Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.509
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 41(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38776415

RESUMEN

Evolution of a complete nitrogen (N) cycle relies on the onset of ammonia oxidation, which aerobically converts ammonia to nitrogen oxides. However, accurate estimation of the antiquity of ammonia-oxidizing bacteria (AOB) remains challenging because AOB-specific fossils are absent and bacterial fossils amenable to calibrate molecular clocks are rare. Leveraging the ancient endosymbiosis of mitochondria and plastid, as well as using state-of-the-art Bayesian sequential dating approach, we obtained a timeline of AOB evolution calibrated largely by eukaryotic fossils. We show that the first AOB evolved in marine Gammaproteobacteria (Gamma-AOB) and emerged between 2.1 and 1.9 billion years ago (Ga), thus postdating the Great Oxidation Event (GOE; 2.4 to 2.32 Ga). To reconcile the sedimentary N isotopic signatures of ammonia oxidation occurring near the GOE, we propose that ammonia oxidation likely occurred at the common ancestor of Gamma-AOB and Gammaproteobacterial methanotrophs, or the actinobacterial/verrucomicrobial methanotrophs which are known to have ammonia oxidation activities. It is also likely that nitrite was transported from the terrestrial habitats where ammonia oxidation by archaea took place. Further, we show that the Gamma-AOB predated the anaerobic ammonia-oxidizing (anammox) bacteria, implying that the emergence of anammox was constrained by the availability of dedicated ammonia oxidizers which produce nitrite to fuel anammox. Our work supports a new hypothesis that N redox cycle involving nitrogen oxides evolved rather late in the ocean.


Asunto(s)
Amoníaco , Fósiles , Oxidación-Reducción , Amoníaco/metabolismo , Gammaproteobacteria/metabolismo , Gammaproteobacteria/genética , Bacterias/metabolismo , Bacterias/genética , Evolución Biológica , Filogenia , Simbiosis , Eucariontes/metabolismo , Eucariontes/genética , Ciclo del Nitrógeno
2.
Appl Environ Microbiol ; 90(4): e0209923, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38445905

RESUMEN

Marine oxygen-deficient zones (ODZs) are portions of the ocean where intense nitrogen loss occurs primarily via denitrification and anammox. Despite many decades of study, the identity of the microbes that catalyze nitrogen loss in ODZs is still being elucidated. Intriguingly, high transcription of genes in the same family as the nitric oxide dismutase (nod) gene from Methylomirabilota has been reported in the anoxic core of ODZs. Here, we show that the most abundantly transcribed nod genes in the Eastern Tropical North Pacific ODZ belong to a new order (UBA11136) of Alphaproteobacteria, rather than Methylomirabilota as previously assumed. Gammaproteobacteria and Planctomycetia also transcribe nod, but at lower relative abundance than UBA11136 in the upper ODZ. The nod-transcribing Alphaproteobacteria likely use formaldehyde and formate as a source of electrons for aerobic respiration, with additional electrons possibly from sulfide oxidation. They also transcribe multiheme cytochrome (here named ptd) genes for a putative porin-cytochrome protein complex of unknown function, potentially involved in extracellular electron transfer. Molecular oxygen for aerobic respiration may originate from nitric oxide dismutation via cryptic oxygen cycling. Our results implicate Alphaproteobacteria order UBA11136 as a significant player in marine nitrogen loss and highlight their potential in one-carbon, nitrogen, and sulfur metabolism in ODZs.IMPORTANCEIn marine oxygen-deficient zones (ODZs), microbes transform bioavailable nitrogen to gaseous nitrogen, with nitric oxide as a key intermediate. The Eastern Tropical North Pacific contains the world's largest ODZ, but the identity of the microbes transforming nitric oxide remains unknown. Here, we show that highly transcribed nitric oxide dismutase (nod) genes belong to Alphaproteobacteria of the novel order UBA11136, which lacks cultivated isolates. These Alphaproteobacteria show evidence for aerobic respiration, using oxygen potentially sourced from nitric oxide dismutase, and possess a novel porin-cytochrome protein complex with unknown function. Gammaproteobacteria and Planctomycetia transcribe nod at lower levels. Our results pinpoint the microbes mediating a key step in marine nitrogen loss and reveal an unexpected predicted metabolism for marine Alphaproteobacteria.


Asunto(s)
Alphaproteobacteria , Gammaproteobacteria , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Óxido Nítrico/metabolismo , Bacterias/genética , Oxígeno/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Citocromos/metabolismo , Nitrógeno/metabolismo , Porinas/metabolismo , Oxidación-Reducción , Agua de Mar/microbiología , Desnitrificación
3.
BMC Microbiol ; 24(1): 3, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172653

RESUMEN

The zoonotic pathogen Wohlfahrtiimonas chitiniclastica can cause several diseases in humans, including sepsis and bacteremia. Although the pathogenesis is not fully understood, the bacterium is thought to enter traumatic skin lesions via fly larvae, resulting in severe myiasis and/or wound contamination. Infections are typically associated with, but not limited to, infestation of an open wound by fly larvae, poor sanitary conditions, cardiovascular disease, substance abuse, and osteomyelitis. W. chitiniclastica is generally sensitive to a broad spectrum of antibiotics with the exception of fosfomycin. However, increasing drug resistance has been observed and its development should be monitored with caution. In this review, we summarize the currently available knowledge and evaluate it from both a clinical and a genomic perspective.


Asunto(s)
Dípteros , Gammaproteobacteria , Animales , Humanos , Gammaproteobacteria/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Dípteros/microbiología , Genómica , Larva
4.
Crit Rev Microbiol ; 50(1): 105-126, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36634159

RESUMEN

Integrative Conjugative Elements (ICEs) are mosaics containing functional modules allowing maintenance by site-specific integration and excision into and from the host genome and conjugative transfer to a specific host range. Many ICEs encode a range of adaptive functions that aid bacterial survival and evolution in a range of niches. ICEs from the SXT/R391 family are found in γ-Proteobacteria. Over 100 members have undergone epidemiological and molecular characterization allowing insight into their diversity and function. Comparative analysis of SXT/R391 elements from a wide geographic distribution has revealed conservation of key functions, and the accumulation and evolution of adaptive genes. This evolution is associated with gene acquisition in conserved hotspots and variable regions within the SXT/R391 ICEs catalysed via element-encoded recombinases. The elements can carry IS elements and transposons, and a mutagenic DNA polymerase, PolV, which are associated with their evolution. SXT/R391 ICEs isolated from different niches appear to have retained adaptive functions related to that specific niche; phage resistance determinants in ICEs carried by wastewater bacteria, antibiotic resistance determinants in clinical isolates and metal resistance determinants in bacteria recovered from polluted environments/ocean sediments. Many genes found in the element hotspots are undetermined and have few homologs in the nucleotide databases.


Asunto(s)
Gammaproteobacteria , Gammaproteobacteria/genética , Elementos Transponibles de ADN , Conjugación Genética , Antibacterianos
5.
BMC Infect Dis ; 24(1): 599, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898413

RESUMEN

BACKGROUND: Phytobacter diazotrophicus (P. diazotrophicus) is an opportunistic pathogen that causes nosocomial outbreaks and sepsis. However, there are no reports of P. diazotrophicus isolated from human blood in China. CASE PRESENTATION: A 27-day-old female infant was admitted to our hospital with fever and high bilirubin levels. The clinical features included jaundice, abnormal coagulation, cholestasis, fever, convulsions, weak muscle tension, sucking weakness, ascites, abnormal tyrosine metabolism, cerebral oedema, abnormal liver function, clavicle fracture, and haemolytic anaemia. The strain isolated from the patient's blood was identified as P. diazotrophicus by whole-genome sequencing (WGS). Galactosemia type 1 (GALAC1) was diagnosed using whole-exome sequencing (WES). Based on drug sensitivity results, 10 days of anti-infective treatment with meropenem combined with lactose-free milk powder improved symptoms. CONCLUSION: P. diazotrophicus was successfully identified in a patient with neonatal sepsis combined with galactosemia. Galactosemia may be an important factor in neonatal sepsis. This case further expands our understanding of the clinical characteristics of GALAC1.


Asunto(s)
Galactosemias , Sepsis , Humanos , Femenino , China , Galactosemias/complicaciones , Galactosemias/microbiología , Sepsis/microbiología , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Recién Nacido , Antibacterianos/uso terapéutico , Meropenem/uso terapéutico , Secuenciación Completa del Genoma , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación
6.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38724455

RESUMEN

AIMS: We aimed to investigate the function of an unidentified gene annotated as a PIG-L domain deacetylase (cspld) in Chitiniphilus shinanonensis SAY3. cspld was identified using transposon mutagenesis, followed by negatively selecting a mutant incapable of growing on chitin, a polysaccharide consisting of N-acetyl-d-glucosamine (GlcNAc). We focused on the physiological role of CsPLD protein in chitin utilization. METHODS AND RESULTS: Recombinant CsPLD expressed in Escherichia coli exhibited GlcNAc-6-phosphate deacetylase (GPD) activity, which is involved in the metabolism of amino sugars. However, SAY3 possesses two genes (csnagA1 and csnagA2) in its genome that code for proteins whose primary sequences are homologous to those of typical GPDs. Recombinant CsNagA1 and CsNagA2 also exhibited GPD activity with 23 and 1.6% of catalytic efficiency (kcat/Km), respectively, compared to CsPLD. The gene-disrupted mutant, Δcspld was unable to grow on chitin or GlcNAc, whereas the three mutants, ΔcsnagA1, ΔcsnagA2, and ΔcsnagA1ΔcsnagA2 grew similarly to SAY3. The determination of GPD activity in the crude extracts of each mutant revealed that CsPLD is a major enzyme that accounts for almost all cellular activities. CONCLUSIONS: Deacetylation of GlcNAc-6P catalyzed by CsPLD (but not by typical GPDs) is essential for the assimilation of chitin and its constituent monosaccharide, GlcNAc, as a carbon and energy source in C. shinanonensis.


Asunto(s)
Quitina , Quitina/metabolismo , Amidohidrolasas/metabolismo , Amidohidrolasas/genética , Acetilglucosamina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/enzimología , Gammaproteobacteria/metabolismo
7.
Mar Drugs ; 22(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38921549

RESUMEN

Antarctica, one of the most extreme environments on Earth, hosts diverse microbial communities. These microbes have evolved and adapted to survive in these hostile conditions, but knowledge on the molecular mechanisms underlying this process remains limited. The Italian Collection of Antarctic Bacteria (Collezione Italiana Batteri Antartici (CIBAN)), managed by the University of Messina, represents a valuable repository of cold-adapted bacterial strains isolated from various Antarctic environments. In this study, we sequenced and analyzed the genomes of 58 marine Gammaproteobacteria strains from the CIBAN collection, which were isolated during Italian expeditions from 1990 to 2005. By employing genome-scale metrics, we taxonomically characterized these strains and assigned them to four distinct genera: Pseudomonas, Pseudoalteromonas, Shewanella, and Psychrobacter. Genome annotation revealed a previously untapped functional potential, including secondary metabolite biosynthetic gene clusters and antibiotic resistance genes. Phylogenomic analyses provided evolutionary insights, while assessment of cold-shock protein presence shed light on adaptation mechanisms. Our study emphasizes the significance of CIBAN as a resource for understanding Antarctic microbial life and its biotechnological potential. The genomic data unveil new horizons for insight into bacterial existence in Antarctica.


Asunto(s)
Gammaproteobacteria , Genoma Bacteriano , Genómica , Filogenia , Regiones Antárticas , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Genómica/métodos , Psychrobacter/genética , Psychrobacter/aislamiento & purificación , Pseudoalteromonas/genética , Familia de Multigenes
8.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34272286

RESUMEN

In the ocean, most hosts acquire their symbionts from the environment. Due to the immense spatial scales involved, our understanding of the biogeography of hosts and symbionts in marine systems is patchy, although this knowledge is essential for understanding fundamental aspects of symbiosis such as host-symbiont specificity and evolution. Lucinidae is the most species-rich and widely distributed family of marine bivalves hosting autotrophic bacterial endosymbionts. Previous molecular surveys identified location-specific symbiont types that "promiscuously" form associations with multiple divergent cooccurring host species. This flexibility of host-microbe pairings is thought to underpin their global success, as it allows hosts to form associations with locally adapted symbionts. We used metagenomics to investigate the biodiversity, functional variability, and genetic exchange among the endosymbionts of 12 lucinid host species from across the globe. We report a cosmopolitan symbiont species, Candidatus Thiodiazotropha taylori, associated with multiple lucinid host species. Ca. T. taylori has achieved more success at dispersal and establishing symbioses with lucinids than any other symbiont described thus far. This discovery challenges our understanding of symbiont dispersal and location-specific colonization and suggests both symbiont and host flexibility underpin the ecological and evolutionary success of the lucinid symbiosis.


Asunto(s)
Bivalvos/microbiología , Gammaproteobacteria/clasificación , Gammaproteobacteria/fisiología , Simbiosis , Animales , Procesos Autotróficos , Biodiversidad , Evolución Biológica , Bivalvos/clasificación , Bivalvos/fisiología , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Especificidad del Huésped , Filogenia , Filogeografía
9.
PLoS Genet ; 17(11): e1009919, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34847155

RESUMEN

Antimicrobial resistance is one of the major threats to Public Health worldwide. Understanding the transfer and maintenance of antimicrobial resistance genes mediated by mobile genetic elements is thus urgent. In this work, we focus on the ColE1-like plasmid family, whose distinctive replication and multicopy nature has given rise to key discoveries and tools in molecular biology. Despite being massively used, the hosts, functions, and evolutionary history of these plasmids remain poorly known. Here, we built specific Hidden Markov Model (HMM) profiles to search ColE1 replicons within genomes. We identified 1,035 ColE1 plasmids in five Orders of γ-Proteobacteria, several of which are described here for the first time. The phylogenetic analysis of these replicons and their characteristic MOBP5/HEN relaxases suggest that ColE1 plasmids have diverged apart, with little transfer across orders, but frequent transfer across families. Additionally, ColE1 plasmids show a functional shift over the last decades, losing their characteristic bacteriocin production while gaining several antimicrobial resistance genes, mainly enzymatic determinants and including several extended-spectrum betalactamases and carbapenemases. Furthermore, ColE1 plasmids facilitate the intragenomic mobilization of these determinants, as various replicons were identified co-integrated with large non-ColE1 plasmids, mostly via transposases. These results illustrate how families of plasmids evolve and adapt their gene repertoires to bacterial adaptive requirements.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Bacteriocinas/biosíntesis , Farmacorresistencia Bacteriana/genética , Evolución Molecular , Gammaproteobacteria/genética , Genes Bacterianos , Plásmidos , Gammaproteobacteria/efectos de los fármacos , Cadenas de Markov , Filogenia
10.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34893862

RESUMEN

The mutualism between the giant tubeworm Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone has been extensively researched over the past 40 years. However, the lack of the host whole-genome information has impeded the full comprehension of the genotype/phenotype interface in Riftia. Here, we described the high-quality draft genome of Riftia, its complete mitogenome, and tissue-specific transcriptomic data. The Riftia genome presents signs of reductive evolution, with gene family contractions exceeding expansions. Expanded gene families are related to sulfur metabolism, detoxification, antioxidative stress, oxygen transport, immune system, and lysosomal digestion, reflecting evolutionary adaptations to the vent environment and endosymbiosis. Despite the derived body plan, the developmental gene repertoire in the gutless tubeworm is extremely conserved with the presence of a near intact and complete Hox cluster. Gene expression analyses establish that the trophosome is a multifunctional organ marked by intracellular digestion of endosymbionts, storage of excretory products, and hematopoietic functions. Overall, the plume and gonad tissues both in contact to the environment harbor highly expressed genes involved with cell cycle, programed cell death, and immunity indicating a high cell turnover and defense mechanisms against pathogens. We posit that the innate immune system plays a more prominent role into the establishment of the symbiosis during the infection in the larval stage, rather than maintaining the symbiostasis in the trophosome. This genome bridges four decades of physiological research in Riftia, whereas it simultaneously provides new insights into the development, whole organism functions, and evolution in the giant tubeworm.


Asunto(s)
Gammaproteobacteria , Poliquetos , Aclimatación , Animales , Gammaproteobacteria/genética , Poliquetos/genética , Poliquetos/metabolismo , Simbiosis/genética
11.
Environ Microbiol ; 25(12): 2958-2971, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37599091

RESUMEN

Cycloalkanes are abundant and toxic compounds in subsurface petroleum reservoirs and their fate is important to ecosystems impacted by natural oil seeps and spills. This study focuses on the microbial metabolism of methylcyclohexane (MCH) and methylcyclopentane (MCP) in the deep Gulf of Mexico. MCH and MCP are often abundant cycloalkanes observed in petroleum and will dissolve into the water column when introduced at the seafloor via a spill or natural seep. We conducted incubations with deep Gulf of Mexico (GOM) seawater amended with MCH and MCP at four stations. Within incubations with active respiration of MCH and MCP, we found that a novel genus of bacteria belonging to the Porticoccaceae family (Candidatus Reddybacter) dominated the microbial community. Using metagenome-assembled genomes, we reconstructed the central metabolism of Candidatus Reddybacter, identifying a novel clade of the particulate hydrocarbon monooxygenase (pmo) that may play a central role in MCH and MCP metabolism. Through comparative analysis of 174 genomes, we parsed the taxonomy of the Porticoccaceae family and found evidence suggesting the acquisition of pmo and other genes related to the degradation of cyclic and branched hydrophobic compounds were likely key events in the ecology and evolution of this group of organisms.


Asunto(s)
Cicloparafinas , Gammaproteobacteria , Microbiota , Contaminación por Petróleo , Petróleo , Sedimentos Geológicos/microbiología , Hidrocarburos/metabolismo , Agua de Mar/microbiología , Gammaproteobacteria/genética , Petróleo/metabolismo , Golfo de México , Biodegradación Ambiental
12.
Artículo en Inglés | MEDLINE | ID: mdl-37350580

RESUMEN

A Gram-stain-negative, aerobic, flagellated, and long rod-shaped bacterium, designated strain SM1973T, was isolated from an intertidal sediment sample collected from the coast of Qingdao, PR China. Strain SM1973T grew at 15-37 °C and with 0-5.5 % NaCl. It reduced nitrate to nitrite and hydrolysed aesculin but did not hydrolyse casein and gelatin. The strain showed the highest 16S rRNA gene sequence similarity (98.2 %) to the type strain of Spartinivicinus ruber. The phylogenetic trees based on the 16S rRNA genes and single-copy orthologous clusters showed that strain SM1973T clustered with S. ruber, forming a separate lineage within the family Zooshikellaceae. The major cellular fatty acids were summed feature 3 (C16 : 1 ω7с and/or C16 : 1 ω6с) and C16 : 0. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The main respiratory quinone was ubiquinone-9. The genomic DNA G+C content of strain SM1973T was 40.4 mol%. Based on the polyphasic evidence presented in this paper, strain SM1973T is considered to represent a novel species within the genus Spartinivicinus, for which the name Spartinivicinus marinus sp. nov. is proposed. The type strain is SM1973T (=MCCC 1K04833T=KCTC 72846T).


Asunto(s)
Ácidos Grasos , Gammaproteobacteria , Ácidos Grasos/química , Fosfolípidos , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Composición de Base , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Gammaproteobacteria/genética
13.
Curr Microbiol ; 80(6): 203, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147476

RESUMEN

With the rapid development of intensive aquaculture, the considerable release of nitrogenous organic compounds has become a serious threat to aquatic organisms. Currently, isolating autochthonous aerobic denitrifying bacteria (ADB) from aquaculture environments is essential for the biological elimination of nitrogenous pollutants. In this study, the enrichment of ADB from shrimp pond water and sediment samples was conducted under different shaking durations. The absolute abundance of total bacteria, nosZ-type, and the napA-type ADB was measured using qPCR. High-throughput sequencing of 16S rRNA, nosZ, and napA genes was performed to reveal the community structure of bacteria and ADB, respectively. Our data revealed that absolute abundance and the community structure of the total bacteria, nosZ-type and napA-type ADB, were significantly altered under different shaking durations. Specifically, the order Pseudomonadales, possessing both nosZ and napA genes, was significantly enriched in water and sediment samples under both 12/12 and 24/0 shaking/static cycles. However, in water samples, compared to the 24/0 shaking/static cycles, the 12/12 shaking/static cycles could lead to a higher enrichment rate of aerobic denitrification bacteria indicated by the higher absolute abundance of bacteria and the higher accounting percentage of orders Oceanospirillales and Vibrionales. Moreover, although the order Pseudomonadales notably increased under the 12/12 of shake/static cycle compared to the 24/0 shaking/static cycle, considering the relative higher abundance of ADB in 24/0 shaking/static cycle, the enrichment of ADB in sediment may be efficient with the 24/0 shaking/static cycle.


Asunto(s)
Desnitrificación , Gammaproteobacteria , Estanques , ARN Ribosómico 16S/genética , Bacterias/genética , Gammaproteobacteria/genética , Agua
14.
Curr Microbiol ; 80(5): 142, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36930356

RESUMEN

An actinobacterium, designated as SYSU T00001T, was isolated from a tidal flat sediment sample from Guangdong province, China. Cells were Gram-stain-positive, aerobic, motile and short rod-shaped. Colonies on marine agar 2216 were smooth, yellow-pigmented, and circular with low convexity. The isolate was able to grow at the temperature range 4-37 °C (optimum 30 °C), at pH 4.0-10.0 (optimum 7.0) and in the presence of 0-10% (w/v) NaCl. The major menaquinones were MK-11 and MK-10. The cell wall contained alanine, glutamic acid, lysine and ornithine. The major fatty acids were C19:0 cyclo ω8c (35.7%) and anteiso C15:0 (26.0%). The polar lipids consisted of one diphosphatidyl glycerol, one unidentified glycolipid and one unknown lipid. Whole genome sequencing of strain SYSU T00001T revealed 2,837,702 bp with a DNA G + C content of 67.8%. Phylogenetic analyses clearly demonstrated that strain SYSU T00001T belonged to the genus Salinibacterium, and the highest 16S rRNA gene similarity to Salinibacterium hongtaonis 194T (97.8%). The ANI and dDDH values of strain SYSU T00001T relative to Salinibacterium hongtaonis 194T were 74.5% and 19.5%, respectively. According to our data, strain SYSU T00001T represents a novel species of the genus Salinibacterium, for which the name Salinibacterium sedimenticola sp. nov. is proposed, the type strain is SYSU T00001T (= GDMCC 1.3283T = KCTC 49758T).


Asunto(s)
Actinomycetales , Gammaproteobacteria , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Actinomycetales/genética , Ácidos Grasos/química , Gammaproteobacteria/genética , Vitamina K 2/química
15.
Curr Microbiol ; 80(4): 116, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841905

RESUMEN

A strictly aerobic Gram-negative bacterium, designated R8T, isolated from garden soil in South Korea was subjected to a taxonomic study. The cells were non-spore-forming, oxidase-positive and catalase-negative, and non-motile rods (without flagella). Growth was observed between 10 °C and 40 °C (optimum, 30 °C) and between pH 6.0 and 9.0 (optimum, pH 7.0) and in the presence of 0%-1.5% (w/v) NaCl (optimum, 0%). The G + C content of the genomic DNA was 49.9% and the major isoprenoid quinone was found to be menaquinone-7. The major fatty acids of strain R8T were iso-C15:0, C16:1 ω5c, and summed feature 3 (comprising iso-C15:0 2-OH and/or C16:1 ω7c/ω6c). Phosphatidylethanolamine was identified as a major polar lipid. Comparative 16S rRNA gene sequence analysis showed that strain R8T had the highest 16S rRNA gene sequence similarity of 98.3% with Chitinophaga sedimenti TFL-3 T. Phylogenetic analyses using 16S rRNA gene sequences and concatenated 92 marker protein sequences revealed that strain R8T formed a robust phylogenetic lineage with C. sedimenti within the genus Chitinophaga. Average nucleotide identity and digital DNA-DNA hybridization values of strain R8T to Chitinophaga species were less than 77.9% and 21.1%, respectively. The phenotypic, phylogenetic, and chemotaxonomic properties support that strain R8T represents a novel species of the genus Chitinophaga, for which the name Chitinophaga horti sp. nov. is proposed. The type strain is R8T (= KACC 19895 T = JCM 33215 T).


Asunto(s)
Gammaproteobacteria , Jardines , Filogenia , ARN Ribosómico 16S/genética , Suelo , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , ADN Bacteriano/química , Ácidos Grasos/química , Gammaproteobacteria/genética , Análisis de Secuencia de ADN
16.
Curr Microbiol ; 81(1): 12, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989899

RESUMEN

In the twenty-first century, antibiotic resistance (ABR) is one of the acute medical emergencies around the globe, overwhelming human-animal-environmental interfaces. Hit-or-mis use of antibiotics exacerbates the crisis of ABR, dispersing transferable resistance traits and challenging treatment regimens based on life-saving drugs such as colistin. Colistin is the highest priority critically important antimicrobials for human medicine, but its long use as a growth promoter in animal husbandry reduces clinical efficacy. Since 2015, the emergence and spread of mobile colistin resistance (mcr)-carrying colistin-resistant clones of Enterobacterales have been markedly sustained in both humans and animals, especially in developing countries. Hospital and community transmissions of mcr clones pose a high risk for infection prevention and outbreaks at the national and international levels. Several public health and limited one health studies have highlighted the genomic insights of mcr clones, clarifying the chromosomal sequence types (STs) and plasmid incompatibility (Inc) types. But this information is segregated into humans and animals, and rarely are environmental sectors complicating the understanding of possibly intercontinental and sectoral transmission of these clones. India is the hotspot for superbugs, including mcr-carrying colistin-resistant isolates that threaten cross-border transmission. The current review provided an up-to-date worldwide scenario of mcr-carrying STs and plasmid Inc types among the Gram-negative bacilli of Enterobacterales across human-animal-environmental interfaces and correlated with the available information from India.


Asunto(s)
Proteínas de Escherichia coli , Gammaproteobacteria , Animales , Humanos , Colistina/farmacología , Escherichia coli/genética , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Gammaproteobacteria/genética , Plásmidos , Pruebas de Sensibilidad Microbiana , Proteínas de Escherichia coli/genética
17.
Nucleic Acids Res ; 49(14): 7807-7824, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-33834206

RESUMEN

IncC conjugative plasmids and the multiple variants of Salmonella Genomic Island 1 (SGI1) are two functionally interacting families of mobile genetic elements commonly associated with multidrug resistance in the Gammaproteobacteria. SGI1 and its siblings are specifically mobilised in trans by IncC conjugative plasmids. Conjugative transfer of IncC plasmids is activated by the plasmid-encoded master activator AcaCD. SGI1 carries five AcaCD-responsive promoters that drive the expression of genes involved in its excision, replication, and mobilisation. SGI1 encodes an AcaCD homologue, the transcriptional activator complex SgaCD (also known as FlhDCSGI1) that seems to recognise and activate the same SGI1 promoters. Here, we investigated the relevance of SgaCD in SGI1's lifecycle. Mating assays revealed the requirement for SgaCD and its IncC-encoded counterpart AcaCD in the mobilisation of SGI1. An integrative approach combining ChIP-exo, Cappable-seq, and RNA-seq confirmed that SgaCD activates each of the 18 AcaCD-responsive promoters driving the expression of the plasmid transfer functions. A comprehensive analysis of the activity of the complete set of AcaCD-responsive promoters of SGI1 and the helper IncC plasmid was performed through reporter assays. qPCR and flow cytometry assays revealed that SgaCD is essential to elicit the excision and replication of SGI1 and destabilise the helper IncC plasmid.


Asunto(s)
Conjugación Genética/genética , Islas Genómicas/genética , Plásmidos/genética , Salmonella/genética , Activación Transcripcional , Proteínas Bacterianas/genética , Replicación del ADN/genética , Farmacorresistencia Bacteriana Múltiple/genética , Gammaproteobacteria/genética , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica , Modelos Genéticos , Regiones Promotoras Genéticas/genética , RNA-Seq/métodos
18.
Mikrochim Acta ; 190(9): 360, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37606732

RESUMEN

Carbapenem-resistant Enterobacterales pose significant global health challenges due to their rapid spread and ability to hydrolyse various beta-lactam antibiotics. Rapid tests for these carbapenemase genes are crucial to ensure appropriate prescription administration and infection control. In this study, we developed a rapid visual nanodiagnostic platform for multiplexed detection of carbapenemase genes using a lateral flow strip. The nanodiagnostic strip was designed with separate barcoded DNA tetrahedrons for the blaKPC and blaNDM genes. These tetrahedrons were distributed on a nitrocellulose membrane at two different test lines as capture probes. When tested against a panel of carbapenemase genes, the tetrahedral probes captured single-stranded amplicons of asymmetric PCR via strand hybridisation. The amplicons acted as bridging elements, binding the DNA-modified gold nanoparticles to the test line of the strip, resulting in clear visual readouts specific to the blaKPC and blaNDM genes. By employing barcoded tetrahedrons and asymmetric PCR in conjunction with the lateral flow strip, a single diagnostic test enabled the detection of multiple carbapenemase genes. The test yielded results as low as 0.12 fM for blaKPC and 0.05 fM for blaNDM within 75 min. Furthermore, the strip effectively identified specific carbapenemase genes in clinical isolates using real-time PCR, antibody-based lateral flow systems for carbapenemase detection, and carbapenemase phenotype experiments. Thus, the strip develop has a high potential for testing blaKPC and blaNDM genes in practice.


Asunto(s)
Técnicas Biosensibles , Farmacorresistencia Bacteriana , Técnicas Genéticas , Carbapenémicos/farmacología , Gammaproteobacteria/efectos de los fármacos , Gammaproteobacteria/genética , Reacción en Cadena de la Polimerasa/métodos
19.
World J Microbiol Biotechnol ; 40(2): 52, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38146029

RESUMEN

Escalating proportions of industrially contaminated sites are one of the major catastrophes faced at the present time due to the industrial revolution. The difficulties associated with culturing the microbes, has been circumvent by the direct use of metagenomic analysis of various complex niches. In this study, a metagenomic approach using next generation sequencing technologies was applied to exemplify the taxonomic abundance and metabolic potential of the microbial community residing in Amlakhadi canal, Ankleshwar at two different seasons. All the metagenomes revealed a predominance of Proteobacteria phylum. However, difference was observed within class level where Gammaproteobacteria was relatively high in polluted metagenome in Summer while in Monsoon the abundance shifted to Betaproteobacteria. Similarly, significant statistical differences were obtained while comparing the genera amongst contaminated sites where Serratia, Achromobacter, Stenotrophomonas and Pseudomonas were abundant in summer season and the dominance changed to Thiobacillus, Thauera, Acidovorax, Nitrosomonas, Sulfuricurvum, Novosphingobium, Hyphomonas and Geobacter in monsoon. Further upon functional characterization, the microbiomes revealed the diverse survival mechanisms, in response to the prevailing ecological conditions (such as degradation of aromatic compounds, heavy metal resistance, oxidative stress responses and multidrug resistance efflux pumps, etc.). The results have important implications in understanding and predicting the impacts of human-induced activities on microbial communities inhabiting natural niche and their responses in coping with the fluctuating pollution load.


Asunto(s)
Betaproteobacteria , Gammaproteobacteria , Microbiota , Humanos , Gammaproteobacteria/genética , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , Estaciones del Año , Bacterias/metabolismo , Microbiota/genética , Compuestos Orgánicos/metabolismo
20.
Environ Microbiol ; 24(2): 938-950, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33876543

RESUMEN

Magnetotactic bacteria (MTB) are phylogenetically diverse prokaryotes that can produce intracellular chain-assembled nanocrystals of magnetite (Fe3 O4 ) or greigite (Fe3 S4 ). Compared with their wide distribution in the Alpha-, Eta- and Delta-proteobacteria classes, few MTB strains have been identified in the Gammaproteobacteria class, resulting in limited knowledge of bacterial diversity and magnetosome biomineralization within this phylogenetic branch. Here, we identify two magnetotactic Gammaproteobacteria strains (tentatively named FZSR-1 and FZSR-2 respectively) from a salt evaporation pool in Bohai Bay, at the Fuzhou saltern, Dalian City, eastern China. Phylogenetic analysis indicates that strain FZSR-2 is the same species as strains SHHR-1 and SS-5, which were discovered previously from brackish and hypersaline environments respectively. Strain FZSR-1 represents a novel species. Compared with strains FZSR-2, SHHR-1 and SS-5 in which magnetite particles are assembled into a single chain, FZSR-1 cells form relatively narrower magnetite nanoparticles that are often organized into double chains. We find a good relationship between magnetite morphology within strains FZSR-2, SHHR-1 and SS-5 and the salinity of the environment in which they live. This study expands the bacterial diversity of magnetotactic Gammaproteobacteria and provides new insights into magnetosome biomineralization within magnetotactic Gammaproteobacteria.


Asunto(s)
Gammaproteobacteria , Magnetosomas , Bahías , Óxido Ferrosoférrico/análisis , Gammaproteobacteria/genética , Magnetosomas/química , Magnetosomas/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA