot (SS) mode for PET/CT data acquisition. In CBM, the patient is continuously advanced into the scanner at a preset speed, whereas in SS, the patient is imaged in overlapping bed positions. Previous investigations have shown that patients preferred CBM over SS for PET data acquisition. In this study, we investigated the effect of CBM versus SS on patient breathing and respiratory motion correction. One hundred patients referred for PET/CT were scanned using a Siemens mCT scanner. Patient respiratory waveforms were recorded using an Anzai system and analyzed using four methods: Methods 1 and 2 measured the coefficient of variation (COV) of the respiratory cycle duration (RCD) and amplitude (RCA). Method 3 measured the respiratory frequency signal prominence (RSP) and method 4 measured the width of the HDChest optimal gate (OG) window when using a 35% duty cycle. Waveform analysis was performed over the abdominothoracic region which exhibited the greatest respiratory motion and the results were compared between CBM and SS. Respiratory motion correction was assessed by comparing the ratios of SUVmax, SUVpeak, and CNR of focal FDG uptake, as well as Radiologists' visual assessment of corresponding image quality of motion corrected and uncorrected images for both acquisition modes. The respiratory waveforms analysis showed that the RCD and RCA COV were 3.7% and 33.3% lower for CBM compared to SS, respectively, while the RSP and OG were 30.5% and 2.0% higher, respectively. Image analysis on the other hand showed that SUVmax, SUVpeak, and CNR were 8.5%, 4.5%, and 3.4% higher for SS compared to CBM, respectively, while the Radiologists' visual comparison showed similar image quality between acquisition modes. However, none of the results showed statistically significant differences between SS and CBM, suggesting that motion correction is not impacted by acquisition mode.


Asunto(s)
Movimiento , Neoplasias/radioterapia , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Respiración , Técnicas de Imagen Sincronizada Respiratorias/normas , Femenino , Fluorodesoxiglucosa F18/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Persona de Mediana Edad , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Pronóstico , Estudios Prospectivos , Radiofármacos/metabolismo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos
2.
Eur J Nucl Med Mol Imaging ; 43(4): 711-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26546010

RESUMEN

PURPOSE: Continuous bed motion has recently been introduced for whole-body PET/CT, and represents a paradigm shift towards individualized and flexible acquisition without the limitations of bed position-based planning. Increased patient comfort due to lack of abrupt table position changes may be another albeit still unproven advantage. For robust clinical implementation, image quality and quantitative accuracy should at least be equal to the prior standard of bed position-based step-and-shoot imaging. METHODS: The study included 68 consecutive patients referred for whole-body PET/CT for various malignancies. The patients underwent traditional step-and-shoot and novel continuous bed motion acquisition in the same session in a randomized crossover design. The patients and two independent observers were blinded to the sequence of scan techniques. Patient comfort/satisfaction was examined using a standardized questionnaire. SUVs were compared for reference tissue (liver, muscle) and tumour lesions. PET image quality and misalignment with CT images were evaluated on a scale of 1 - 4. RESULTS: Patients preferred continuous bed motion over step-and-shoot (P = 0.0001). It was considered to be more relaxing (38 % vs. 8 %), quieter (34 % vs. 8 %), and more fluid (64 % vs. 8 %). Image quality, SUV and CT misalignment did not differ between the techniques. Continuous bed motion resulted in better end-plane image quality (P < 0.0001). Regardless of the technique, second examinations had significantly higher tumour lesion SUVmax values (P = 0.0002), and a higher CT misalignment score (P = 0.0017). CONCLUSION: Oncological PET/CT with continuous bed motion enhances patient comfort and is associated with image quality at least comparable to that with traditional bed position-based step-and-shoot acquisition.qq.


Asunto(s)
Lechos/efectos adversos , Imagen Multimodal/métodos , Posicionamiento del Paciente/métodos , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Rayos X/métodos , Imagen de Cuerpo Entero/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento (Física) , Neoplasias/diagnóstico por imagen , Posicionamiento del Paciente/efectos adversos
3.
Phys Med ; 123: 103395, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843650

RESUMEN

PURPOSE: Preclinical PET scanners often have limited axial field-of-view for whole-body (WB) scanning of the small-animal. Step-and-shoot(S&S) acquisition mode requires multiple bed positions (BPs) to cover the scan length. Alternatively, in Continuous Bed Motion(CBM) mode, data acquisition is performed while the bed is continuously moving. In this study, to reduce acquisition time and enhance image quality, the CBM acquisition protocol was optimized and implemented on the Xtrim-PET preclinical scanner for WB imaging. METHODS: The over-scan percentage(OS%) in CBM mode was optimized by Monte Carlo simulation. Bed movement speed was optimized considering ranges from 0.1 to 2.0 mm s-1, and absolute system sensitivities with the optimal OS% were calculated. The performance of the scanner in CBM mode was measured, and compared with S&S mode based on the NEMA-NU4 standard. RESULTS: The optimal trade-off between absolute sensitivity and uniformity of sensitivity profile was achieved at OS-50 %. In comparison to S&S mode with maximum ring differences (MRD) of 9 and 23, the calculated equivalent speeds in CBM(OS-50 %) mode were 0.3 and 0.14 mm s-1, respectively. In terms of data acquisition with equal sensitivity in both CBM(OS-50 %) and S&S(MRD-9) modes, the total scan time in CBM mode decreased by 25.9 %, 47.7 %, 54.7 %, and 58.2 % for scan lengths of 1 to 4 BPs, respectively. CONCLUSION: The CBM mode enhances WB PET scans for small-animals, offering rapid data acquisition, high system sensitivity, and uniform axial sensitivity, leading to improved image quality. Its efficiency and customizable scan length and bed speed make it a superior alternative.


Asunto(s)
Método de Montecarlo , Tomografía de Emisión de Positrones , Imagen de Cuerpo Entero , Tomografía de Emisión de Positrones/instrumentación , Imagen de Cuerpo Entero/instrumentación , Imagen de Cuerpo Entero/métodos , Animales , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento , Fantasmas de Imagen , Movimiento (Física) , Simulación por Computador
4.
Ann Nucl Med ; 37(7): 381-389, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37002531

RESUMEN

OBJECTIVE: Positron emission tomography (PET) angiography is a promising PET imaging method for vessel evaluation. With advances in PET technologies, PET angiography of the whole body is now possible using continuous bed motion (CBM) mode. This study aimed to evaluate the image quality for depicting the aorta and main branches and the diagnostic performance of whole-body PET angiography in patients with vascular disease. METHODS: We retrospectively identified 12 consecutive patients who underwent whole-body 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET angiography in CBM mode. Whole-body PET angiography was performed between 20 and 45 s after administering [18F]FDG using CBM from the neck to the pelvis. The visibility of whole-body PET angiography was assessed for the 24 segments in three regions per patient using a 4-point grading scale (1, unacceptable; 2, poor; 3, good; 4, excellent), and grades 3 and 4 were considered diagnostic. The diagnostic accuracy of whole-body PET angiography for detecting vascular abnormalities was calculated using contrast-enhanced CT as a reference standard. RESULTS: We evaluated 285 segments from 12 patients, and overall, 170/285 segments (60%) were considered diagnostic throughout the whole body, including 96/117 (82%), 22/72 (31%), and 52/96 (54%) segments in the neck-to-chest region, abdominal region, and pelvic region, respectively. The sensitivity, specificity, and accuracy of whole-body PET angiography for detecting vascular abnormalities were 75.9%, 98.8%, and 96.5%, respectively. CONCLUSIONS: Whole-body PET angiography showed a better image quality for the neck-to-chest and pelvic regions in this setting, although it provided limited information on the vessels in the abdominal region.


Asunto(s)
Fluorodesoxiglucosa F18 , Enfermedades Vasculares , Humanos , Proyectos Piloto , Radiofármacos , Estudios Retrospectivos , Estudios de Factibilidad , Tomografía de Emisión de Positrones/métodos , Angiografía , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos
5.
J Nucl Med Technol ; 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440474

RESUMEN

This study investigated the spatial resolution and image quality of the continuous bed motion (CBM) method in a sensitive silicon photomultiplier (SiPM)-based positron emission tomography (PET)/computed tomography (CT) system compared with the traditional step-and-shoot (SS) method. Methods: Siemens Biograph Vision was used in this study. Data acquisition using the SS method was performed for 3 min per bed. In the CBM method, the bed speed ranged from 0.5 to 3.3 mm/s. The acquisition time equivalent to the SS method was 1.1 mm/s for 2-bed ranges and 0.8 mm/s for seven-bed ranges. The spatial resolution was investigated using 18F point sources and evaluated using the full width at half maximum. Image quality was investigated using a National Electrical Manufacturers Association International Electrotechnical Commission body phantom with six spheres 10-, 13-, 17-, 22-, 28-, and 37-mm inner diameters. The radioactivity concentration ratio of the 18F solution in all spheres and the background was approximately 4:1. The detectability of each sphere was visually evaluated on a five-step score. Image quality was physically evaluated using the noise equivalent count rate (NECphantom), contrast percentage of the 10-mm hot sphere (QH,10mm), background variability percentage (N10mm), and contrast-noise ratio (QH,10mm/N10mm). Results: The spatial resolution was not affected by the difference of acquisition methods and bed speeds. The detectability of the 10-mm sphere with a bed speed of 2.2 mm/s or faster was significantly inferior to that of the SS 2-bed method. In evaluating image quality, no significant difference in the contrast percentage was observed among the acquisition methods and speeds in the CBM method. However, the increasing bed speed in the CBM method increased the N10mm and decreased the NECphantom. When comparing the SS 2-bed method with the CBM method at 0.8 mm/s, no significant differences in all parameters were observed. Conclusion: In a SiPM-based PET/CT scanner, the CBM method provides equivalent spatial resolution and image quality in whole body PET images with same acquisition time using the SS method.

6.
J Nucl Med Technol ; 49(1): 58-64, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33020230

RESUMEN

Our objective was to investigate the differences in texture features between step-and-shoot (SS) and continuous-bed-motion (CBM) imaging in phantom and clinical studies. Methods: A National Electrical Manufacturers Association body phantom was filled with 18F-FDG solution at a sphere-to-background ratio of 4:1. SS and CBM were performed using the same acquisition duration, and the data were reconstructed using 3-dimensional ordered-subset expectation maximization with time-of-flight algorithms. Texture features were extracted using the software LIFEx. A volume of interest was delineated on the 22-, 28-, and 37-mm spheres with a threshold of 42% of the maximum SUV. The voxel intensities were discretized using 2 resampling methods, namely a fixed bin size and a fixed bin number discretization. The discrete resampling values were set to 64 and 128. In total, 31 texture features were calculated with gray-level cooccurrence matrix (GLCM), gray-level run length matrix, neighborhood gray-level different matrix, and gray-level zone length matrix. The texture features of the SS and CBM images were compared for all settings using the paired t test and the coefficient of variation. In a clinical study, 27 lesions from 20 patients were examined using the same acquisition and image processing as were used during the phantom study. The percentage difference (%Diff) and correlation between the texture features from SS and CBM images were calculated to evaluate agreement between the 2 scanning techniques. Results: In the phantom study, the 11 features exhibited no significant difference between SS and CBM images, and the coefficient of variation was no more than 10%, depending on resampling conditions, whereas entropy and dissimilarity from GLCM fulfilled the criteria for all settings. In the clinical study, the entropy and dissimilarity from GLCM exhibited a low %Diff and excellent correlation in all resampling conditions. The %Diff of entropy was lower than that of dissimilarity. Conclusion: Differences between the texture features of SS and CBM images varied depending on the type of feature. Because entropy for GLCM exhibits minimal differences between SS and CBM images irrespective of resampling conditions, entropy may be the optimal feature to reduce the differences between the 2 scanning techniques.


Asunto(s)
Fluorodesoxiglucosa F18 , Procesamiento de Imagen Asistido por Computador , Algoritmos , Humanos , Movimiento (Física) , Fantasmas de Imagen
7.
Radiol Phys Technol ; 14(4): 373-380, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34697782

RESUMEN

Variable-speed continuous bed motion 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT), a reliable imaging technique, allows setting the bed motion speed for arbitrary sections of the body. The purpose of this study was to evaluate the relationship between the PET image quality and the bed speed following shortening of the scanning time for the lower extremities to achieve whole-body acquisition optimization of the examination time. Four sets of images were created by editing four-phase dynamic whole-body PET/CT images acquired at a bed speed of 6 and 14 mm/s in the trunk and lower extremities, respectively. The signal-to-noise ratio (SNR) was calculated using regions of interest in the liver, gluteus muscles, thigh, and lower legs, and the relationship between the bed speed and the SNR was assessed. The number of patients with findings in the lower extremities among 967 cases was evaluated. Based on this relationship between the SNR and bed motion speed, it is reasonable to increase the speed of the lower extremities by up to three times that of the trunk. The findings from whole-body FDG-PET imaging revealed that the number of patients with detected lesions in the lower extremities was 6.6% (64/967), bone metastases were found in 2.6%, soft lesions in 1.8%, and inflammation in 2.3%. Images of the lower extremities, which have a better SNR than the trunk, can be acquired at a faster bed speed using the variable-speed continuous bed motion PET.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Imagen de Cuerpo Entero , Fluorodesoxiglucosa F18 , Humanos , Extremidad Inferior/diagnóstico por imagen , Tomografía de Emisión de Positrones
8.
Phys Med Biol ; 66(23)2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34673567

RESUMEN

In 'KRNL3D' we derive a kernel functionK(y1,y2,φ) whose backprojections from all directions (θ,φ) in the spherical band∣φ∣<φ¯maxon the celestial sphere, when integrated with respect to solid angle, yieldρ, the 3D Gaussian point response function (PRF) of radius 1. ThisK, when convolved against line integral data from an unknown density functionf, yields an integral formula for the 'mollification'ff=ρ∗f, which is a slightly blurred version off, and which stabilizes the mild ill-posedness. Applied to positron emission tomography that backprojection reconstruction occurs stochastically and one emission event at a time, after needed data corrections. We describe Octave (≈Matlab) codes to tabulateKand to test its use with a large apertureφ¯max=π/3orπ/6. 'KRNL3D-TOF' truncates backprojection to a cylindrical patch about the TOF approximate location of each event. These 'backplacements' decrease the computational cost and limit noise and streaking in one region from contaminating the reconstruction in more distant regions. They also retain the ability to count emission events in an isolated blob despiteverylow event counts, a valuable feature fordynamicstudies of metabolic processes. 'Multigrid' allows further reduction in the radius and lengths of the cylinders, thereby enabling even moreprecise use of the TOF information. This precision should be especially important as researchers decrease the TOF uncertainty in newer generation scanners. Finally, we discuss 'further work' that needs to be done. Our codes are being made freely available athttps://github.com/keithmillerberkeley/PET-codes.


Asunto(s)
Algoritmos , Tomografía de Emisión de Positrones , Procesamiento de Imagen Asistido por Computador/métodos , Distribución Normal , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos
9.
Ann Nucl Med ; 33(4): 288-294, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30707349

RESUMEN

OBJECTIVE: Whole-body dynamic imaging using positron emission tomography (PET) facilitates the quantification of tracer kinetics. It is potentially valuable for the differential diagnosis of tumors and for the evaluation of therapeutic efficacy. In whole-body dynamic PET with continuous bed motion (CBM) (WBDCBM-PET), the pass number and bed velocity are key considerations. In the present study, we aimed to investigate the effect of a combination of pass number and bed velocity on the quantitative accuracy and quality of WBDCBM-PET images. METHODS: In this study, WBDCBM-PET imaging was performed at a body phantom using seven bed velocity settings in combination with pass numbers. The resulting image quality was evaluated. For comparing different acquisition settings, the dynamic index (DI) was obtained using the following formula: [P/S], where P represents the pass number, and S represents the bed velocity (mm/s). The following physical parameters were evaluated: noise equivalent count at phantom (NECphantom), percent background variability (N10 mm), percent contrast of the 10 mm hot sphere (QH, 10 mm), the QH, 10 mm/N10 mm ratio, and the maximum standardized uptake value (SUVmax). Furthermore, visual evaluation was performed. RESULTS: The NECphantom was equivalent for the same DI settings regardless of the bed velocity. The N10 mm exhibited an inverse correlation (r < - 0.89) with the DI. QH,10 mm was not affected by DI, and a correlation between QH,10 mm/N10 mm ratio and DI was found at all the velocities (r > 0.93). The SUVmax of the spheres was not influenced by the DI. The coefficient of variations caused by bed velocity decreased in larger spheres. There was no significant difference between the bed velocities on visual evaluation. CONCLUSION: The quantitative accuracy and image quality achieved with WBDCBM-PET was comparable to that achieved with non-dynamic CBM, regardless of the pass number and bed velocity used during imaging for a given acquisition time.


Asunto(s)
Movimiento (Física) , Tomografía de Emisión de Positrones/instrumentación , Imagen de Cuerpo Entero/instrumentación , Artefactos , Fluorodesoxiglucosa F18 , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Control de Calidad , Relación Señal-Ruido
10.
J Nucl Med Technol ; 45(4): 290-296, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29042468

RESUMEN

Continuous-bed-motion (CBM) acquisition mode has been made commercially available in PET/CT scanners. CBM mode is designed for whole-body imaging, with a long scan length (multiple axial fields of view [aFOVs]) and short acquisition duration (2-3 min/aFOV). PET/CT has recently been used after 90Y-microsphere therapy to quantify 90Y activity distribution in the liver. Here we compared counting efficiencies along the bed-motion direction (z-axis) between CBM and step-and-shoot (SS) acquisition modes for limited-view organ scans, such as 90Y PET/CT liver studies, that have short scan lengths (≤2 aFOVs) and long acquisition durations (10-30 min/aFOV). Methods: The counting efficiencies, that is, analytic sensitivities, in SS mode (single-aFOV and multiple-aFOV scans) and CBM mode were theoretically derived and experimentally validated using a cylindric 68Ge phantom. The sensitivities along the z-axis were compared between the SS and CBM modes. Results: The analytic and experimental count profiles were in good agreement, validating the analytic models. For fixed scan durations, the overall coincidence counting efficiency in CBM mode was lower (∼60%) than those in SS modes, and the maximum sensitivity in CBM mode was 50% or less of that in 1-aFOV SS mode and 100% or less of that in 2-aFOV SS mode. Conclusion: The ability of CBM mode to tailor-fit the PET/CT scan length and local scan duration is not realized in studies with a short scan length (≤30 cm) and long scan duration (20 min/aFOV for the scanner). SS acquisition mode is preferable to CBM mode for limited-view organ and count-starved scans, such as 90Y PET/CT liver scans, because of the higher counting efficiency of SS mode, which leads to better image quality and quantification precision.


Asunto(s)
Movimiento (Física) , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Factores de Tiempo , Radioisótopos de Itrio
11.
Ann Nucl Med ; 31(9): 686-695, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28815414

RESUMEN

OBJECTIVE: This study aimed to compare the qualities of whole-body positron emission tomography (PET) images acquired by the step-and-shoot (SS) and continuous bed motion (CBM) techniques with approximately the same acquisition duration, through phantom and clinical studies. METHODS: A body phantom with 10-37 mm spheres was filled with 18F-fluorodeoxyglucose (FDG) solution at a sphere-to-background radioactivity ratio of 4:1 and acquired by both techniques. Reconstructed images were evaluated by visual assessment, percentages of contrast (%Q H) and background variability (%N) in accordance with the Japanese guideline for oncology FDG-PET/computed tomography (CT). To evaluate the variability of the standardized uptake value (SUV), the coefficient of variation (CV) for both maximum SUV and peak SUV was examined. Both the SUV values were additionally compared with those of standard images acquired for 30 min, and their accuracy was evaluated by the %difference (%Diff). In the clinical study, whole-body 18F-FDG PET/CT images of 60 patients acquired by both techniques were compared for liver signal-to-noise ratio (SNRliver), CV at end planes, and both SUV values. RESULTS: In the phantom study, the visual assessment and %Q H values of the two techniques did not differ from each other. However, the %N values of the CBM technique were significantly higher than those of the SS technique. Additionally, the CV and %Diff for both SUV values in the CBM images tended to be slightly higher than those in SS images. In the clinical study, the SNRliver values of CBM images were significantly lower than those of SS images, although the CV at the end planes in CBM images was significantly lower than those in SS images. In the Bland-Altman analysis for both SUV values, the mean differences were close to 0, and most lesions exhibited SUVs within the limits of agreement. CONCLUSIONS: The CBM technique exhibited slightly lesser uniformity in the center plane than the SS technique. Additionally, in the phantom study, the CV and %Diff of SUV values in CBM images tended to be slightly higher than those of SS images. However, since these differences were subtle, they might be negligible in clinical settings.


Asunto(s)
Fluorodesoxiglucosa F18 , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento (Física) , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Imagen de Cuerpo Entero/instrumentación , Anciano , Algoritmos , Artefactos , Femenino , Humanos , Masculino , Fantasmas de Imagen , Control de Calidad , Factores de Tiempo
12.
J Nucl Med Technol ; 44(2): 55-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27102661

RESUMEN

Within the last 3 y, a new type of technology has emerged for PET imaging that uses a continuous-bed-motion (CBM) acquisition. For technologists, this type of acquisition requires some modifications of the standard approach to PET protocols and imaging workflows. There are several key aspects of CBM that technologists need to learn and understand when transitioning from traditional step-and-shoot PET imaging to this new technology, including differences in acquisition type, image quality, and protocol setup as well as the impact that CBM can have on workflow. This article explains how CBM differs from step and shoot and focuses on the issues critical for technologists to know when first using this technology.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Flujo de Trabajo , Humanos , Procesamiento de Imagen Asistido por Computador , Melanoma/diagnóstico por imagen , Técnicas de Imagen Sincronizada Respiratorias
13.
Am J Nucl Med Mol Imaging ; 5(1): 56-64, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25625027

RESUMEN

New developments in PET/CT technology have enabled the commercial availability of continuous bed motion (CBM) acquisition methods. This technology has some potential performance benefits compared to standard step and shoot (SS) imaging, however, this technology has not been assessed with regard to quantitative and image quality parameters compared to traditional SS techniques. This study seeks to compare clinically relevant quantitative and image quality parameters using CBM and SS data collection methods with the intent of providing assistance in making educated decisions regarding imaging protocol development when using CBM technology versus SS imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA