Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37420700

RESUMEN

This communication investigated the dust effect on microelectromechanical system (MEMS) thermal wind sensors, with an aim to evaluate performance in practical applications. An equivalent circuit was established to analyze the temperature gradient influenced by dust accumulation on the sensor's surface. The finite element method (FEM) simulation was carried out to verify the proposed model using COMSOL Multiphysics software. In experiments, dust was accumulated on the sensor's surface by two different methods. The measured results indicated that the output voltage for the sensor with dust on its surface was a little smaller than that of the sensor without dust at the same wind speed, which can degrade the measurement sensitivity and accuracy. Compared to the sensor without dust, the average voltage was reduced by about 1.91% and 3.75% when the dustiness was 0.04 g/mL and 0.12 g/mL, respectively. The results can provide a reference for the actual application of thermal wind sensors in harsh environments.


Asunto(s)
Polvo , Sistemas Microelectromecánicos , Polvo/análisis , Viento , Temperatura , Programas Informáticos
2.
Heliyon ; 10(3): e25300, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333879

RESUMEN

In the realm of photovoltaic-thermal (PVT) systems, optimizing operating temperatures for photovoltaic (PV) panels is a challenge. This study introduces a novel solution: a sprayed water PVT system that simultaneously harnesses energy and electricity. The aim is twofold: generate electricity through PV panels and produce hot water via a flat plate collector, using an innovative cooling mechanism. Water sprayed onto the PV panel's surface flows to a collector for storage. With varied flow rates, optimal panel efficiency occurs at a 45° tilt angle, accompanied by lower collector outlet temperatures at higher flow rates. The collector achieves a peak thermal efficiency of 70.6 %, producing hot water at 84.6 °C. Notably, a significant PV panel efficiency enhancement, up to 16.78 %, especially at 1.56 L/min flow rate, is observed. The cooling technique consistently reduces panel temperatures from 45.08 °C to 34.12 °C. A self-cleaning spray mechanism improves efficiency by 2.53 %, resulting in an overall system efficiency of 83.3 %. This research offers an innovative approach to enhance energy generation and electricity in PVT systems, promising sustainable energy optimization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA