Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.287
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(2): 268-281, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38195702

RESUMEN

Melanoma cells, deriving from neuroectodermal melanocytes, may exploit the nervous system's immune privilege for growth. Here we show that nerve growth factor (NGF) has both melanoma cell intrinsic and extrinsic immunosuppressive functions. Autocrine NGF engages tropomyosin receptor kinase A (TrkA) on melanoma cells to desensitize interferon γ signaling, leading to T and natural killer cell exclusion. In effector T cells that upregulate surface TrkA expression upon T cell receptor activation, paracrine NGF dampens T cell receptor signaling and effector function. Inhibiting NGF, either through genetic modification or with the tropomyosin receptor kinase inhibitor larotrectinib, renders melanomas susceptible to immune checkpoint blockade therapy and fosters long-term immunity by activating memory T cells with low affinity. These results identify the NGF-TrkA axis as an important suppressor of anti-tumor immunity and suggest larotrectinib might be repurposed for immune sensitization. Moreover, by enlisting low-affinity T cells, anti-NGF reduces acquired resistance to immune checkpoint blockade and prevents melanoma recurrence.


Asunto(s)
Melanoma , Receptor de Factor de Crecimiento Nervioso , Humanos , Receptor de Factor de Crecimiento Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Tropomiosina , Melanoma/terapia , Receptor trkA/genética , Receptor trkA/metabolismo , Citoprotección , Inhibidores de Puntos de Control Inmunológico , Células T de Memoria , Terapia de Inmunosupresión , Inmunoterapia , Receptores de Antígenos de Linfocitos T
2.
Nat Immunol ; 24(3): 439-451, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36703006

RESUMEN

Cross-talk between peripheral neurons and immune cells is important in pain sensation. We identified Snx25 as a pain-modulating gene in a transgenic mouse line with reduced pain sensitivity. Conditional deletion of Snx25 in monocytes and macrophages, but not in peripheral sensory neurons, in mice (Snx25cKO mice) reduced pain responses in both normal and neuropathic conditions. Bone marrow transplantation using Snx25cKO and wild-type mice indicated that macrophages modulated pain sensitivity. Expression of sorting nexin (SNX)25 in dermal macrophages enhanced expression of the neurotrophic factor NGF through the inhibition of ubiquitin-mediated degradation of Nrf2, a transcription factor that activates transcription of Ngf. As such, dermal macrophages set the threshold for pain sensitivity through the production and secretion of NGF into the dermis, and they may cooperate with dorsal root ganglion macrophages in pain perception.


Asunto(s)
Macrófagos , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Ratones Transgénicos , Monocitos , Factor de Crecimiento Nervioso/metabolismo , Dolor , Nexinas de Clasificación
3.
Cell ; 156(3): 563-76, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24440334

RESUMEN

The serum response factor (SRF) binds to coactivators, such as myocardin-related transcription factor-A (MRTF-A), and mediates gene transcription elicited by diverse signaling pathways. SRF/MRTF-A-dependent gene transcription is activated when nuclear MRTF-A levels increase, enabling the formation of transcriptionally active SRF/MRTF-A complexes. The level of nuclear MRTF-A is regulated by nuclear G-actin, which binds to MRTF-A and promotes its nuclear export. However, pathways that regulate nuclear actin levels are poorly understood. Here, we show that MICAL-2, an atypical actin-regulatory protein, mediates SRF/MRTF-A-dependent gene transcription elicited by nerve growth factor and serum. MICAL-2 induces redox-dependent depolymerization of nuclear actin, which decreases nuclear G-actin and increases MRTF-A in the nucleus. Furthermore, we show that MICAL-2 is a target of CCG-1423, a small molecule inhibitor of SRF/MRTF-A-dependent transcription that exhibits efficacy in various preclinical disease models. These data identify redox modification of nuclear actin as a regulatory switch that mediates SRF/MRTF-A-dependent gene transcription.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Microfilamentos/metabolismo , Oxidorreductasas/metabolismo , Factor de Respuesta Sérica/metabolismo , Transducción de Señal , Actinas/metabolismo , Secuencia de Aminoácidos , Anilidas/farmacología , Animales , Benzamidas/farmacología , Línea Celular , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Proteínas de Microfilamentos/análisis , Proteínas de Microfilamentos/genética , Oxigenasas de Función Mixta/análisis , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Datos de Secuencia Molecular , Factor de Crecimiento Nervioso/metabolismo , Neuritas/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Oxidación-Reducción , Oxidorreductasas/análisis , Oxidorreductasas/genética , Ratas , Alineación de Secuencia , Transactivadores , Transcripción Genética , Pez Cebra
4.
Cell ; 152(5): 945-56, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23452846

RESUMEN

A growing number of studies are revealing that cells can send and receive information by controlling the temporal behavior (dynamics) of their signaling molecules. In this Review, we discuss what is known about the dynamics of various signaling networks and their role in controlling cellular responses. We identify general principles that are emerging in the field, focusing specifically on how the identity and quantity of a stimulus is encoded in temporal patterns, how signaling dynamics influence cellular outcomes, and how specific dynamical patterns are both shaped and interpreted by the structure of molecular networks. We conclude by discussing potential functional roles for transmitting cellular information through the dynamics of signaling molecules and possible applications for the treatment of disease.


Asunto(s)
Células/metabolismo , Transducción de Señal , Animales , Factor de Crecimiento Epidérmico/metabolismo , Redes Reguladoras de Genes , Humanos , Factor de Crecimiento Nervioso/metabolismo , Factores de Tiempo , Proteína p53 Supresora de Tumor/metabolismo
5.
Traffic ; 25(5): e12936, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725127

RESUMEN

Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.


Asunto(s)
Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP , Endosomas , Factores de Intercambio de Guanina Nucleótido , Factor de Crecimiento Nervioso , Proyección Neuronal , Receptor trkA , Animales , Ratones , Ratas , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Endosomas/metabolismo , Ganglios Espinales/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Ratones Noqueados , Factor de Crecimiento Nervioso/metabolismo , Células PC12 , Transporte de Proteínas , Receptor trkA/metabolismo
6.
Genome Res ; 33(9): 1497-1512, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37582635

RESUMEN

Neurons are morphologically complex cells that rely on the compartmentalization of protein expression to develop and maintain their cytoarchitecture. The targeting of RNA transcripts to axons is one of the mechanisms that allows rapid local translation of proteins in response to extracellular signals. 3' Untranslated regions (UTRs) of mRNA are noncoding sequences that play a critical role in determining transcript localization and translation by interacting with specific RNA-binding proteins (RBPs). However, how 3' UTRs contribute to mRNA metabolism and the nature of RBP complexes responsible for these functions remains elusive. We performed 3' end sequencing of RNA isolated from cell bodies and axons of sympathetic neurons exposed to either nerve growth factor (NGF) or neurotrophin 3 (NTF3, also known as NT-3). NGF and NTF3 are growth factors essential for sympathetic neuron development through distinct signaling mechanisms. Whereas NTF3 acts mostly locally, NGF signal is retrogradely transported from axons to cell bodies. We discovered that both NGF and NTF3 affect transcription and alternative polyadenylation in the nucleus and induce the localization of specific 3' UTR isoforms to axons, including short 3' UTR isoforms found exclusively in axons. The integration of our data with CLIP sequencing data supports a model whereby long 3' UTR isoforms associate with RBP complexes in the nucleus and, upon reaching the axons, are remodeled locally into shorter isoforms. Our findings shed new light into the complex relationship between nuclear polyadenylation, mRNA localization, and local 3' UTR remodeling in developing neurons.


Asunto(s)
Axones , Factor de Crecimiento Nervioso , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regiones no Traducidas 3' , Axones/metabolismo , Isoformas de Proteínas/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
7.
Cell ; 146(3): 421-34, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21816277

RESUMEN

The neurotrophins NGF and NT3 collaborate to support development of sympathetic neurons. Although both promote axonal extension via the TrkA receptor, only NGF activates retrograde transport of TrkA endosomes to support neuronal survival. Here, we report that actin depolymerization is essential for initiation of NGF/TrkA endosome trafficking and that a Rac1-cofilin signaling module associated with TrkA early endosomes supports their maturation to retrograde transport-competent endosomes. These actin-regulatory endosomal components are absent from NT3/TrkA endosomes, explaining the failure of NT3 to support retrograde TrkA transport and survival. The inability of NT3 to activate Rac1-GTP-cofilin signaling is likely due to the labile nature of NT3/TrkA complexes within the acidic environment of TrkA early endosomes. Thus, TrkA endosomes associate with actin-modulatory proteins to promote F-actin disassembly, enabling their maturation into transport-competent signaling endosomes. Differential control of this process explains how NGF but not NT3 supports retrograde survival of sympathetic neurons.


Asunto(s)
Actinas/metabolismo , Endosomas/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Receptor trkA/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Ratones , Neurotrofina 3/metabolismo , Células PC12 , Transporte de Proteínas , Ratas , Transducción de Señal , Sistema Nervioso Simpático/citología
8.
Nature ; 577(7790): 392-398, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31915380

RESUMEN

More than twelve morphologically and physiologically distinct subtypes of primary somatosensory neuron report salient features of our internal and external environments1-4. It is unclear how specialized gene expression programs emerge during development to endow these subtypes with their unique properties. To assess the developmental progression of transcriptional maturation of each subtype of principal somatosensory neuron, we generated a transcriptomic atlas of cells traversing the primary somatosensory neuron lineage in mice. Here we show that somatosensory neurogenesis gives rise to neurons in a transcriptionally unspecialized state, characterized by co-expression of transcription factors that become restricted to select subtypes as development proceeds. Single-cell transcriptomic analyses of sensory neurons from mutant mice lacking transcription factors suggest that these broad-to-restricted transcription factors coordinate subtype-specific gene expression programs in subtypes in which their expression is maintained. We also show that neuronal targets are involved in this process; disruption of the prototypic target-derived neurotrophic factor NGF leads to aberrant subtype-restricted patterns of transcription factor expression. Our findings support a model in which cues that emanate from intermediate and final target fields promote neuronal diversification in part by transitioning cells from a transcriptionally unspecialized state to transcriptionally distinct subtypes by modulating the selection of subtype-restricted transcription factors.


Asunto(s)
Neurogénesis , Neuronas/fisiología , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Factor de Crecimiento Nervioso/metabolismo , Neuronas/citología , ARN/análisis , ARN/genética , Análisis de la Célula Individual , Factor de Transcripción Brn-3B/genética , Factor de Transcripción Brn-3B/metabolismo , Factor de Transcripción Brn-3C/genética , Factor de Transcripción Brn-3C/metabolismo
9.
Hum Mol Genet ; 32(8): 1380-1400, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36537577

RESUMEN

A functional nerve growth factor NGF-Tropomyosin Receptor kinase A (TrkA) system is an essential requisite for the generation and maintenance of long-lasting thermal and mechanical hyperalgesia in adult mammals. Indeed, mutations in the gene encoding for TrkA are responsible for a rare condition, named Hereditary Sensory and Autonomic Neuropathy type IV (HSAN IV), characterized by the loss of response to noxious stimuli, anhidrosis and cognitive impairment. However, to date, there is no available mouse model to properly understand how the NGF-TrkA system can lead to pathological phenotypes that are distinctive of HSAN IV. Here, we report the generation of a knock-in mouse line carrying the HSAN IV TrkAR649W mutation. First, by in vitro biochemical and biophysical analyses, we show that the pathological R649W mutation leads to kinase-inactive TrkA also affecting its membrane dynamics and trafficking. In agreement with the HSAN IV human phenotype, TrkAR649W/m mice display a lower response to thermal and chemical noxious stimuli, correlating with reduced skin innervation, in addition to decreased sweating in comparison to TrkAh/m controls. Moreover, the R649W mutation decreases anxiety-like behavior and compromises cognitive abilities, by impairing spatial-working and social memory. Our results further uncover unexplored roles of TrkA in thermoregulation and sociability. In addition to accurately recapitulating the clinical manifestations of HSAN IV patients, our findings contribute to clarifying the involvement of the NGF-TrkA system in pain sensation.


Asunto(s)
Modelos Animales de Enfermedad , Neuropatías Hereditarias Sensoriales y Autónomas , Receptor trkA , Humanos , Animales , Ratones , Mutación , Receptor trkA/genética , Técnicas de Sustitución del Gen , Factor de Crecimiento Nervioso/metabolismo , Fosforilación , Genes Letales , Dolor/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Piel/metabolismo , Piel/patología , Sistema Nervioso Simpático/metabolismo , Hipohidrosis/metabolismo , Conducta Animal
10.
Annu Rev Neurosci ; 40: 307-325, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28441116

RESUMEN

Nerve growth factor (NGF) antagonism is on the verge of becoming a powerful analgesic treatment for numerous conditions, including osteoarthritis and lower back pain. This review summarizes the historical research, both fundamental and clinical, that led to our current understanding of NGF biology. We also discuss the surprising number of questions that remain about NGF expression patterns and NGF's various functions and interaction partners in relation to persistent pain and the potential side effects of anti-NGF therapy.


Asunto(s)
Factor de Crecimiento Nervioso/metabolismo , Dolor/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptor trkA/metabolismo , Animales , Dolor Crónico/metabolismo , Humanos
11.
Brain ; 147(1): 122-134, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37633263

RESUMEN

Rett syndrome is a rare genetic neurodevelopmental disease, affecting 1 in over 10 000 females born worldwide, caused by de novo mutations in the X-chromosome-located methyl-CpG-binding protein 2 (MeCP2) gene. Despite the great effort put forth by the scientific community, a therapy for this devastating disease is still needed. Here, we tested the therapeutic effects of a painless mutein of the nerve growth factor (NGF), called human NGF painless (hNGFp), via a non-invasive intranasal delivery in female MeCP2+/- mice. Of note, previous work had demonstrated a broad biodistribution of hNGFp in the mouse brain by the nasal delivery route. We report that (i) the long-term lifelong treatment of MeCP2+/- mice with hNGFp, starting at 2 months of age, increased the chance of survival while also greatly improving behavioural parameters. Furthermore, when we assessed the phenotypic changes brought forth by (ii) a short-term 1-month-long hNGFp-treatment, starting at 3 months of age (right after the initial presentation of symptoms), we observed the rescue of a well known neuronal target population of NGF, cholinergic neurons in the medial septum. Moreover, we reveal a deficit in microglial morphology in MeCP2+/- mice, completely reversed in treated animals. This effect on microglia is in line with reports showing microglia to be a TrkA-dependent non-neuronal target cell population of NGF in the brain. To understand the immunomodulatory activity of hNGFp, we analysed the cytokine profile after hNGFp treatment in MeCP2+/- mice, to discover that the treatment recovered the altered expression of key neuroimmune-communication molecules, such as fractalkine. The overall conclusion is that hNGFp delivered intranasally can ameliorate symptoms in the MeCP2+/- model of Rett syndrome, by exerting strong neuroprotection with a dual mechanism of action: directly on target neurons and indirectly via microglia.


Asunto(s)
Síndrome de Rett , Humanos , Femenino , Ratones , Animales , Síndrome de Rett/terapia , Factor de Crecimiento Nervioso/metabolismo , Distribución Tisular , Proteína 2 de Unión a Metil-CpG/genética , Encéfalo/metabolismo , Neuronas/metabolismo , Modelos Animales de Enfermedad
12.
Mol Ther ; 32(5): 1407-1424, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429927

RESUMEN

Maintaining functional adipose innervation is critical for metabolic health. We found that subcutaneous white adipose tissue (scWAT) undergoes peripheral neuropathy (PN) with obesity, diabetes, and aging (reduced small-fiber innervation and nerve/synaptic/growth-cone/vesicle markers, altered nerve activity). Unlike with nerve injuries, peripheral nerves do not regenerate with PN, and therefore new therapies are needed for treatment of this condition affecting 20-30 million Americans. Here, we validated a gene therapy approach using an adipocyte-tropic adeno-associated virus (AAV; serotype Rec2) to deliver neurotrophic factors (brain-derived neurotrophic factor [BDNF] and nerve growth factor [NGF]) directly to scWAT to improve tissue-specific PN as a proof-of-concept approach. AAVRec2-BDNF intra-adipose delivery improved tissue innervation in obese/diabetic mice with PN, but after longer periods of dietary obesity there was reduced efficacy, revealing a key time window for therapies. AAVRec2-NGF also increased scWAT innervation in obese mice and was more effective than BDNF, likely because Rec2 targeted adipocytes, the tissue's endogenous NGF source. AAVRec2-NGF also worked well even after 25 weeks of dietary obesity, unlike BDNF, which likely needs a vector that targets its physiological cellular source (stromal vascular fraction cells). Given the differing effects of AAVs carrying NGF versus BDNF, a combined therapy may be ideal for PN.


Asunto(s)
Adipocitos , Factor Neurotrófico Derivado del Encéfalo , Dependovirus , Terapia Genética , Vectores Genéticos , Obesidad , Grasa Subcutánea , Animales , Dependovirus/genética , Obesidad/terapia , Obesidad/metabolismo , Ratones , Terapia Genética/métodos , Adipocitos/metabolismo , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Grasa Subcutánea/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Modelos Animales de Enfermedad , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/genética , Técnicas de Transferencia de Gen , Humanos , Masculino , Enfermedades del Sistema Nervioso Periférico/terapia , Enfermedades del Sistema Nervioso Periférico/etiología , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/genética , Transducción Genética
13.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042776

RESUMEN

Sympathetic innervation regulates energy balance, and the nerve density in the adipose tissues changes under various metabolic states, resulting in altered neuronal control and conferring resilience to metabolic challenges. However, the impact of the immune milieu on neuronal innervation is not known. Here, we examined the regulatory role on nerve plasticity by eosinophils and found they increased cell abundance in response to cold and produced nerve growth factor (NGF) in the white adipose tissues (WAT). Deletion of Ngf from eosinophils or depletion of eosinophils impairs cold-induced axonal outgrowth and beiging process. The spatial proximity between sympathetic nerves, IL-33-expressing stromal cells, and eosinophils was visualized in both human and mouse adipose tissues. At the cellular level, the sympathetic adrenergic signal induced calcium flux in the stromal cells and subsequent release of IL-33, which drove the up-regulation of IL-5 from group 2 innate lymphoid cells (ILC2s), leading to eosinophil accretion. We propose a feed-forward loop between sympathetic activity and type 2 immunity that coordinately enhances sympathetic innervation and promotes energy expenditure.


Asunto(s)
Tejido Adiposo/metabolismo , Axones/metabolismo , Plasticidad de la Célula/fisiología , Eosinófilos/inmunología , Tejido Adiposo Blanco/metabolismo , Adulto , Animales , Calcio , Femenino , Humanos , Inmunidad Innata , Interleucina-33/metabolismo , Linfocitos/inmunología , Ratones , Persona de Mediana Edad , Factor de Crecimiento Nervioso/metabolismo , Células del Estroma/metabolismo , Sistema Nervioso Simpático/fisiología
14.
Am J Physiol Cell Physiol ; 326(6): C1648-C1658, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682237

RESUMEN

The authors' previous research has shown the pivotal roles of cyclin-dependent kinase 5 (CDK5) and its regulatory protein p35 in nerve growth factor (NGF)-induced differentiation of sympathetic neurons in PC12 cells. During the process of differentiation, neurons are susceptible to environmental influences, including the effects of drugs. Metformin is commonly used in the treatment of diabetes and its associated symptoms, particularly in diabetic neuropathy, which is characterized by dysregulation of the sympathetic neurons. However, the impacts of metformin on sympathetic neuronal differentiation remain unknown. In this study, we investigated the impact of metformin on NGF-induced sympathetic neuronal differentiation using rat pheochromocytoma PC12 cells as a model. We examined the regulation of TrkA-p35/CDK5 signaling in NGF-induced PC12 differentiation. Our results demonstrate that metformin reduces NGF-induced PC12 differentiation by inactivating the TrkA receptor, subsequently inhibiting ERK and EGR1. Inhibition of this cascade ultimately leads to the downregulation of p35/CDK5 in PC12 cells. Furthermore, metformin inhibits the activation of the presynaptic protein Synapsin-I, a substrate of CDK5, in PC12 differentiation. In addition, metformin alters axonal and synaptic bouton formation by inhibiting p35 at both the axons and axon terminals in fully differentiated PC12 cells. In summary, our study elucidates that metformin inhibits sympathetic neuronal differentiation in PC12 cells by disrupting TrkA/ERK/EGR1 and p35/CDK5 signaling. This research contributes to uncovering a novel signaling mechanism in drug response during sympathetic neuronal differentiation, enhancing our understanding of the intricate molecular processes governing this critical aspect of neurodevelopment.NEW & NOTEWORTHY This study unveils a novel mechanism influenced by metformin during sympathetic neuronal differentiation. By elucidating its inhibitory effects from the nerve growth factor (NGF) receptor, TrkA, to the p35/CDK5 signaling pathways, we advance our understanding of metformin's mechanisms of action and emphasize its potential significance in the context of drug responses during sympathetic neuronal differentiation.


Asunto(s)
Diferenciación Celular , Quinasa 5 Dependiente de la Ciclina , Metformina , Factor de Crecimiento Nervioso , Neuronas , Receptor trkA , Animales , Metformina/farmacología , Ratas , Células PC12 , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/farmacología , Receptor trkA/metabolismo , Receptor trkA/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Diferenciación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Fosfotransferasas
15.
J Cell Mol Med ; 28(4): e18143, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38333908

RESUMEN

Nerve growth factor (NGF) and its receptor, tropomyosin receptor kinase A (TrkA), are known to play important roles in the immune and nervous system. However, the effects of NGF on the osteogenic differentiation of dental pulp stem cells (DPSCs) remain unclear. This study aimed to investigate the role of NGF on the osteogenic differentiation of DPSCs in vitro and the underlying mechanisms. DPSCs were cultured in osteogenic differentiation medium containing NGF (50 ng/mL) for 7 days. Then osteogenic-related genes and protein markers were analysed using qRT-PCR and Western blot, respectively. Furthermore, addition of NGF inhibitor and small interfering RNA (siRNA) transfection experiments were used to elucidate the molecular signalling pathway responsible for the process. NGF increased osteogenic differentiation of DPSCs significantly compared with DPSCs cultured in an osteogenic-inducing medium. The NGF inhibitor Ro 08-2750 (10 µM) and siRNA-mediated gene silencing of NGF receptor, TrkA and ERK signalling pathways inhibitor U0126 (10 µM) suppressed osteogenic-related genes and protein markers on DPSCs. Furthermore, our data revealed that NGF-upregulated osteogenic differentiation of DPSCs may be associated with the activation of MEK/ERK signalling pathways via TrkA. Collectively, NGF was capable of promoting osteogenic differentiation of DPSCs through MEK/ERK signalling pathways, which may enhance the DPSCs-mediated bone tissue regeneration.


Asunto(s)
Factor de Crecimiento Nervioso , Osteogénesis , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/metabolismo , Pulpa Dental , Células Madre/metabolismo , Diferenciación Celular , Células Cultivadas , ARN Interferente Pequeño/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proliferación Celular
16.
J Biol Chem ; 299(10): 105224, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37673340

RESUMEN

Following 3 decades of extensive research into PI3K signaling, it is now evidently clear that the underlying network does not equate to a simple ON/OFF switch. This is best illustrated by the multifaceted nature of the many diseases associated with aberrant PI3K signaling, including common cancers, metabolic disease, and rare developmental disorders. However, we are still far from a complete understanding of the fundamental control principles that govern the numerous phenotypic outputs that are elicited by activation of this well-characterized biochemical signaling network, downstream of an equally diverse set of extrinsic inputs. At its core, this is a question on the role of PI3K signaling in cellular information processing and decision making. Here, we review the determinants of accurate encoding and decoding of growth factor signals and discuss outstanding questions in the PI3K signal relay network. We emphasize the importance of quantitative biochemistry, in close integration with advances in single-cell time-resolved signaling measurements and mathematical modeling.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Transducción de Señal , Humanos , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Biología de Sistemas , Familia de Proteínas EGF/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Enfermedades Metabólicas/metabolismo
17.
Prostate ; 84(11): 1016-1024, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38804836

RESUMEN

BACKGROUND: Our research focused on the assessment of the impact of systemic inhibition of Trk receptors, which bind to nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), on bladder hypersensitivity in two distinct rodent models of prostatic inflammation (PI). METHODS: Male Sprague-Dawley rats were divided into three groups (n = 6 each): the control group (no PI, vehicle administration), the untreated group (PI, vehicle administration), and the treated group (PI, nonselective Trk inhibitor, GNF 5837, administration). PI in rats was induced by a intraprostatic injection of 5% formalin. Posttreatment, we carried out conscious cystometry and a range of histological and molecular analyses. Moreover, the study additionally evaluated the effects of a nonselective Trk inhibitor on bladder overactivity in a mouse model of PI, which was induced by prostate epithelium-specific conditional deletion of E-cadherin. RESULTS: The rat model of PI showed upregulations of NGF and BDNF in both bladder and prostate tissues in association with bladder overactivity and inflammation in the ventral lobes of the prostate. GNF 5837 treatment effectively mitigated these PI-induced changes, along with reductions in TrkA, TrkB, TrkC, and TRPV1 mRNA expressions in L6-S1 dorsal root ganglia. Also, in the mouse PI model, GNF 5837 treatment similarly improved bladder overactivity. CONCLUSIONS: The findings of our study suggest that Trk receptor inhibition, which reduced bladder hypersensitivity and inflammatory responses in the prostate, along with a decrease in overexpression of Trk and TRPV1 receptors in sensory pathways, could be an effective treatment strategy for male lower urinary tract symptoms associated with PI and bladder overactivity.


Asunto(s)
Modelos Animales de Enfermedad , Prostatitis , Ratas Sprague-Dawley , Receptor trkA , Vejiga Urinaria Hiperactiva , Animales , Masculino , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Vejiga Urinaria Hiperactiva/etiología , Ratas , Ratones , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Prostatitis/tratamiento farmacológico , Prostatitis/patología , Prostatitis/metabolismo , Factor de Crecimiento Nervioso/antagonistas & inhibidores , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Administración Oral , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Próstata/efectos de los fármacos , Próstata/patología , Próstata/metabolismo , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/patología , Vejiga Urinaria/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Receptor trkB/antagonistas & inhibidores , Receptor trkB/metabolismo
18.
Biochem Soc Trans ; 52(3): 1293-1304, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38716884

RESUMEN

ATP has recently been reconsidered as a molecule with functional properties which go beyond its recognized role of the energetic driver of the cell. ATP has been described as an allosteric modulator as well as a biological hydrotrope with anti-aggregation properties in the crowded cellular environment. The role of ATP as a modulator of the homeostasis of the neurotrophins (NTs), a growth factor protein family whose most known member is the nerve growth factor (NGF), has been investigated. The modulation of NTs by small endogenous ligands is still a scarcely described area, with few papers reporting on the topic, and very few reports on the molecular determinants of these interactions. However, a detailed atomistic description of the NTs interaction landscape is of urgent need, aiming at the identification of novel molecules as potential therapeutics and considering the wide range of potential pharmacological applications for NGF and its family members. This mini-review will focus on the unique cartography casting the interactions of the endogenous ligand ATP, in the interaction with NGF as well as with its precursor proNGF. These interactions revealed interesting features of the ATP binding and distinct differences in the binding mode between the highly structured mature NGF and its precursor, proNGF, which is characterized by an intrinsically unstructured domain. The overview on the recent available data will be presented, together with the future perspectives on the field.


Asunto(s)
Adenosina Trifosfato , Factor de Crecimiento Nervioso , Unión Proteica , Factor de Crecimiento Nervioso/metabolismo , Adenosina Trifosfato/metabolismo , Humanos , Animales , Precursores de Proteínas/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/química , Ligandos , Sitios de Unión
19.
Am J Pathol ; 193(9): 1248-1266, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37301536

RESUMEN

Prostate cancer (PC) is a malignancy with high morbidity and mortality. Bone metastasis is the main driver of short survival time and difficulties in the treatment and prevention of PC. The goal of this study was to explore the biological function of E3 ubiquitin ligase F-box only protein 22 (FBXO22) in PC metastasis and its specific regulation mechanism. According to transcriptome sequencing, FBXO22 was overexpressed in PC tissues (versus adjacent tissues) and bone tissues (versus biopsied bone tissues without bone metastases). Fbxo22 down-regulation reduced bone metastases and macrophage M2 polarization in mice. FBXO22 was down-regulated in macrophages, and polarization was observed by flow cytometry. Macrophages were co-cultured with PC cells and osteoblasts to assess PC cell and osteoblast activity. FBXO22 knockdown restored osteoblast capacity. FBXO22 ubiquitinated and degraded Krüppel-like factor 4 (KLF4), which regulated the nerve growth factor (NGF)/tropomyosin receptor kinase A pathway by repressing NGF transcription. Silencing of KLF4 mitigated the metastasis-suppressing properties of FBXO22 knockdown, whereas NGF reversed the metastasis-suppressing properties of KLF4 in vitro and in vivo. Cumulatively, these data indicate that FBXO22 promotes PC cell activity and osteogenic lesions by stimulating macrophage M2 polarization. It also degrades KLF4 in macrophages and promotes NGF transcription, thereby activating the NGF/tropomyosin receptor kinase A pathway.


Asunto(s)
Neoplasias Óseas , Proteínas F-Box , Neoplasias de la Próstata , Humanos , Masculino , Ratones , Animales , Factor de Crecimiento Nervioso/metabolismo , Tropomiosina/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Neoplasias de la Próstata/genética , Transducción de Señal , Receptores Citoplasmáticos y Nucleares
20.
Am J Pathol ; 193(8): 1046-1058, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37164275

RESUMEN

Pelvic pain in women with endometriosis is attributed to neuroinflammation and afferent nociceptor nerves in ectopic and eutopic endometrium. The hypothesis that uterine nociception is activated by IL-1ß, a prominent cytokine in endometriosis, was tested herein. Immunofluorescence histochemistry confirmed the presence of neurons in human endometrial tissue. Expression of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and their receptors in endometrial tissue and cells was validated by immunohistochemistry and Western blotting. Isolated endometrial stromal cells (ESCs) were subjected to dose-response and time-course experiments with IL-1ß and kinase inhibitors to characterize in vitro biomarkers. Neural biomarkers were co-localized in endometrial nerve fibers. NGF, BDNF, and their receptors tropomyosin receptor kinase (Trk) A, TrkB, and p75 neurotrophin receptor were all expressed in primary ESCs. IL-1ß stimulated higher TrkA/B expression in ESCs derived from endometriosis cases (2.8- ± 0.2-fold) than cells from controls (1.5- ± 0.3-fold, t-test, P < 0.01), effects that were mediated via the c-Jun N-terminal kinase (JNK) pathway. BDNF concentrations trended higher in peritoneal fluid of endometriosis cases but were not statistically different from controls (P = 0.16). The results support the hypothesis that NGF and BDNF and their corresponding receptors orchestrate innervation of the endometrium, which is augmented by IL-1ß. We postulate that JNK inhibitors, such as SP600125, have the potential to reduce neuroinflammation in women with endometriosis.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Endometriosis , Femenino , Humanos , Endometriosis/complicaciones , Endometriosis/tratamiento farmacológico , Endometriosis/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Sistema de Señalización de MAP Quinasas , Enfermedades Neuroinflamatorias , Células Cultivadas , Dolor Pélvico/tratamiento farmacológico , Biomarcadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA