RESUMEN
Shifts in pollinator occurrence and their pollen transport effectiveness drive the evolution of mating systems in flowering plants. Understanding the genomic basis of these changes is essential for predicting the persistence of a species under environmental changes. We investigated the genomic changes in Brassica rapa over nine generations of pollination by hoverflies associated with rapid morphological evolution toward the selfing syndrome. We combined a genotyping-by-sequencing (GBS) approach with a genome-wide association study (GWAS) to identify candidate genes, and assessed their functional role in the observed morphological changes by studying mutations of orthologous genes in the model plant Arabidopsis thaliana. We found 31 candidate genes involved in a wide range of functions from DNA/RNA binding to transport. Our functional assessment of orthologous genes in A. thaliana revealed that two of the identified genes in B. rapa are involved in regulating the size of floral organs. We found a protein kinase superfamily protein involved in petal width, an important trait in plant attractiveness to pollinators. Moreover, we found a histone lysine methyltransferase (HKMT) associated with stamen length. Altogether, our study shows that hoverfly pollination leads to rapid evolution toward the selfing syndrome mediated by polygenic changes.
Asunto(s)
Evolución Biológica , Brassica rapa , Genes de Plantas , Polinización , Polinización/genética , Brassica rapa/genética , Brassica rapa/fisiología , Animales , Estudio de Asociación del Genoma Completo , Autofecundación/genética , Flores/genética , Flores/fisiología , Flores/anatomía & histología , Reproducción/genética , Arabidopsis/genética , Arabidopsis/fisiología , Mutación/genética , Dípteros/genética , Dípteros/fisiología , Fenotipo , Polen/genética , Polen/fisiologíaRESUMEN
To increase pollinator populations, international policy targets minimum levels of seminatural habitat cover, but it is unknown whether improving the quality of existing habitats could bring similar benefits without the need of reducing cropland area. Using data we collected in 26 Italian agricultural landscapes during the entire flying season, we explored the relative importance of habitat quantity (seminatural habitat cover) and quality (flower availability) on pollinator densities in seminatural habitats. We obtained transect-based counts and estimated the effect of habitat quantity (proportion of seminatural habitat) and quality (flower cover and richness) on wild bee and hoverfly densities. We used the relationships revealed in the data to simulate pollinator population sizes in landscapes with varying habitat quantity and quality. Wild bee densities were only related to flower availability, whereas hoverfly densities were additionally related to seminatural habitat cover. We found that in complex agricultural landscapes (above 15% seminatural habitat cover), improving habitat quality increased pollinator populations more effectively than increasing habitat quantity. However, increasing habitat quantity was by far the most effective approach for boosting pollinator populations in simple landscapes.
Análisis de la importancia relativa de la cantidad y calidad del hábitat para incrementar las poblaciones de polinizadores en los paisajes agrícolas Resumen Las políticas internacionales buscan que existan niveles mínimos de cobertura seminatural del hábitat para incrementar las poblaciones de polinizadores y se desconoce si mejorar la calidad de los hábitats existentes podría brindar beneficios similares sin tener que reducir el área de cultivo. Usamos datos recolectados en 26 paisajes agrícolas de Italia durante la temporada de vuelo para analizar la importancia relativa de la cantidad (cobertura de hábitat seminatural) y calidad (disponibilidad de flores) del hábitat para la densidad de polinizadores en los hábitats seminaturales. Obtuvimos conteos basados en transectos y estimamos el efecto de la cantidad (proporción del hábitat seminatural) y calidad (riqueza y cobertura de flores) del hábitat sobre la densidad de las abejas silvestres y los sírfidos. Usamos la relación revelada por los datos para simular el tamaño poblacional de los polinizadores en los paisajes con diferente calidad y cantidad de hábitat. La densidad de las abejas silvestres sólo se relacionó con la disponibilidad de flores cuando la densidad de sírfidos se relacionó con la cobertura del hábitat seminatural. Descubrimos que en los paisajes agrícolas complejos (por encima del 15% de cobertura de hábitat seminatural) cuya calidad mejoraba, las poblaciones de polinizadores incrementaban de manera más eficiente que cuando se mejoraba la cantidad. Sin embargo, incrementar la cantidad del hábitat fue por mucho la estrategia más efectiva para acrecentar las poblaciones de polinizadores en paisajes simples.
RESUMEN
BACKGROUND AND AIMS: Sexual polymorphisms of flowers have traditionally been interpreted as devices that promote cross-pollination, but they may also represent adaptations for exploiting particular pollination niches in local environments. The cross-pollination function of enantiostyly, characterized by flowers having either left- or right-deflected styles, has been uncertain in some lineages, such as the Haemodoraceae, because the positioning of stamens and styles is not always completely reciprocal among morphs. METHODS: We examined the floral biology of populations of the poorly known species Barberetta aurea (Haemodoraceae) across its native range in South Africa to establish the general features of its enanatiostylous reproductive system and the agents and mechanism of pollen transfer. RESULTS: We confirmed that B. aurea has a system of dimorphic enantiostyly. Style morph ratios varied among populations sampled, but with an overall tendency to being equal. Crossing experiments demonstrated that B. aurea is fully self-compatible, that intra- and inter-morph crosses are equally fertile and that it is wholly dependent on pollinator visits for seed production. Pollination is mainly by syrphid flies that transfer the sticky pollen via their wings, which contact the anthers and stigma precisely as they hover during approach and feeding. The majority of syrphid fly visitors feed on a film of highly concentrated nectar situated at the base of ultraviolet-absorbent 'nectar guides'. Because one of the three stamens is deflected in the same direction as the style, we predicted a high likelihood of intra-morph pollination, and this was corroborated by patterns of transfer of coloured dye particles in cage experiments involving syrphid flies. CONCLUSIONS: Barbaretta aurea exhibits dimorphic enantiostyly and, in contrast to most enantiostylous species, which are pollinated by bees, its flowers are specialized for pollination by syrphid flies. The lack of complete reciprocity of the enantiostylous arrangement of sexual organs facilitates both inter- and intra-morph pollen transfer on the wings of these flies.
Asunto(s)
Dípteros , Polinización , Abejas , Animales , Néctar de las Plantas , Dípteros/genética , Flores/genética , Semillas , ReproducciónRESUMEN
Insects are capable of extraordinary feats of long-distance movement that have profound impacts on the function of terrestrial ecosystems. The ability to undertake these movements arose multiple times through the evolution of a suite of traits that make up the migratory syndrome, however the underlying genetic pathways involved remain poorly understood. Migratory hoverflies (Diptera: Syrphidae) are an emerging model group for studies of migration. They undertake seasonal movements in huge numbers across large parts of the globe and are important pollinators, biological control agents and decomposers. Here, we assembled a high-quality draft genome of the marmalade hoverfly (Episyrphus balteatus). We leveraged this genomic resource to undertake a genome-wide transcriptomic comparison of actively migrating Episyrphus, captured from a high mountain pass as they flew south to overwinter, with the transcriptomes of summer forms which were non-migratory. We identified 1543 genes with very strong evidence for differential expression. Interrogation of this gene set reveals a remarkable range of roles in metabolism, muscle structure and function, hormonal regulation, immunity, stress resistance, flight and feeding behaviour, longevity, reproductive diapause and sensory perception. These features of the migrant phenotype have arisen by the integration and modification of pathways such as insulin signalling for diapause and longevity, JAK/SAT for immunity, and those leading to octopamine production and fuelling to boost flight capabilities. Our results provide a powerful genomic resource for future research, and paint a comprehensive picture of global expression changes in an actively migrating insect, identifying key genomic components involved in this important life-history strategy.
Asunto(s)
Dípteros , Transcriptoma , Migración Animal , Animales , Dípteros/genética , Ecosistema , Insectos/genética , Fenotipo , Transcriptoma/genéticaRESUMEN
Cities are considered important refuges for insect pollinators. This has been shown repeatedly for wild bees, but may also be true for other diverse taxa such as hoverflies. However, our understanding of how urban environmental filters shape pollinator species communities and their traits is still limited. Here, we used wild bee and hoverfly species, communities and their functional traits to illustrate how environmental filters on the landscape and local scale shape urban species pools. The multi-taxon approach revealed that environmental filtering predominantly occurred at the landscape scale as urbanisation and 3D connectivity significantly structured the taxonomic and functional composition of wild bee (sociality, nesting, diet, body size) and hoverfly (larval food type, migratory status) communities. We identified urban winners and losers attributed to taxon-specific responses to urban filters. Our results suggest that insect pollinator conservation needs to take place primarily at the landscape level while considering species traits, especially by increasing habitat connectivity.
Asunto(s)
Polinización , Urbanización , Animales , Abejas , Ciudades , Ecosistema , Fenotipo , Polinización/fisiologíaRESUMEN
Adult flower-visiting insects feed on nectar and pollen and partly collect floral resources to feed their larvae. The reduction in food availability has therefore been proposed as one of the main causes for the drastic decline in flower-visiting insects in Central Europe. We compared the current (2012-2017) abundances of food plants of different groups of flower-visiting insects to that of 1900-1930 in the canton of Zurich, Switzerland. Comparisons were done separately for different vegetation types, flowering months, and groups of diurnal flower-visiting insects, such as bees, bumble bees, wasps, butterflies, hoverflies, flies, and beetles. We found a general decrease in food plant abundance for all groups of flower-visiting insects and in all vegetation types except ruderal areas. Reductions of food plant abundance were most pronounced for wetlands and agricultural fields, reflecting the massive transformation of wetlands into other habitat types and the intensified management of agricultural fields. Food plant abundance for specialized flower visitors (bees, bumble bees, butterflies) of wetlands decreased most strongly in May and for generalized flower visitors (wasps, hoverflies, flies, beetles) in July. Specialized plant species, i.e., species with few groups of flower visitors, decreased more strongly in abundance than species with many groups of flower visitors. Finally, we found a homogenization of food plant assemblages in all vegetation types except ruderal areas, where the opposite pattern emerged. Our results suggest a significant reduction in the diversity and abundance of food plants for flower-visiting insects over the past century, which has been most severe for the more specialized insect groups. The trend of insect decline, in particular those specialized on few plant species, can only be stopped by extending suitable habitats, i.e., by increasing food availability and reestablish selected plant populations.
Asunto(s)
Flores , Polinización , Animales , Abejas , Europa (Continente) , Insectos , Plantas Comestibles , SuizaRESUMEN
Rat-tailed larvae of the syrphid species Palpada scutellaris (Fabricius, 1805) are documented causing an enteric human myiasis in Costa Rica. This is the first time that the genus Palpada is recorded as a human myiasis agent. We report a 68-year-old woman with intestinal pain and bloody diarrhea with several live Palpada larvae present in the stool. Using molecular techniques (DNA barcodes) and both electronic and optical microscopy to study the external morphology, the preimaginal stages of the fly were unambiguously identified. An identification key to all syrphid genera actually known as agents of human and animal myiases is provided for larvae, puparia, and adults. Moreover, a critical world review of more than 100 references of Syrphidae as myiasis agents is also given, with emphasis on the species with rat-tailed larvae.
Asunto(s)
Dípteros/fisiología , Miasis/parasitología , Animales , Costa Rica , Dípteros/clasificación , Dípteros/citología , Dípteros/ultraestructura , Heces/parasitología , Femenino , Humanos , Larva/clasificación , Larva/citología , Larva/fisiología , Larva/ultraestructura , Persona de Mediana Edad , Miasis/patología , Miasis/fisiopatologíaRESUMEN
Agri-environment management (AEM) started in the 1980s in Europe to mitigate biodiversity decline, but the effectiveness of AEM has been questioned. We hypothesize that this is caused by a lack of a large enough ecological contrast between AEM and non-treated control sites. The effectiveness of AEM may be moderated by landscape structure and land-use intensity. Here, we examined the influence of local ecological contrast, landscape structure and regional land-use intensity on AEM effectiveness in a meta-analysis of 62 European pollinator studies. We found that ecological contrast was most important in determining the effectiveness of AEM, but landscape structure and regional land-use intensity played also a role. In conclusion, the most successful way to enhance AEM effectiveness for pollinators is to implement measures that result in a large ecological improvement at a local scale, which exhibit a strong contrast to conventional practices in simple landscapes of intensive land-use regions.
Asunto(s)
Agricultura , Biodiversidad , Conservación de los Recursos Naturales , Polinización , Animales , Ecología , Ecosistema , Europa (Continente)RESUMEN
Fire, a frequent disturbance in the Mediterranean, affects pollinator communities. We explored the response of major pollinator guilds to fire severity, across a fire-severity gradient at different spatial scales. We show that the abundance of all pollinator groups responded to fire severity, and that bees and beetles showed in addition a significant species-diversity response. Bees, sawflies, and wasps responded to fire severity at relatively small spatial scales (250-300 m), whereas flies and beetles responded at larger spatial scales. The response of bees, sawflies, and wasps was unimodal, as predicted by the intermediate disturbance hypothesis, whereas flies and beetles showed a negative response. A possible explanation is that the observed patterns (spatial scale and type of response) are driven by taxa-specific ecological and life-history traits, such as nesting preference and body size, as well as the availability of resources in the postfire landscape. Our observational study provides an insight into the effect of fire severity on pollinators. However, future research exploring the explicit link between the pre- and postfire landscape structure and pollinator traits and responses is required for further establishment and understanding of cause-effect relationships.
Asunto(s)
Escarabajos , Incendios , Pinus , Animales , Abejas , Ecología , BosquesRESUMEN
The stabilization of plummeting hoverflies was filmed and analysed in terms of their wingbeat initiation times as well as the crash and stabilization rates. The flies experienced near-weightlessness for a period of time that depended on their ability to counteract the free fall by triggering their wingbeats. In this paradigm, hoverflies' flight stabilization strategies were investigated here for the first time under two different positions of the light source (overhead and bottom lighting). The crash rates were higher in bottom lighting conditions than with top lighting. In addition, adding a texture to the walls reduced the crash rates only in the overhead lighting condition. The position of the lighting also significantly affected both the stabilization rates and the time taken by the flies to stabilize, which decreased and increased under bottom lighting conditions, respectively, whereas textured walls increased the stabilization rates under both lighting conditions. These results support the idea that flies may mainly base their flight control strategy on visual cues and particularly that the light distribution in the visual field may provide reliable, efficient cues for estimating their orientation with respect to an allocentric reference frame. In addition, the finding that the hoverflies' optic flow-based motion detection ability is affected by the position of the light source in their visual field suggests the occurrence of interactions between movement perception and this visual vertical perception process.
Asunto(s)
Dípteros/fisiología , Vuelo Animal , Luz , Percepción Visual , Animales , Conducta Animal/fisiología , Señales (Psicología) , Flujo Optico , OrientaciónRESUMEN
Insect-feeding birds may interfere with trophic interactions in plant-insect food webs, which may be particularly important in agroecosystems. Here, we studied how Eurasian Tree Sparrows (Passer montanus) affect aphids and their predators in cereal fields using bird exclusion experiments. The Tree Sparrows fed their nestlings with aphid antagonists. Hoverflies and ladybird beetles accounted for 77% of the food for the nestlings during peak aphid density. When birds were excluded, densities of hoverfly larvae, which were the most abundant aphid predator group in the cereals, were 4% higher in wheat and 45% higher in oat, while aphid densities were 24% lower in wheat and 26% lower in oat. The demonstrated disruption of biological control by mesopredators through bird predation may be a common phenomenon in cropping systems characterized by small-sized and abundant pest species. Management of biotic interactions such as biological control needs a broad food-web perspective, even in simplified agroecosystems.
Asunto(s)
Áfidos/fisiología , Aves/fisiología , Animales , Escarabajos , Grano Comestible , Conducta Alimentaria , Control Biológico de Vectores , Conducta PredatoriaRESUMEN
Eumerus is one of the most diverse genera of hoverfly worldwide. Species delimitation within genus is considered to be difficult due to: (a) lack of an efficient key; (b) non-defined taxonomical status of a large number of species; and (c) blurred nomenclature. Here, we present the first molecular study to delimit species of the genus by using a fragment of the mitochondrial cytochrome-c oxidase subunit I gene (COI) gene. We assessed 75 specimens assigned to 28 taxa originating from two biogeographic zones: 22 from the western Palaearctic and six from the Afrotropical region. Two datasets were generated based on different sequence lengths to explore the significance of availability of more polymorphic sites for species delimitation; dataset A with a total length of 647 bp and dataset B with 746 bp. Various tree inference approaches and Poisson tree processes models were applied to evaluate the putative 'taxonomical' vs. 'molecular' taxa clusters. All analyses resulted in high taxonomic resolution and clear species delimitation for both the dataset lengths. Furthermore, we revealed a high number of mitochondrial haplotypes and high intraspecific variability. We report two major monophyletic clades, and seven 'molecular' groups of taxa formed, which are congruent with morphology-based taxonomy. Our results support the use of the mitochondrial COI gene in species diagnosis of Eumerus.
Asunto(s)
Dípteros/clasificación , Dípteros/genética , Complejo IV de Transporte de Electrones/genética , Variación Genética , Proteínas de Insectos/genética , Proteínas Mitocondriales/genética , África , Animales , Código de Barras del ADN Taxonómico , Europa (Continente) , Filogenia , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Anchored hybrid enrichment is a form of next-generation sequencing that uses oligonucleotide probes to target conserved regions of the genome flanked by less conserved regions in order to acquire data useful for phylogenetic inference from a broad range of taxa. Once a probe kit is developed, anchored hybrid enrichment is superior to traditional PCR-based Sanger sequencing in terms of both the amount of genomic data that can be recovered and effective cost. Due to their incredibly diverse nature, importance as pollinators, and historical instability with regard to subfamilial and tribal classification, Syrphidae (flower flies or hoverflies) are an ideal candidate for anchored hybrid enrichment-based phylogenetics, especially since recent molecular phylogenies of the syrphids using only a few markers have resulted in highly unresolved topologies. Over 6200 syrphids are currently known and uncovering their phylogeny will help us to understand how these species have diversified, providing insight into an array of ecological processes, from the development of adult mimicry, the origin of adult migration, to pollination patterns and the evolution of larval resource utilization. RESULTS: We present the first use of anchored hybrid enrichment in insect phylogenetics on a dataset containing 30 flower fly species from across all four subfamilies and 11 tribes out of 15. To produce a phylogenetic hypothesis, 559 loci were sampled to produce a final dataset containing 217,702 sites. We recovered a well resolved topology with bootstrap support values that were almost universally >95 %. The subfamily Eristalinae is recovered as paraphyletic, with the strongest support for this hypothesis to date. The ant predators in the Microdontinae are sister to all other syrphids. Syrphinae and Pipizinae are monophyletic and sister to each other. Larval predation on soft-bodied hemipterans evolved only once in this family. CONCLUSIONS: Anchored hybrid enrichment was successful in producing a robustly supported phylogenetic hypothesis for the syrphids. Subfamilial reconstruction is concordant with recent phylogenetic hypotheses, but with much higher support values. With the newly designed probe kit this analysis could be rapidly expanded with further sampling, opening the door to more comprehensive analyses targeting problem areas in syrphid phylogenetics and ecology.
Asunto(s)
Evolución Biológica , Dípteros/clasificación , Animales , Dípteros/genética , Flores , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Polinización , Análisis de Secuencia de ADNRESUMEN
Comprising nearly 300 described species, Eumerus Meigen, 1822, is one of the most speciose syrphid genera worldwide, and its taxonomic diversity is remarkable in the Mediterranean basin. The Eumerus barbarus (Coquebert, 1804) group consists of four species in the western Mediterranean. Although the phenotypic variability of this species group has been commented on in previous studies, it has never been contrasted with molecular data. In the present work, the morphological variation found in 300+ specimens of this species group from the western Mediterranean is explored and tested against the COI mitochondrial DNA (mtDNA). The highest phenotypic disparity was found in E. barbarus and Eumerus sulcitibius Rondani 1868. The integrative approach has not revealed cryptic diversity within the species E. barbarus but in E. sulcitibius. As a result, a new species close to E. sulcitibius was discovered, Eumerus sardus Aguado-Aranda, Ricarte & Hauser sp. n., from Sardinia, Italy. The new insular species is here described, illustrated, and discussed. A total of twenty-three haplotypes of COI mtDNA were identified amongst the analyzed Mediterranean specimens of E. barbarus, whereas two and five haplotypes were distinguished in the Iberian specimens of E. sulcitibius and Eumerus gibbosus van Steenis, Hauser & van Zuijen, 2017, respectively. Moreover, the first known barcodes of E. gibbosus and Eumerus schmideggeri van Steenis, Hauser & van Zuijen, 2017 were obtained, and the distribution ranges of all species are mapped. An updated dichotomous key to the males of the E. barbarus group from the western Mediterranean is provided.
RESUMEN
The extent to which weeds in arable land are useful to pollinators depends in part on the temporal pattern of flowering and insect flight activity. We compiled citizen science data on 54 bees and hoverflies typical of agricultural areas in southern Sweden, as well as 24 flowering weed species classified as pollinator-friendly in the sense that they provide nectar and/or pollen to pollinators. The flight periods of the bees and hoverflies varied greatly, but there were also some consistent differences between the four groups studied. The first group to fly were the early flying solitary bees (7 species), followed by the social bees (18 species). In contrast, other solitary bees (11 species) and hoverflies (22 species) flew later in the summer. Solitary bees had the shortest flight periods, while social bees and hoverflies had longer flight periods. Flowering of weed species also varied greatly between species, with weeds classified as winter annuals (e.g., germinating in autumn) starting early together with germination generalists (species that can germinate in both autumn and spring). Summer annuals (spring germinators) and perennials started flowering about a month later. Germination generalists had a much longer flowering period than the others. Weekly pollinator records were in most cases significantly explained by weed records. Apart from early flying solitary bees, all models showed strong positive relationships. The overall best explanatory variable was the total number of weeds, with a weight assigned to each species based on its potential as a nectar/pollen source. This suggests that agricultural weeds in Sweden provide a continuous potential supply of nectar and pollen throughout the flight season of most pollinators.
RESUMEN
This study focuses on the avidus-nigritarsis lineage within the genus Merodon, exploring morphological, genetic, and distributional aspects of two related assemblies within this lineage: the clavipes and pruni species groups. An integrative taxonomic approach was followed to ensure comprehensive species identification and validation, using adult morphology, wing geometric morphometrics, and genetic analysis of the mtDNA COI gene. In the clavipes group, seven species were identified, including three new species: M.aenigmaticus Vujic, Radenkovic & Likov, sp. nov., M.latens Vujic, Radenkovic & Likov, sp. nov., and M.rufofemoris Vujic, Radenkovic & Likov, sp. nov. In the pruni group, our revision revealed a new species, M.aequalis Vujic, Radenkovic & Likov, sp. nov., and the revalidation of Merodonobscurus Gil Collado, 1929, stat. rev. Merodonpallidus Macquart, 1842 is redescribed. Diagnoses, identification keys to species, and distribution maps are provided, and neotypes for Syrphusclavipes Fabricius, 1781 and Merodonquadrinotatus (Sack, 1931) are designated. Additionally, the following new synonyms are proposed: M.clavipesalbus syn. nov., M.clavipesater syn. nov., M.clavipesniger syn. nov., and M.splendens syn. nov. are junior synonyms of M.clavipes; and M.veloxarmeniacus syn. nov. and M.veloxanathema syn. nov. are junior synonyms of M.velox.
RESUMEN
In this paper, the Merodon avidus (Diptera, Syrphidae) species complex was revised, whereupon we discovered and described four new species for science: Merodon atroavidus Vujic, Radenkovic et Likov sp. nov., M. magnus Vujic, Kocis Tubic et Acanski sp. nov., M. nigroscutum Vujic, Radenkovic et Likov sp. nov. and M. pseudomoenium Vujic, Kocis Tubic et Acanski sp. nov. An integrative taxonomy approach was used to delimit species boundaries. Two molecular markers (the mitochondrial COI gene and nuclear 28S rRNA gene-newly analysed marker for the complex) and geometric morphometry of the wing shape, together with morphological data and distribution, successfully separated all species from the complex. The morphological variability of the analysed species is described and discussed and an illustrated diagnostic key for typical morpho-forms of species from the M. avidus complex is presented. A distribution map of all investigated species from the complex is provided. The level of endemicity of the M. avidus complex was discussed.
RESUMEN
Population structure of pests and beneficial species is an important issue when designing management strategies to optimize ecosystem services. In this study, we investigated for the first time the population structure at a continental scale of two migratory species of hoverflies providing both pest regulation and pollination services [Episyrphus balteatus and Sphaerophoria scripta (Diptera: Syrphidae)]. To achieve this objective, we used two sets of 12 species-specific microsatellite markers on a large-scale sampling from all over Europe. Our findings showed a high level of genetic mixing resulting in a lack of genetic differentiation at a continental scale and a great genetic diversity in the two species. All the pairwise FST values between European localities were less 0.05 in the two species. These low values reflect a large-scale genetic mixing probably caused by the existence of frequent migratory movements in the two species. Mantel tests revealed isolation-by-distance pattern on the East-West axis, but not on the North-South axis. This isolation-by-distance pattern confirms the existence of North-South migratory movements in both directions and suggests an important step by step dispersal. Population features shown by this study are common in invasive species and pests, but are not often observed in beneficial species. They reflect great colonization abilities and a high adaptive potential when dealing with a changing environment. Our results highlight the two studied species as particularly interesting beneficial insects for pollination and pest predation in the current context of global change.
Asunto(s)
Distribución Animal , Migración Animal , Dípteros/genética , Genética de Población , Agricultura , Animales , Teorema de Bayes , Análisis por Conglomerados , Dípteros/fisiología , Europa (Continente) , Variación Genética , Genotipo , Repeticiones de Microsatélite , Modelos GenéticosRESUMEN
Assessing the oviposition preferences of predatory hoverflies is a key factor in the prediction of the success of these biological control agents against aphids in greenhouses, especially when using banker plant systems or in mixed-crop contexts. In this study, two aspects of the oviposition preferences of the American hoverfly, Eupeodes americanus (Wiedemann, 1830) (Diptera: Syrphidae), were evaluated. Firstly, the preference between the banker plant and the target crop was evaluated for three banker plant species (barley, finger millet, or corn) and two target crops (cucumber or pepper). Secondly, the preference between the same two target crops was assessed. Female oviposition preferences were evaluated via two-choice experiments using different plant/aphid systems. The results showed that, for the cucumber crops, the species of banker plant used drastically influenced the oviposition preference of the hoverfly, with a preference for barley over cucumber, cucumber over finger millet, and no preference between corn and cucumber. Unlike cucumber, when used with pepper, barley engendered a preference for the target crop. We conclude that the barley banker plant could be adequate for aphid control in pepper but not in cucumber crops. In a mixed-crop context, the American hoverfly had no preference between cucumber and pepper, which means it has the potential to protect both crops in a mixed-crop greenhouse context. This study shows that the banker plant system should be carefully chosen according to the crops/aphids present in the greenhouse to optimize the impact of the hoverfly as a biocontrol agent. Further work is required to confirm this choice of banker plant in semifield or field testing.
RESUMEN
The Afrotropical hoverflies remain an understudied group of hoverflies. One of the reasons for the lack of studies on this group resides in the difficulties to delimit the species using the available identification keys. DNA barcoding has been found useful in such cases of taxonomical uncertainty. Here, we present a molecular study of hoverfly species from the eastern Free State of South Africa using the mitochondrial cytochrome-c oxidase subunit I gene (COI). The identification of 78 specimens was achieved through three analytical approaches: genetic distances analysis, species delimitation models and phylogenetic reconstructions. In this study, 15 nominal species from nine genera were recorded. Of these species, five had not been previously reported to occur in South Africa, namely, Betasyrphus inflaticornis Bezzi, 1915, Mesembrius strigilatus Bezzi, 1912, Eristalinus tabanoides Jaennicke, 1876, Eristalinus vicarians Bezzi, 1915 and Eristalinus fuscicornis Karsch, 1887. Intra- and interspecific variations were found and were congruent between neighbour-joining and maximum likelihood analyses, except for the genus Allograpta Osten Sacken, 1875, where identification seemed problematic, with a relatively high (1.56%) intraspecific LogDet distance observed in Allograpta nasuta Macquart, 1842. Within the 78 specimens analysed, the assembled species by automatic partitioning (ASAP) estimated the presence of 14-17 species, while the Poisson tree processes based on the MPTP and SPTP models estimated 15 and 16 species. The three models showed similar results (10 species) for the Eristalinae subfamily, while for the Syrphinae subfamily, 5 and 6 species were suggested through MPTP and SPTP, respectively. Our results highlight the necessity of using different species delimitation models in DNA barcoding for species diagnoses.